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A problem due to Fuchs [3] is to determine the cardinality of the
set & of all pure subgroups of an abelian group. Boyer has already
given a solution for nondenumerable groups G [1]; he showed  that
| ?| =29 if |G| > W, where | A| denotes the cardinality of a set A.
Our purpose is to complement the results of [1] by determining those
groups for which | 27| is finite, ¥,, and ¢ =2%, In the following,
group will mean abelian group.

LEMMA 1. If G is a torsion group with |G| < W, then | P | =c
unless

(1) G=prOprD-- Dy BB,

a direct sum of (at most) a finite number of groups of type p~ and @
finite group, where p; + p; if 1+ 3. If G is of the form (1), then
| 2| is finite.

Proof. The latter statements is clear, and if none of the following
hold

(i) G decomposes into an infinite number of summands

(ii) G contains p~ @ p>= for some prime p

(iii) | B| = Y, where B is the reduced part of G,
then G is of the form (1). Moreover, if (i) holds, then obviously | &7 | =
¢. Every automorphism of p> determines a pure subgroup of »p~ @ »p~,
and distinet automorphisms correspond to distinet subgroups. Since
| A(p~) = automorphism group| = ¢, it follows that p~ @ p= has ¢ pure
subgroups. Thus if (ii) holds, | & | = ¢ since p~ P p~ is a direct sum-
mand of G. Finally, if (iii) holds and if (i) does not, then the following
argument shows that || =c¢. We may writet B=C, P B, =
C.D C, B,, and continuing in this way define an infinite sequence C,
of cyclic groups such that no C;is contained in the direct sum of any
of the others. The direct sum of any subcollection of these cyclic groups
is a pure subgroup of B and, therefore, of G.

An interesting corollary is noted: there is no torsion group with
exactly W, pure subgroups.

LEMMA 2. If G = F @ B s the direct sum of a torsion free group
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1 This is precisely the proof of Boyer that such a group has ¢ subgroups [2].
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F of rank r and a finite group B with |G| < W, then | | is finite,
W, or ¢, depending on whether r =1, 1 < r < o, or r = o,

Proof. First, assume that B =0. Let H be the minimal divisible
group containing G. The correspondence D - D N G is one-to-one be-
tween pure (divisible) subgroups D of H and pure subgroups of G. Thus
only divisible groups G need be considered, and the proof is already
clear except, possibly, the relation | &7 | < W, for the case 1 < r < o,
However, let R* denote the direct sum of » — 1 copies of R, the addi-
tive rationals. Since G = R* @ R, any pure subgroup Pof G is a sub-
direct sum of a subgroup S* of R* and a subgroup S of R. Moreover,
S* and S* N P are pure in R*; S and SN P are pure in R. Since
| A(R)| = W, it follows by induction that | | < W..

Now consider the case B+ 0. The lemma has already been proved
if » = o, g0 assume that 7 is finite. Any pure subgroup P of G =
F&@ B is a subdirect sum of a pure subgroup E of F and a subgroup
A of B. Since E N P has index in K which divides the order of B,
there are only a finite number of choices of E N P for a given E (and
consequently only a finite number of choice of P). Thus the lemma is
proved.

The theorem follows almost immediately from the lemmas.

THEOREM. For any group G, | 7| =W, ifand only if: G =FP T
where T 1s torsion of the form (1) and F' is torsion free of finite
rank r = 0; further if the prime p is in the collection ™ = {p,, Dy, =+, D.}
of the decomposition (1) of T, then F has no pure subgroup which can
be mapped homomorphically onto p=. In all other cases, | 7P| = 2%,
Movreover, | | is finite if and only if either r =0 o0r r=1and T
18 finite.

Proof. Suppose that | 7|+ 29, Then |G| < W, and the torsion
part T of G is of the form (1). Hence G splits into its torsion and
torsion free components, G = FEP T. Also, F ig of finite rank » = 0.
And there exists no homomorphism of a pure subgroup of F' onto p=
where pe m (since there would be ¢ such homomorphisms, each deter-
mining a pure subgroup of &). But suppose that G = FP T, where F
and T satify the given conditions. Let 7' denote the divisible part of
T and set F' = FP B, where T = T' @ B. Since B is finite, | #(F")| <
M, is given by Lemma 2. Evidently, a pure subgroup P of G is the
direct sum of a divisible subgroup of 7’ and a subdirect sum of a pure
subgroup of F"’ and a finite subgroup of 7'. Thus | &7 | < W..

If »r =1, then | A(FP p~)| = W, for there are at least ¥, homo-
morphisms of F' into p~, each determining a pure subgroup. In view
of Lemmas 1 and 2, this completes the proof of the theorem.
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