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GENERALIZED GOURSAT PROBLEM

ROBERT P. HOLTEN

1. Introduction* The linear first order system of partial differential
equations in two independent variables

(1-1) VI = Σ M«, y) V* + Σ etj(x, y) V> + /4(s, y), i - 1, , N
3=1 3=1

with coefficients that are continuous functions of the independent variables
is hyperbolic at (0, 0) if there is a real matrix T = {ti3) non-singular with
continuously differentiate components in some neighborhood of (0,0)
such that T~λBT is a diagonal matrix and B = (bi3). We consider
problems of the following kind:
(1-2) To find such conditions that the hyperbolic system (1-1) has a
unique solution which satisfies a number of linear equations along several
arcs issuing from the origin.

Picard was probably the first to consider a non-analytic problem of
this type [7]. Two types of hypotheses are needed for (1-2). The first
is geometrical i.e. we require certain curves determined by the functions
b^ (the characteristic curves) to intersect the arcs issuing from (0, 0)
(the data arcs) in a manner described in § 2 as Conditions (2.1). The
second group of assumptions concern certain matrices made up from
bijf tiό and the coefficients of the linear equations mentioned in (1-2)
and the slopes of the data arcs at (0, 0). Some of these matrices are
required to be non-singular and others to have eigenvalues with modulus
lass than one. In § 3 we consider the case that all the data arcs lie
between two consecutive characteristic curves through (0, 0). In this
case we generalize the theorem proved in § 2 by giving conditions for
there to be a unique solution which is C\ In § 5 we state conditions
under which the hypotheses of Theorem 3.1 can always be satisfied for
sufficiently large n. We show at the end of § 5 that if some of the
hypotheses of Theorem 3.1 are omitted the solution (if it exists) is no
longer unique. In § 6 we solve a mixed problem for the general second
order hyperbolic equation.

The equations (1-1) are simplified by the linear transformation

3=1

Without loss of generality we consider the problem (1-2) in the reduced
form.
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2* Data arcs and characteristic curves* Under what conditions does
a system of N linear first order equations of the sort

(S)

Ui + A\x, y) Ui = Σ, Ei}{%, y) Uj + G%x, y) i = l, ,N

and some linear combinations of U1, , UN given along arcs issuing
from a point

determine U1, •••, UN uniquely?
We are concerned with real valued functions of real variables. Suppose

the functions A1 are C1 (actually all the conditions we will impose need
only hold in some neighborhood of (0, 0)). Let yi{xί y) be the curve
passing through the point (x, y) and which has slope A\ξ, rj) at every
point (|f, η) on it. These are called the characteristic curves of (S). The
equation for yi{x9 y) is η — y\ξ; x, y) where

»Kέ; «, y) = A\ξ, y\ξ; x, y))

We come to the arcs along which we specify linear combinations of
U\ , UN. Let JV0 be any positive integer less than N + 1 and let
Ci, , CN, Clf , CNO-I be curves issuing from (0, 0) which have con-
tinuously turning tangents. Let these curves be given non-parametrically
by

C,: y = Ψi{x) ΨM = 0 i = 1, , N

Ck: y =

The conditions (2-1) below help determine whether the range for x is
either x ^ 0 or x ^ 0. Our problem (S) may be started more explicitly
in terms of data arcs:

(S)

Ui + A%x, y)U; = £ E'\x, y)U> + G\x, y)

Σ M*) U\x, Vi(x)) = H^x), i = 1, , N

Σ dkj(x) W(x, Φk{x)) = Hk(x), k = l," ,N0

We seek solutions of (S) on closed domains, RNQJ satisfying the
following:

1. The boundary of RNQ is a piece wise smooth simply closed curve.
2. The origin is on the boundary of RNQ and RNQ contains' a nonzero

length segment of each data arc issuing from (0, 0).
(2-1) 3. For every (x, y) in RNQ and i < No, 7<(a?, y) intersects d or C<
just once at a point we denote by P^x, y). If y^x, y) intersects both
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Ct and Cif then the point of intersection is (0, 0). For i ^ No and every
(x, y) in RNQ, 7i{x, y) intersects C< just once at P^x, y).

4. For each (x, y) in RNQ, the entire segment of Ji(x9 y) from (x, y)
to Pax, y) lies in R N Q .

We assume temporarily that there are domains RNo which satisfy
these conditions and which have small as we please diameter. Later in
this paper we discuss the existence of these domains. Loosely speaking
the subscript No has the significance that No — 1 characteristic curves
issue from (0, 0) into the interior of RNo and as we will see consequently
linearly combinations must be given along N + NQ — 1 arcs.

