Pacific Journal of

Mathematics

ARITHMETICAL NOTES. III. CERTAIN EQUALLY

DISTRIBUTED SETS OF INTEGERS

ECKFORD COHEN




ARITHMETICAL NOTES, III. CERTAIN EQUALLY
DISTRIBUTED SETS OF INTEGERS

Eckrorp COHEN

1. Introduction. In this note we shall generalize the following two
results in the classical theory of numbers. Let = denote a positive
integer with distinet prime divisors p;, *+*, D,

(1.1) n=precepm (m>0), n=1(m=0),

and place 2(n) = e, + +++ + e,, 2(1) = 0, so that 2(n) is the total number
of prime divisors of n. For real # = 1, let S'(x) denote the number of
square-free numbers # =< x such that Q2(n) is even, and let S”(x) denote
the number of square-free » < x such that 2(n) is odd. It is well-known
[6, §161] that

(1.2) S@) ~32 @)~ 3 asp—e,
e T

Correspondingly, let T'(x) denote the total number of integers n < x
suct that 2(r) is even and 7" (x) the total number of » < x with 2(n)
odd. Then [6, §167]

(1.3) T'(x) ~ % T"(x) ~ % as & — oo .

The proof of (1.2) i3 based upon the deep estimate [6, §155] for the
Mobius function f(n),

(1.4) M(w) = > pn) = o(x) ,

while the proof of (1.3) is based upon the analogous estimate [6, §167}
for Liouville’s function A(n),

(1.5) L(z) = é An) = o(x) .

In Theorem 3.8 we prove a generalization of (1.2) and in Theorem
3.4 the corresponding generalization of (1.3). The respective proofs are
based upon an estimate (Theorem 3.1) corresponding to (1.4) for an
appropriate extension of £(n) and an estimate (Theorem 3.2) corresponding
to (1.5) for the analogous extension of M(n). The proofs of these estimates
are in the manner of Delange’s proofs [3, I(b), (¢)] of (1.4) and (1.5),
both being based upon a classical Tauberian theorem (Lemma 3.2) for
the Lambert summabillty process. We also require some elementary
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estimates contained in §2, and a lemma on inversion functions (Lemma 2.1).

2. Preliminary results. For an arbitrary set A of positive integers
n, the characteristic function a(n) and tnversion function b(n) of A are
defined by

(1 (neA)
[0 (ng¢A).

The enumerative function A(x) of A is the number of n = x contained
in A, and the genmerating function is the function f(s) = > a(n)/n’,
s>1,

We shall be concerned with several special sets of integers. Let Z
denote the set of positive integers, ke Z. Then P, will represent the
set of kth powers of Z, and Q, the set of k-free integers of Z. The
set of k-full intergers, that is, the integers (1.1) with each e; = k, will
be denoted R,. We shall use S, to denote the integers (1.1) in which
each e, has the value 1 or k. Finally, the set of integers (1.1) such
that e; = 0 or 1 (mod k), ¢ =1, «-+, m, will be denoted T',. The charac-
teristic functions P,, Q., R., S., and T, will be denoted respectively
(1), qu(m), r(n), s(n), and t,(n); the corresponding enumerative functions
will be denoted P (%), Qu(®), Ru(®), Si(x), T\(x). Also let @ = Q,, Q(x) =
Qux), and g(n) = qi(n). All of the sets defined are understood to include
the integer 1.

dzm‘ b(d) = a(n) =

REMARK 2.1. It will be observed that T, = Z, S, = @y, S; = Q.

In addition to the above notation, we shall use A, (n) to denote the
inversion function of P, and t(n) the inversion function of R, or @,
according as k>1 or k=1. By familiar properties of t(n) and Mn),
[4, Theorem 263 and 300], it follows that

@1 p(n) = pn),  N(n) = Mn) .
LEMMA 2.1. The functions p(n), M(n) are multiplicative. If p
is @ prime and e a positive integer, then for k=1,

1 ife=k=+1,
2.2) w@)=4-1 ife=1,
0 otherwise ,

while for k> 1,
1 if e=0 (modk),

(2.3) MDY =1—1 if e=1 (modk),
0 otherwise .
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REMARK 2.2. The multiplicativity property in connection with (2.2)
and (2.3) completely determine (%), £k = 1, and 1.(n) for £ = 2.

