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1. The following problem was raised by V. Klee in a seminar on
convex sets:

How are the assumptions of Helly’s [5] theorem on intersections of
convex sets to be modified in order to guarantee that the intersection
of all the members of a finite family of convex sets in E* be of di-
mension at least k ?

In this note we shall prove the following variant of Helly’s theorem :

THEOREM. Let k and n, 0 <k < n, be integers, and let hW(n, k) be
the least integer rendering true the following statement :

For every finite family .9 of convex sets in E", containing at least
h(n, k) members, the intersection /7.5 of all members of .2 has di-
mension dim 7.7 at least k provided the intersection of every h(n, k)
members of 9 is of dimension &k at least.

Then

(i) h(n,0)=mn+1

(ii) h(n, 1) =2n

(i) hn,k)=2n—kfor1<k<mn

@iv) h(n,m)=n+1.

Proof. Essentially, only the assertion (iii) is new. The first state-
ment, A(n, 0) = n + 1, is Helly’s well-known theorem [5]. The assertion
h(n,n) =mn -+ 1 is a theorem due to Vincensini [14], generalized by the
following result of Klee [9] (which, in turn, follows easily from Helly’s
theorem): If .57 is a finite family of convex sets (or an infinite family
of compact convex sets) in E” and if C is a convex set such that for
every n + 1 members of .97 there exists a translate of C contained in
their intersection, then a suitable translate of C is contained in I7 .9,

The statement Ai(n, 1) = 2n, or facts equivalent to it, have been
proved many times in a different terminology (Steinitz’s [13] “irreduci-
ble all-sided families of rays”, Dines-McCoy’s 2] theorem on intersections
of half-spaces through the origin (see also [11]); Gustin’s [4] variant
of Carathéodory’s theorem ; Robinson’s [12] theorem on intersections of
spherical convex sets). To derive (ii) from, e.g., the theorem of Dines-
McCoy (“A family of closed half-spaces in E*, each containing the
origin in its boundary, has a common point different from 0 provided
this is true for every 2m-membered subfamily ’) we observe first that it
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is sufficient to prove the theorem for families of polyhedra. (In each
intersection of A(n, k) members of the given family we choose an arbi-
trary point; each of the original sets is replaced by the convex hull of
the (finitely many) chosen points belonging to it. See [11] for a more
elaborate discussion of this procedure.) Next, assuming that the inter-
section of all the polyhedra Ke 9% (nonempty by Helly’s theorem)
consists of one point only (which we take as the origin 0), we may
assume (because of (iv)) that 0 belongs to the boundary of each Ke 9.
Replacing .97~ by the family 57 of all closed half-spaces which contain
some K€ 9 and have 0 in their boundary, it follows from the theorem
of Dines-McCoy that the intersection of some 2n members of 27 is
the single point 0; the intersection of the 2n or less members of 5~
contained respectively in these members of 5% is then a fortiori re-
duced to 0.

Before proceeding to prove (iii), we shall establish a few auxiliary
results, which are also of some independent interest.

2. A subset of the » — 1 dimensional sphere S** ={x e E": ||z]||=1}
is called convex if and only if it is the intersection of closed hemi-
spheres. (In particular, a pair of antipodal points, or any “ great S*”
for k <n — 1, isa convex set). Sets “convex ” in this sense have been
studied, e.g., by Favard [3] and Robinson [12]; in some connections other
definitions of spherically convex sets seem to be more appropriate (see,
e.g. Horn [7]).

LemMA 1. If & is a finite family of convex subsels of S™ such
that the intersection of each m + 1 members of & has a nonemply
interior and such that 1 + @, then Int 1% + Q.

Proof. Let Pe Il'Z and let H be the open hemisphere of S* c E*+!
centered at P. Project H centrally onto the E* tangent to S* at P.
Let C' ¢ E™ be the projection of HNC for Ce &«. Then the intersec-
tion of each » + 1 of the sets C has a nonempty interior and therefore,
by the theorem of Vincensini [14] mentioned before, Int N C' # @. This
obviously implies the assertion of the lemma, Int & + @.