Notice that if No > 1, (S) over determines the values of a solution
at (0, 0). We suppose (S) is consistent at (0, 0). That is, there are
numbers bif ci9 d{ (to be interpreted as [^(0, 0), Ϊ7*(O, 0), Z7;(0, 0)) which
satisfy the equations:

,(0)δ, - Hk(0)

and

Σ , 0)bm + G'(0, 0) Ί
J

N

+

and same equation with ί,a,φ,H replaced respectively by k,d,φ,H

and

"(0, 0)δ, + G*(0, 0) .

Certain matrices play an important role in what follows. Let Q{n)
be the square N x N matr ix such t h a t

Q{n)u = 0

Q(n)i3 = max
α«(0)

φ\(0) - Aj(0, 0)
φ\(0) - A\0, 0)

α«(0)
, 0)

ζP5(0) - A'ίO, 0)

M0)
o«(0)

> 0)
4*(0, 0)

i = 1, •••, ΛΓ0 - 1 and j = l, ,N

i = ΛΓ0, . . . , JV and i = 1, , ΛΓ.
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We assume that the slopes of d and C< differ from the slope of T<(0, 0)
at (0, 0). That is, φ\(0) Φ A*(0, 0) and φ\(0) Φ A*(0, 0). We also assume
that α^(0) Φ 0.

Let M(n) be the N x N matrix such that

)4 i - α4J(0) (φ\(0) - A>(0, 0)) .

Let M(w) be the JV x (No — 1) matrix such that

M(n){j = M0)(^5(0) - A'(0, 0)) , i = 1, •, No - 1.

Let M(n) be the compound N x (No — 1) matrix

For any matrix P let λ(P) be the maximum modulus of all the eigen-
values of P.

LEMMA 2.1. // X(Q(n)) < 1, ίΛen Λf(w) is nonsingular.

Proof. Suppose M(n) is singular. There is then a nonzero vector
x such that ikf(w)# = 0. That is

Σ «ΰ(0)[^(0) - A>(0, 0)]^ - 0

I α t 4 ( 0 ) I I ̂ K 0 ) A i ( 0 , 0) |» \x(\^Σ.\ « « ( 0 ) II 9>i(0) - A ' ( 0 , 0) |" μ , | .
ii

Dividing by | α«(0) | | ̂ -(0) - A^O, 0) |n we get

**1 ̂

Let I a? I be the vector whose ith component is | xt \ then | a? | ^ Q(n) | x \
the inequality is understood to hold for each pair of corresponding com-
ponents. Hence

(P + l ) | s |
fc = 0

so that 2 Qfc(7t) I a; | diverges as p -• oo . Therefore λ(Q(w)) ^ 1 .
k

THEOREM 2.1. If (S) is consistent at (0, 0) and all its given func-
tions are C1 and λ(Q(0)) < 1 and λ(Q(l)) < 1, then on some RNQ there
is a unqiue C1 solution of (S).

Proof. We construct the solution by iteration. Let °Ui(xfy) =
bi + c{x + diy and obtain s + 1ί71, ., silUN from SU\ , SU" using
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(2-2) s + 1 W + A*(x, y)s+ι U; - J ; Eij{xy y)s U3 + G*(xf y)

and

s ! 1 Uι(x, Ψi{x)) = — Σ s Uj(x}<pi(x)) +

and

7 ((*ΛPt(x)) +

Equivalently,

(2-3) •"EΛOr, 2/) - ^ ί / W , 2/)) +

[Where the integral is taken along Ίi{x, y) and Pi(x, y) is the intersection
of 7t(x,y) with d U CJ and for Pι(x,y) on Ct

(2-4) '"Umx, y)) - - Σ

and for PL(x, y) an

(2-5) '"Umx, y)) - - ϋ i ^ I ί/ )̂ + ̂ λ-^H^)

where «*(&, 2/) is the abscissa of P^x, y).
From the assumption that (S) is consistent at (0, 0) we can conclude

that 8+1Ui{Pi(x, y)) is properly defined when P{(x, y) is the origin [i.e.
when (xf y) lies on 7ί(0, 0)]. It is easy to see that

| | 5 + 2 jji _ . f i^ i i ^ 2 Γ ί y | | β + ι ί 7 J - sUj\\

where | Γ^ — Q(O)ij \ can be made as small as we please by taking the
diameter of RNQ small enough. Since λ(Q(0)) < 1 we conclude that °U\
1Ui, , si7% converges uniformly for each i = 1, , N. That there
is at most one solution follows also immediately. The proof that the
first partial derivatives also converge uniformly depends in the following
way on the fact that λ(Q(l)) < 1:

By taking the ^/-partial derivative of (2-3) and (2-4) and using (2-2)
to eliminate s+1Ui we have

[<P\(x) - A*(x, <Pi(x))YHUi(x, (Pax))
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+ terms not involving derivatives of U

and

Uy\X, y) — \_Ψi\Pί ) J± \Jb, y)\ (xy\X, y) uy\ti , >

+ j ^ Σ ^ ί f , v) 'Ui(ξ, v) v\(ξ\ x, v) dξ

+ lower order terms.