Proof. By definition, if £ > 1,

1 if ne R,

| ) =
(@.4) Sd) = rm) = o

Hence, application of the Mobius inversion formula yields
(25) ) S pdre (2), k>1.

Since f(n) and r.(n) are multiplicative, it follows by (2.5) that g.(n) is
also multiplicative (cf. [4, Theorem 265]). Also by (2.5), wt(p°) =
r(p°) — 7.(p*™"), from which (2.2) results in case k > 1. The case k =
1 of (2.2) is a consequence of (2.1). The proof of (2.3) is similar and
can be omitted.

We recall next some known elementary estimates for P.(x), Q.(x),
and R.(x). Let £(s), s > 1, denote the Riemann ¢-function.

LemmaA 2.2. If k> 1, then

(2.6) Puw) =1/ @ +0@),

_ x k7
@7 Uw) = i+ 0®),
2.8) Rw) =cl/w +0(—),

where ¢, 18 a certain nonzero constant depending upon k.

The result (2.6) is trivial, (2.7) is the classical estimate of Gegenbauer
(cf. |2, §2]), and (2.8) is a well-known result of Erdos and Szekeres (cf.
[1D. In particular, we have

LemmaA 2.3. If k> 1, then

(2.9) P@x)~1x , R(x) ~ et/ as ¥ — oo

’

x 6x
(2.10) Q) ~ s <Q(x) ~ n_> as @ — oo .

We now deduce, for application in §3, estimates for S,(x) and T.(x)
corresponding to those in Lemma 2.3 for P,(z), @.(x), and R.(x).

LEmMMA 2.4. If k> 1, then
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(2.11) Tu(x) ~ ﬁ%ﬁf)ﬁ as & — oo ;

if k=1, then

(2.12) Su(@) ~ %‘r_” as & — oo

where
(T~ s+ — e = )

@1 @=f@ (. 2 Lt L L),
1,

according as k 1is even, k is odd and + 1, or k=1, the products
ranging over the primes p.

REMARK 2.3. It will be noted that a, = £(2)/2(3) = /6£(3).

Proof. The elementary estimate (2.11) was proved in [1, Corollary
2.1]. The result in (2.12), in the cases k = 1 and k = 2, i3 a consequence
of (2.10) and Remarks 2.1 and 2.3. To complete the proof of (2.12) one
may therefore suppose that k > 2.

Under this restriction, we consider the generating function f.(s) of
s,(n). In particular, if s > 1, we have (cf. [4, §17.4])

=580 ok )

n » p*°
- “p(e ) ke 2]

Since

zi,;(ul)‘lgz LS L _rks), ks>1,

it follows from (2.14) that

_ (46
(2.15) 70 = (fgg) o), s>1,
where
@18 a@=32" g+l -1 4...), s>1,
=1 ,ns » psk ps(lc+1) k

the product, and hence the series, in (2.16) being absolutely convergent
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for s > 1/k. By Dirichlet multiplication [4. §17.1] one deduces from
(2.15) and (2.16) that
sp(n) = d(s};n q(d)a,(9) ,

because £(s)/¢(2s) is the generating function of g(n), [ef. [4, Theorem
302]). Applying (2.7) in the case Q(x) = Q,(x), it follows that

Sue) = T s = X @) = Same (L),
and hence that

_fix_ hy M + Oz 3 lay(n)]

Su(x) = < )
k( ) 7t2 n=wr n non nlIB

Recalling that the series in (2.16) converges absoltutely for s > 1/k, one
obtains, since k > 2,

_ 6x & aun) ax(n) 12
Sk(x)—"E;ET (902 > +o(x?) ,

n=1 n>a

so that

2.17) S,(@) = %M+dm Be = gi(1) .

It is readily verified, using (2.16) with s =1, that B, = «,, which
completes the proof of (2.12).