LEMMA 2. If Cc< S" is convex, Int C + @ and C + S", then C is
contractible (to any point in its interior).

Proof. If Pye Int C, each point P of C is at a spherical distance
< 7w from P,; therefore the smaller arc of the great circle joining P,
and P is contained in C.

REMARK. In the terminology of Helly [6], each convex set Cc S™,
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with nonempty interior and different from S=*, is a “cell”. In the
proof of the next lemma we shall use the following topological theorem
of Helly [6] (see [1] for a similar result): “If a family of cellsis given
in E*, such that the intersection of each n or less of them is a cell,
and the intersection of each 7 + 1 nonempty, then the intersection of
all the members of the family is nonempty.”

LEMMA 3. Let & be a finite family of convex subsets of S*, such
that the intersection of every m + 1 members of & has interior points,
but 1z = @. Then the intersection of some n + 2 members of & 1is
empty.

Proof. The lemma is trivially true for families consisting of n + 2
sets. Assume, by induction, that k¥ = n + 2, that the lemma is proved
for all families consisting of k£ sets, and that &= {C;:0 =1 < k} sat-
isfles 1 = @. If the intersection of some n + 2 or less members of
& is empty, there is nothing to be proved ; thus we may assume that
all such intersections are nonempty. Consider the k-membered family
&, ={C:=C,UC;:1 =1t =k}. Because of Lemmas 1 and 2 the family
&, satisfies the assumptions of the present lemma. Since I &, = ¢,
the intersection of some % + 2-membered subfamily of %, is empty;
assume (2 C!= @. This is a contradiction to Helly’s theorem on
intersections of cells: on applying a stereographic projection of S™ onto
E*, with center at a point of S™ not in C,, the sets C}, 1 =¢t=<n+ 2
yield a family of » + 2 cells in E™ which has an empty intersection
although the intersection of any # + 1 or less of them is, by Lemmas
1 and 2, a cell and nonempty.

REMARK. Lemma 3 is easily seen to yield the finite case of Theorem
4 of Karlin and Shapley [8] which, in turn, implies results of Vincensini
[14] and Molnar [10] for subsets of S" convex in yet another sense.
(In [14] and [10] no precise definition of the term “convex” is given,
but the results are valid only if “convex” means that the set is the
intersection of open hemispheres.) The above proof of Lemma 3 is an
adaptation of the reasoning in Molnar [10]. It would be nice to have
an elementary proof (avoiding the use of Helly’s topological theorem)
for Lemma 3 and the theorems on convex sets or systems of inequali-
ties related to it.

LEMMA 4. Let 5% be a finite family of convex polyhedra in E™
and let 1<k <n. If every intersection of k members of 57 is of
dimension n, but dim II 9% = n — k, then there exist k + 1 members
of .9 such that their intersection is (n — k)-dimensional.
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Proof. Let E™* be the subspace of E" generated by /7.9 and let
E* be an orthogonal complement of E** in E". Let <7 be the pro-
jection of E" onto E* along E"*. As easily seen, the family .o =
{K' = #(K): Ke 9} has the following properties: (a) each K’ is a
k-dimensional polyhedron containing the origin 0; (b) the intersection of
every k sets K'is of dimension k; (¢) /T.9%” is the single point 0. The
subfamily .9 < .2¥’ consisting of those members of .<#”’ which con-
tain 0 in their boundary, has the same properties. For each K/ e 7"
let C;  S** be the set of all points Pe S** for which the open half-
line through P with end-point 0 intersects K. Then the family & =
{C}} consists of convex sets, such that the intersection of every k of
them has interior points while I/ = . By Lemma 3, withn =%k — 1,
it follows that there exist k¥ + 1 sets C, with an empty intersection.
The intersection of the corresponding sets K is then reduced to 0, and
that of the corresponding original¥sets¥K; is (n —"k)-dimensional.