It is not hard to show that

α;(0, 0) =
<P\(0) - A*(0, 0)

therefore

has the limit 1 as {x, y) approaches (0, 0). Consequently considering both
(2-4) and (2-5) we have

1) + εx)(l + ε2) ||sUξ - s" 1 U* \\

where ^ and ε2 approach zero as the diameter of RNQ approaches zero.
β is some fixed constant. Since λ(Q(l)) < 1 by selecting RNQ with small
enough diameter the eigenvalues of the matrix L where

LiS = (Qdl) + βθ(l + ε2)

also have modulus less than one. Let

v* = \\'Ui--1U;\\ and u* - H 1 ^ - °U{\\

them

vs+1 ^ Lvs + βT'u

where the inequality must hold between pairs of corresponding com-
ponents. It is easily seen that

and our convergence is assured.
In [4] Meltzer assumed that there are only two data arcs. The
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method used in [5] by Mihailow permits the characteristic curves and
data arcs only to be straight lines. In [3] the author obtained results
in the large by making more assumptions relating the slopes of the data
arcs and the characteristic curves. In [6] Peyser in effect requires that
N — 1 of the data arcs be identical and consequently the matrices Q(0)
and Q(l) are nilpotent. Finally in [9] Yosida assumes that the matrix
M(0) is diagonal and consequently Q(0) is the zero matrix.

3 Higher order solutions. In this section we prove a generalization
of Theorem 2.1 for No = 1. This is the case that all the data arcs lie
between two consecutive characteristic curves through the origin. With
the addition of a consistency hypothesis for higher order derivatives at
(0, 0) the generalization when No > 1 is also true. We begin by proving
a lemma about

(So) \
Σ aiS(x) U'(x, φt(x)) = fli(a), i = 1,
j l

[this is (S) with NQ = 1 and Eij = 0]

LEMMA 3.1. If n is any nonnegative integer and A\ F\ H\ aij9 φ{

are Cn+1 and \(Q(n)) < 1 and X(Q(n + 1)) < 1 and Λf(0), --,M(n - 1)
each have rank iV(i.e., are nonsingular), then on some Rλ {we assume
that such domains exist) there is exactly one Cn+1 solution of (So).
Moreover Rλ depends on neither Fι nor H^

Proof. As we did before we perform the iteration:

s+im + A'(x9 y)s+1U; = F'(x, y)

±^iMU{x, φi{x)) + -±— H,
i=i ante) au(x)

Taking the wth derivative of the second equation we get

n

; p

= _ Σ ^ Σ 'Ul%-,(χ, Ψi(χ))L n

J=I an p=o xn — V

+ terms involving derivatives of order less than n of s + 1 U and s U, where

U;n_p = ^-^— and
dxpdyn~p

Using the first equation we have
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+ terms involving derivatives of SU of order less than n.
Consequently,

\φ)(x) -

+ terms of order less than n.
Since Λf(0), , M(n — 1) and M(ri), M(n + 1) are nonsingular (see

Lemma 2.1) the values of any solution of (So) and all their derivatives
up to and including order (n + 1) are uniquely determined at (0, 0). Let
CiiVu P2) be the value determined for Ui

Pl>P2 (0, 0). We begin our iter-
ation with

°Ui(x,y)= Σ ct(plfpj-*liy?-.

It follows that

t U i

P l , p J ί 0 , 0 ) = c i ( p 1 , p i ) f o r 0 ^ p 1 + p i ^ n + l 9 8 > 0 .

Now since X(Q(n)) < 1 we see that all the nth order derivatives of
the sequence °U\ •••,*[/% ••• converge uniformly on some Rλ of suf-
ficiently small diameter. Also it is clear that the functions F{ and Gi

are not involved in how small the diameter must be chosen. That there
is at most one solution which is Cn follows in the customary way. It
remains to see that we have a Cn+1 solution to (So).