3. The principal results. We introduce some further definitions and
notation. A divisor d of n will be called unitary if do = n, (d, d) = 1.
The function £2'(n) is defined by 2'(n) = 2(g) where ¢ is the maximal,
unitary, square-free divisor of n. Let S, and S/, denote, respectively,
the subsets of S, for which Q'(n) is even or odd, neS,. Analogously,
let T, and T denote the respective subsets of T, for which 2(n) is
even or odd, ne T, k even. In addition, we shall use S;(x), Sy (x)
Ti(x), T/(x) to denote the enumerative functions of S, S/, T:, T%,
respectively.

REMARK 8.1, It will be observed that Si(z) = S'(x), S/'(x( = S"(%),
Tix) = T'(x), TY(x) = T"(x). In addition, we have, by Lemma 2.1,
te(m) = (—1)™s,(n), and in case n is even, A,(n) = (—1)°™t (n).

In addition to the lemmas of §2 we shall need the following three
known theorems.

LevMmaA 3.1 (cf. |5, 259, p. 449]). For bounded coefficients a., the
series,
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oo "
§1an<1——m”>

18 convergent, provided |z| < 1.

LemMA 3.2 ([3, p, 38]). If the series

i na, (—L> =S,

=1 1 — "

converges for 0 < x < 1, and

lim (1 — @) 3 nan<

X" .
1—x">vs’

then the series >,v.,a, converges with sum S provided a, = O(1/n).

LEmMMA 3.3 (]7, p. 225]). Suppose that the series S.5_, a,x" converges
for 0 < x < 1 and diverges for x = 1. If further,s, =a, + +++ +a, >0
for all m, and s, ~ Cn (C constant) as n — o, then

Iim 1 — ) i a,x" =C.
x—17" n=1

THEOREM 3.1. If k=1, then
(3.1) Mi(@) = 3\ f1(n) = o(w) .

Proof. By Lemmas 2.1 and 3.1, and the definition of (%),

1— 2 = h=t

St = S et if k>1,
frg h=1 n

ERy

x if k=1.

By (2.9), the set E, has density 0; hence Lemma 3.3 with C =0 can
be applied to the power series so that

i S ()0, b

Since |¢n)| =1, Lemma 3.2 is applicable with a, = g¢,(n)/n, and one
concludes that

(3.2) S,
"

—

n=

Put A.(x) = . ((n)/n); then by partial summation,
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(3.3) M) = — 25 An) + A@) ([2]) + 1) .
Since A, (x) = o(1) by (3.2), the theorem results from (3.3).

THEOREM 3.2. If k =2, then
(3.4) L(x) = Zi () = o{®) .

The proof is similar to that of Theorem 3.1 and is therefore omitted.
Note that (3.1) reduces to (1.4) in case k = 1 and that (3.4) to (1.5) in
case k= 2,

THEOREM 3.3. If k=1, then

3.5)  Siw) ~ 3% gy ~ 3N e
. :

o, betng defined by (2.13).
Proof. By (2.12), Remark 3.1, and (3.1), one obtains

Siw) + Si(z) = Su(2) = ﬁ;ﬂ— +olz),
Si(w) — Si(x) = M) = ofx) ,

and (3.5) results immediately.
Similarly, one may deduce from (2.11), Remark 3.1 and (3.4),

THEOREM 3.4. If k> 1, k even, then

3.6)  Tuw) ~ T gy LR
Vi w

Finally, it will be observed that (3.5) becomes (1.2) in case &k = 1;
while (3.6) becomes (1.8) when &k = 2.

It is possible to extend (3.6) so as to hold for all £ > 1. Let g*
denote the largest unitary divisor of ne T, such that all prime factors
of g* have multiplicity ¢ = 1 (mod k). Place 2%(n) = w(g*), where w(n)
is the number of distiret prime divisors of n, and let T (x) and T}*(x)
dencte the number of n < 2 contained in 7T, according as £*(n) is even
or odd, respectively. Then

THEOREM 3.4". If k>1,

37 Tiw) ~ 3_59% Tre(o) ~ 3502 s 5 e
: -
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