3. We now return to the proof of assertion (iii) of the Theorem.
We first prove h(n,n —1)=n +1 for » = 3. Since obviously h(n,
n—1)=mn + 1, only the opposite inequality has to be proved. Let .o~
be a finite family of convex polyhedra in E", such that each n + 1 of
them have an intersection of dimension = #n — 1. If each such inter-
section has dimension 7, then dim /7.2 = n since h(n,n) =n + 1. In
the other case, let .2¥' < 2" be a minimal subfamily of .2 whose
members have an intersection of dimension less than n. The family
contains at most # + 1 members and thus dim II.%" =n—1. By
Lemma 4, there exist K, K, 2" such that dim(K,NK,)=n — 1. (The
case that .97 contains a member of dimension n — 1 is trivially reduci-
ble to Z(n —1,n —1)=n.) Let E*! be the subspace of E" spanned by
K NK, and let ¥ *={K}=K,NE*':K,e.%}. If every n members
of .* have an (n — 1)-dimensional intersection, we are through since
hMn —1,n —1) = n. Assuming the other case, let .97 be a minimal
subfamily of .27°* such that its members have an intersection of dimen-
sion less than n — 1. Let .9, be the subfamily of .9 consisting of
those sets whose intersections with K constitute 2#°¥. Then .2, (and

J) must contain exactly n members, since otherwise .2, U {K,, K.}
would have at most # + 1 members, with an intersection of dimension
less than n — 1. If dim(/I.27°,NE"") = n — 2 a contradiction results:
by Lemma 4 it follows that the intersection of some two members of
2¢°¢ has dimension # — 2, while the minimality of .9 then implies
n=2; but n =8 was assumed. Thus dim (I, E~') <n — 3, and
again a contradiction results: The sets K, and K,, and hence the sets
K, NIllzor, and K,NII 2%, are separated by E"*, and dim (K;N 1 .5",)
=n — 1. Therefore E** has to intersect II. 27, in a set of dimension
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n — 2 at least. Thus a contradiction is reached in this case, too, and
h{n, » —1) =n + 1 is proved.

Next, we shall establish h(n, k) <2n — k for 1 <k <n — 1, using
induction on n. In view of the above, we may assume n =k + 2.
Starting, without loss of generality, with a family .99 of convex poly-
hedra of dimension %, each 2n — k of which have an intersection of
dimension = k, the assertion is again trivial if the intersection of every
2n — k members of .27 is n-dimensional. Let therefore .27 be a mini-
mal subfamily of whose members have an intersection of dimension
less than n. If .9 contains m members then, by Lemma 4, » = dim
NN <mn—m-+1 with » > k. Applying the inductive assumption to
the family . %™* ={K*=KNE": Ke .2}, where E” is the subspace of
E" spanned by 7.9, the assertion dim 7.9 = k follows : if » > k, then
Mr, k) £2r —kand thus i(r, )+ m=2(n—m+ 1) —k +m < 2n — k;
therefore the intersection of every h(r, k) members of . * contains the
at least k-dimensional intersection of some 2n — k& members of .57 ; but
II.o7 o IT.27°*. On the other hand, if » =k then Ak, k) =k + 1 and
M, kB)+m=n+2=2n—Fk; since k <n— 2 was assumed, the result
follows in this case as well.

Thus h(n, k) < 2n — k is proved for all » >k > 1. The converse
inequality, and with it the theorem, may be established by easy ex-
amples.

REMARKS. It seems to be hard to extend the results of the present
note to infinite families .27". (Vincensini’s assertion in [14] that h(n, n)
=n + 1 holds for infinite families is incorrect.)

Professor F. A. Valentine has found alternative proofs for some of
the results of the present paper, as well as related results.
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