Since

+ terms involving derivatives of SU of order less than n + 1, we need
consider only the convergence of

Now

EΛ(α, y) = '"UWx, y)) + [^ F\ξ, η)dξ
JPl(x.V)

[Pi(x, y) = the point (a^x, y), φ^a^x, y)))]

S+lTTi _ |7yΠtt+l S^lmllni-l-p βfl TJi fU + 1

P

+ terms of order less than n + 1.

Since
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can be made as near 1 as we please by taking the diameter of Rλ small
enough. From this observation and the assumption \(Q(n + 1)) < 1 the
series

0 Ui + , , * Ui

converge uniformly. Consequently we have indeed the unique Cn+1 so-
lution of (So).

For the system

A*(x, y) Ui =• Σ EiJ(x, y) Uj + G%x, y)
3-1

Σ a (Ά TJHr en (Ύ\\ — TJ (γ\ 7 — 1

we have

THEOREM 3.1. If n is a nonnegative integer and A\ Ei}, G\ a%j, <pi9

H% are CnΛ1 and \(Q(n)) < 1 and λ(Q(n + 1)) < 1 and M(0), , M(n - 1 )
each are nonsingular, then on some Rλ there is exactly one Cn+1 solution
of (SO.

Proof. Using Lemma 3.1 we can define a sequence of functions
which are Cn+1 on some Rλ as follows:

N

*nUί + A*(x, yY^Ui — Σ Eij(xf yYUJ + G{{x, y)
3=1

3=1

We can show that all the (n + l)th order derivatives converge on some
possibly smaller Rλ. Using the same kind of calculations as before it is
easy to see that

N

I V Q II s+lTTj sTTj | |
I ZΛ &ij II ^0, n + 1 t/o,w+l II

where λ(Γ) < 1, T{j ^ 0 and by taking the diameter of Rλ small enough
each Sij can be made arbitrarily close to zero. We have in vectors

K M = T ' Vs.J:L + S V8 (the inequality must hold for each component).

( I - T)V.+1£S V..
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Since (/ - T)-1 = I+T+T2 + . . . , ( / - T)τl ^ 0, Vs+1 ^ (I -
By choosing Rx small enough

Except for this the proof of Theorem 3.1 is like Lemma 3.1.

4. Constructing the domains of dependence. We discuss this topic
only for the case that the data arcs and characteristic curves are straight
lines. The subject has been treated more completely in [3].

Suppose ψi(x) — rriiXy φk(x) = mkx and A1 are constant. By possibly
renaming the variables we can assume

A1 ^ A2 ^ ^ AN .

Let RN{) be the region lying below both the line 7^(0, 0) and the line
7*0(0, 0). RNo will be a part of RNl).

Assume that all the data arcs lie in RN(]. Let the first I data arcs
lie to the left of the y-axis (i.e. φl9 • *,φι defined only for x ^ 0, of
course I may be zero) and suppose

AN ^ m ^ ^ mι .

We suppose the remaining data arcs are ordered so that

mι+1 ^ mι+2 ^ ^ mN ^ m ^ ^ mNo-ι ^ 4̂.̂ °

We further assume that

m{ > A\ i = 1, •••, I

m% < A\i = I + 1, ...,ΛΓ

mfc > A\k - 1, — , i\Γ0 — 1.

These last assumptions assure us that d lies below 7i(0, 0) and C. lies
above τ*(0, 0).

Our final assumption excludes the possibility that lay omitting some
data arcs a domain RMQ satisfying conditions (2.1) can be constructed
with Mo < NQ. This final assumption is: For No Φ 1 assume

mN > ^l1 and mk > Afc+1, fc = 1, , No - 2 .

We construct the domains RNQ for NQ Φ 1. The case No = 1 offers
no new difficulties. We begin by choosing a point Po with negative
abscissa on ΎN(0, 0) (we exclude the special case that CN-λ lies along
7i(0, 0)). Define points pu , pN as follows:

Pi = the intersection of 7ί(p<_i) with C<, i = 1, , N.

Since Cn lies above 7^0,0) and Ck above 7fc+1(0, 0), we can continue
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with points plf , pNQ:

px — the intersection of ΊX(VN) with Cx

pk = the intersection of Jk(pk-i) with ck,k, —2, , iV0 — 1

pNo = the intersection of 7ΰ(pNo — 1) with 7^0(0, 0)

where A < A" < AN° and no A1 exists such that A* < A1 <(AN°.
The boundary of RNQ consists of 7^0(0, 0) from (0, 0) to p09 7i(p0)

from p0 to p19 , yN(pN-i) from pN-λ to pN, Ύ^PN) from pN to px, 72(Pi)
from pλ to j32, , 7^0-i(^0-2) from p^0_2 to PNO-19ΎN(PNO-I) froίn p^0_i to
ίvo, 7^(0, 0) from p^o to (0,0). The domains RNQ constructed in this
way satisfy conditions (2.1). Also, if we let p0 approach (0, 0)Jalong
7^(0, 0) the diameter of RNQ approaches zero.

74(0, 0)

73(0, 0)

γ 2 ί0, 0)

7,(0, 0)

Y4(0, 0)

5 Certain special systems* We turn our attention to the hypo-
theses of Theorem 3.1. We have NQ = 1, that is, all the data arcs lie
between two consecutive characteristic curves through (0, 0). In this
case we call a system (Sj) regular if
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A \ Q , 0 ) Φ A ' ( 0 , 0 ) a n d φ](0) Φ φ)(0) f o r i Φ j .

For a regular system we can suppose without loss of generality that

Aι(0, 0) ^ φ\(0) < φ\(0) < < φx

N(0) < φ\(0)

^ A2(0, 0) < A3(0, 0 ) < < AN(0, 0) .

We can show, in case (SO is regular, that there is always an ή such
that X(Q(n)) < 1 whenever n > n.

Recall that for i Φ j

>](0) - AJ(0, 0)

- A<(0, 0)α«(0)

The eigenvalues of Q(n) satisfy the equation Det (Q(n) — XI) = 0.

LEMMA 5.1. If d1 < d2 < < dN ^ eγ < e2 < < e^, ί/̂ en eαc/i
ίerm (except the diagonal which is one) in the expansion of determinant,
D, of the matrix (Cijjca), c{j = \ d{ — βy |, has absolute value less than one.

Proof. We proceed by induction. The lemma is vacuously true in
case N = 1. Suppose N> 1 and let us look at a typical nonzero term
of D. Let this term, π, contain as a factor cqN\cqq from the ΛΓth column
and cNPlcNN from the ΛΓth row. Suppose that p φ N, then we have q Φ N
and except possibly for sign \π(cqPlcqq)]l[(cqNlcqq)(cNPlcNN)] is a term in the
expansion of the (N — 1) x (JV — 1) determinant and hence its absolute
value is no larger than one. To show | π \ < 1 we need only show that

CqN * @Np </ 1

if and only if

cqP cNN

QNP = (eN - d g )(β p - dN)

CNN (ep — dq)(eN — dN)

— dqep — dNeN < —dqeN — d^

(dN — dq)ep < (dN — dq)eN

ev < eN which is one of our assumptions. If p = N, then π is a term
of the (N — 1) x (JV — 1) determinant. This completes the induction.

When we have established the following lemma we can immediately
conclude that l im w _ Det (Q(n) - λJ) = (-λ)* .

LEMMA 5.2. For a regular system (Sj) each term (except the diagonal
term which is one) in the expansion of the determinant of (b^-lba) where
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bid — I φ](0) — A3(0, 0) I has absolute value less than one.

Proof. We delete the first column and row of (&»,•/&«) and use
Lemma 5.1. Suppose π is any term of Det (&<,-/&«)• Let π contain b1Plbn

from the 1st row and bηjbqq from the 1st column. Suppose p Φ 1, then
q Φ 1. Use Lemma 5.1 to see that

K K
blp - bql _ A*(0, 0) - φ\(0) # <pl(0) - AHO, 0) <

bqp 6 n Ap(0, 0) - φq(0) φ\{0) - AHO, 0)

if and only if

Ap(0, 0)9>ι,(0) + AHO, 0)9>l(0) < AP(O, 0)^1(0) + A ι(0,

[A^O, 0) - Ax(0, 0)]<pι

q(0) < [Ap(0, 0) - A ι(0, 0 ) M 0 )

In case p = 1 Lemma 5.1 yields our result immediately.

THEOREM 5.1. // (SO is regular, then for any s > 0 /Λere is cm
such that

X(Q(n)) < ε for all n > ή .

Let us consider systems with constant coefficients of the form

( S o ) * Σ a V\x m&) H(x) i - 1, , N.

We suppose that the constants mlf , m^, A1, , AN are ordered so
that

A1 ^m2^m^ ^ mM ^ m : ^ A2 ^ g Au .

We have shown that (So) has at most one Cn+1 solution on Rx if M(0),
•• ,Aί(n —1) are nonsingular and F% H{ are C n + 1 and λ(Q(n)) < 1.
We will now investigate to what extent these conditions for uniqueness
are necessary.

In (So) suppose M(p) is singular for some integer p ^ 0. Let e be
a nonzero vector such that M(p)e = 0. Then

U^x, y) = (y - A^)p^, i = 1, , N

is a nontrivial polynomial solution of



220 ROBERT P. HOLTEN

(Ui + Aim = o
(Soo)

\fiaijU
J(x,mix)=0.

We express this in

THEOREM 5.2. // M(p) is singular for some integer p 7> 0, then
has a nontrivial polynomial solution.

It is harder to show that the condition \(Q(n)) < 1 is needed. With-
out loss of generality we can suppose that an = a22 = = aNN = 1, then
Lemma 5.2 shows us that

Km Ό e t M ( n ) = 1 .
— Mfl) - A\0, 0)] - [^(0) - A'(0, 0)]"

We define for all real numbers r ^ 0:

M(r)a = (Mm, - A1)', i = l,> >,N

M{r)i5 = aij(A3 - mtγ, i = 1, , N, j = 2, - •, N.

Then

lim ™ίM = + 1 .
r-+°° I mλ — A 1 \r I mN — A N \r

L e t

Q ( n ) u = 1 , Q { n ) i 5 = - Q ( n ) i j 9 ί φ j .

Since Q(n)u > 0, Q(n)ij ^ 0, i Φ j, if each principal minor of Q(n) is
positive, then each component of Qin)'1 is nonnegative. Using this fact
we prove

LEMMA 5.3. If each principal minor of Q(n) is positive, then
X(Q(n)) < 1.

Proof. We suppose X(Q(n)) :> 1 and deduce that Q{n)-χ has at least
one negative component. Let e be a nonzero vector and | λ | ^ 1 and
Q(n)e = λβ. Then

3=1

Let
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fi = ΈiQ{n)ij\ej\

Since — /< ^ 0, if Q(n)~ι had no negative components each component
of Q(n)~ι{—f) would be nonnegative. But then Q{n)~λf = | e | ^ 0 implies
that e = 0. This is countrary to our assumption that e Φ 0.

We call a system (So) uniform if each term (except the diagonal
which is one) in the expansion of Det (M(0)) is either negative or zero.
We have assumed that au = 1. Any (So) with N — 3 satisfying α13 ^
0, α31 ^ 0, α12 ^ 0, α21 ^ 0, α23 ^ 0, α32 ^ 0 is uniform.

LEMMA 5.4. // (So) is uniform and Det (M(n)) > 0, then each princi-
pal minor of Q(n) is positive.

Combining the last two lemmas we have

LEMMA 5.5. // (So) is uniform and X(Q(n)) ^ 1, then Det (M(n)) ^ 0.
Now Det (M(n)) is eventually positive and Det {M(r)) is a continuous
function of r.

If Det (M(r)) = 0, then M(r)e = 0 for some e Φ 0 and

U\x, V) = (y- AιxYeλ

U\x, y) = (A*x - y)reu i = 2, , N

is a CCr] solution of (Soo). We have proved

THEOREM 5.3. // (So) is uniform and \(Q(n)) ^ 1, then (Soo) has a
nontrivial solution which is Cn.

We can give a more complete analysis of (So) when N = 2:

/j + ^ [ / = 0, i = 1, 2

\x, mλx) + aU2(x, mλx) = 0
1(xf m2x) + ί72(x, m2a?) = 0

where A1 < m2 < mλ < A2.
The eigenvalues of M(w) satisfy the equation

λ2 = I α I o* where /> = A* ~ m i m 2 ~ A ' .
l1 ^ 2I I /

mt - yl1 ^ 2 - m2

Since (Soo) is regular, p < 1.
If we had allowed m2 = A1 or mx = A2 we would have had p = 0.

Let r be the real number such that | a | pr = 1. Suppose that r ^ 1.
As we know, if | α | < 1, then (Soo) has only the trivial solution. Let
[r] be the greatest integer less than or equal to r. Two cases arise.
First if a > 0, then a pr = + 1 . In this case
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U\x, V) - -(A2 - m2Y(y - A'xf

U\x, y) = (m2 - AΠA'x - y)r

is a nontrivial CCr] solution of (Soo). If r is an integer these functions
are polynomials. In this connection we notice that M(n) is singular
just in case 1 — apn — 0 which can happen only if r is an integer and
a > 0. Now suppose a is negative, then aρr = — 1 and

log
y — Aιx

Uι(x, y) = (A2 - m,)r(y - Aιx)r sin ( m, - A1 \π

log p

U\xf y) = (ma - A^ίA'a? - τ/)r sin I ^ 2 ~ m i \π

is a nontrivial CCr] solution of (Soo).

6 Application to second order equations* We apply our results
to the 2nd order system (S2). Our method is however equally suited for
the nth. order case.

The system

(Zxx - Zyv = A(x, y)Zx + B(x, y)Zv + C(x, y)Z + D(x, y)

(SMbtoWZAx, φ£x)) + bi2(x)Zy(x, φ^x)) + bit(x)Z(x, cpAp)) - Hi(x), i = 1, 2

I Z(0, 0) = c

B)V + CZ + D

+ B)V-CZ-D

a;) ^(a;)) + 2fli(a;) i = 1, 2

is transformed into the equivalent system

(Ux - Uy = 1/2(A + B)U H

(SO

V,= -

(ba

= 1/2(0"+ F), ^ = 1/2(0- F)

, 0) = c

by the substitution U = Zx + Zy and F = - Z , + Z,,.
If we iterate as follows:

U:+1 - t/;+1 = 1/2(A + B)US + l/2(-A + 5 ) F S + CZS + D

F,8+1 + F; + 1 = -1/2(A + B)US - l/2(-A + 5 ) F S - CZS - Z)

(bn + 6<2)f/s+1(a;, ?>!(«)) + (-δii + UF S + I (α; , ^(x))

= -2bi3Z
s(x, φt(x))

1 - Fs+1)
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Zs+1(0, 0) = c

and let α u = δ n + δ12, α12 = — δ n + δ12, α21 = δ21 + δ22, α22 = — δ21 + δ22, A
1 =

— 1, A2 = + 1 we have using the same methods as in § 3 .

LEMMA 6.1. // n is any nonnegative integer and A, B, C, D, bi3-,
Hi1φi are Cn+1 and X(Q(n))< 1 and X(Q(n + 1)) < 1 and M(0), •••,
M(n — 1) are nonsingular, then on some Rx there is exactly one CnΛΛ

solution of (S2).

If we assume that — 1 S <Pί(0) < φ[(0) ^ 1 and let

a _ b

δπ(0) + δ12(0) ' -6 2 1(0) + δM(0) '

r = 1 ~ y«°) λ + gfl°> {Notice that 0 < r < 1J
l + 9ί(0) 1 - ^ ( 0 )

we have immediately

THEOREM 6.1. If n is a nonnegative integer and \ ab \ rn < 1

afrrfc ^ l for k = 0, , n — 1 aπoί A, 5, C, D, δ^ , ifo >̂, are C'M1,
oπ some i?x there is exactly one CnH solution of (S2).

Since 0 g r < 1 there always is a nonnegative integer such that

I αδ I rn < 1 .

It is interesting to notice that if

ab r p = 1 for some p ^ 1 which need not be an integer, then

Z(x, y) - (1 - m2)*(f t ; + ^ + 1 + 6(1 ( ^

V + 1

+ 6(1 + m2y
V + 1 V + 1

is a non-trivial solution of

bftZ^x, mix) + bi2Zy(x, m^x) = 0, i = 1, 2

Z(0, 0) = 0 .

This Z is a polynomial in case p is an integer.

We finish by applying our theorem to a problem solved by Goursat

[2]:

Zxx - Zvv = AZX + J5Ztf + D

Z(x, m{x) — Hi(x), i = 1, 2 where

m, ^ 1.

An equivalent problem is
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Zmm - Zyy = AZX + BZy + CZ + D

Zx{xy niiX) + rn,iZy(x, mix) = H{(x), i = 1, 2

Z(0, 0) - Ht(0) .

We have in this case

\ab\= 1~m> 1 + m ' = r < l .
1 + m2 1 — m2

Consequently according to Theorem 6.1 this problem has exactly one C1

solution.
In [l] the authors treat a somewhat more general system the func-

tions of which satisfy certain Lipschitz conditions. They make in our
notation the hypotheses | ab \ < 1 and r < 1. In [8] Szmydt solves the
same problem with the hypothesis that some of the Lipschitz constants
are small. The result is essentially the same.

BIBLIOGRAPHY

1. A. Bielecki, et J. Kisynski, Sur un probleme de Mile Z. Szmydt relatif a Γequation
dHjdxdy = f[x, y, z, {dz,'dx, dz/dy)\, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 6
(1958), 321-325.
2. E. Goursat, Sur un procede alterne, C. R. Acad. Sci. Paris, 149 (1909), 762-765.
3. R. P. Holten, Generalized Goursat problem for a hyperbolic system, Technical Report
no. 2, AFOSR RN 58-1008, AF 49(638)-398, (1958).
4. L. A. Meltzer, On the correct statement of GoursaVs problem, Recueil Mathematique,
60 (1946), 59-101.
5. V. P. Mihailov, Non-analytic solutions of Goursat's problem for a system of differential
equations in two independent variables, Dokl. Akad. Nauk SSSR (N.S.) 117 (1957), 759-762.
6. G. Peyser, Energy integrals for the mixed problem in hyperbolic partial differential
equations of higher order, Journ. Math, and Mech., 6 (1957), 641-653.
7. E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode
des approximations successives, Journ. de Math. 4e serie t. VI (1890), 145-210.
8. Z. Szmydt, Sur Γexistence de solutions de certains problems aux limites relatifs a un
systeme d'equations differentielles hyperboliques, Bull. Acad. Polon. Sci. Ser. Sci. Math.
Astr. Phys., 6 (1958), 31-36.
9. Setuzo Yosida, Ή.ukuhara's problem for hyperbolic equations with two independent
variables I. Semi-linear case, Proc. Japan Acad. 34 (1958), 319-324.



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RALPH S. PHILLIPS

Stanford University
Stanford, California

M. G. ARSOVE

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7. California

LOWELL J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH
T. M. CHERRY

ASSOCIATE EDITORS
D. DERRY
M. OHTSUKA

H. L. ROYDEN
E. SPANIER

E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 12, No. 1 January, 1962

Jonathan L. Alperin, Groups with finitely many automorphisms . . . . . . . . . . . . . . . . . . . . . . . . 1
Martin Arthur Arkowitz, The generalized Whitehead product . . . . . . . . . . . . . . . . . . . . . . . . . . 7
John D. Baum, Instability and asymptoticity in toplogical dynamics . . . . . . . . . . . . . . . . . . . . 25
William Aaron Beyer, Hausdorff dimension of level sets of some Rademacher series . . . . . 35
Frank Herbert Brownell, III, A note on Cook’s wave-matrix theorem . . . . . . . . . . . . . . . . . . . . 47
Gulbank D. Chakerian, An inequality for closed space curves . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Inge Futtrup Christensen, Some further extensions of a theorem of Marcinkiewicz . . . . . . . . 59
Charles Vernon Coffman, Linear differential equations on cones in Banach spaces . . . . . . . 69
Eckford Cohen, Arithmetical notes. III. Certain equally distributed sets of integers . . . . . . . 77
John Irving Derr and Angus E. Taylor, Operators of meromorphic type with multiple poles

of the resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Jacob Feldman, On measurability of stochastic processes in products space . . . . . . . . . . . . . 113
Robert S. Freeman, Closed extensions of the Laplace operator determined by a general

class of boundary conditions, for unbounded regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Robert E. Fullerton, Geometric structure of absolute basis systems in a linear topological

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Dieter Gaier, On conformal mapping of nearly circular regions . . . . . . . . . . . . . . . . . . . . . . . . 149
Andrew Mattei Gleason and Hassler Whitney, The extension of linear functionals defined

on H∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Seymour Goldberg, Closed linear operators and associated continuous linear

opeators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Basil Gordon, Aviezri Siegmund Fraenkel and Ernst Gabor Straus, On the determination

of sets by the sets of sums of a certain order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Branko Grünbaum, The dimension of intersections of convex sets . . . . . . . . . . . . . . . . . . . . . . . 197
Paul Daniel Hill, On the number of pure subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Robert Peter Holten, Generalized Goursat problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Alfred Horn, Eigenvalues of sums of Hermitian matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Henry C. Howard, Oscillation and nonoscillation criteria for

y′′(x) + f (y(x))p(x) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Taqdir Husain, S-spaces and the open mapping theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Richard Eugene Isaac, Markov processes and unique stationary probability measures . . . . 273
John Rolfe Isbell, Supercomplete spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
John Rolfe Isbell, On finite-dimensional uniform spaces. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
N. Jacobson, A note on automorphisms of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Antoni A. Kosinski, A theorem on families of acyclic sets and its applications . . . . . . . . . . . 317
Marvin David Marcus and H. Minc, The invariance of symmetric functions of singular

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Ralph David McWilliams, A note on weak sequential convergence . . . . . . . . . . . . . . . . . . . . . . 333
John W. Milnor, On axiomatic homology theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Victor Julius Mizel and Malempati Madhusudana Rao, Nonsymmetric projections in

Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Calvin Cooper Moore, On the Frobenius reciprocity theorem for locally compact

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Donald J. Newman, The Gibbs phenomenon for Hausdorff means . . . . . . . . . . . . . . . . . . . . . . 367
Jack Segal, Convergence of inverse systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Józef Siciak, On function families with boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Hyman Joseph Zimmerberg, Two-point boundary conditions linear in a parameter . . . . . . . 385

Pacific
JournalofM

athem
atics

1962
Vol.12,N

o.1


	
	
	

