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S-SPACES AND THE OPEN MAPPING THEOREM

TAQDIR HUSAIN

l Introduction* Let £ be a locally convex Hausdorff topological
vector space over the field of real numbers and E' its dual. Let tp

denote the uniform convergence topology over precompact sets of E on
E'. It is known ([2], Chapitre III, §3, N°. 5, Proposition 5) that tv

topology coincides with the weak* topology σ(E', E) on each equicont-
inuous set of Ef. Let tw denote the finest locally convex topology on Er

which coincides with σ(E'', E) on each equicontinuous set. Following
H. S. Collins [3] let e-w* denote the finest topology which coincides with
σ(E', E) on each equicontinuous set of E''. It is clear that these three
topologies are related as follows: e-w* D tw D tp or, in other words, e-w*
is finer than tw and tw is finer than tp. Collins [3] has shown that
in general these inclusions are proper. However, if E is metrizable,
e-w* = tp.

The object of this paper is to study the locally convex linear spaces
E on whose dual E', e-w* = tp. Such a space we call an S-space.
We shall give examples showing that an S-space is a proper generaliza-
tion of metrizable locally convex linear spaces. The completion of an
S-space is an S-space. A complete S-space is 5-complete (a notion due
to V. Ptak [19] which is important in connection with the open mapping
theorem). The Krein Smulian Theorem is true on complete S-spaces
(Theorem 3.) Two of the main theorems are the following ones:

THEOREM 8. A complete I.e. space with a countable fundamental
system of precompact sets is a complete S-space and hence a fortiori
B-complete.

THEOREM 10. Let E be a complete S-space in which the closure of
any dense subspace is obtained by taking the closures of its precompact
sets only. Then Ef, endowed with the tc-topology (the uniform conver-
gence topology over convex compact sets of E on Ef) is Br-complete for
all locally convex topologies finer than tc and coarser than τ(E', E).

Theorem 10 is a generalization of result 6.5 [19] concerning Frechet
spaces. We also prove that an LF-space E with a defining sequence
of Frechet spaces En(n ^ 1) is .B-complete provided each En contains a
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254 TAQDIR HUSAIN

countable fundamental system of precompact sets. In general the fact
that an LF-space need not be jB-complete follows from an example
given by A. Grothendieck [8]. In connection with the open mapping
theorem we prove the following: Let E be an F-space (or a complete
S-space) and F a T-space (or a ί-space). Then a linear and continuous
mapping of E onto F is open. For other generalizations of Banach's
open mapping theorem see Dieudonne et Schwartz [6], Grothendieck
[9], Kothe [15], Ptak [19] and Robertsons [21].

The author wishes to express his sincere appreciation to professor
Mark Mahowald for his assistance and for his many instructive conver-
sations. His thanks are also due to Professor W?. B. Jurkat for his
helpful suggestions.

2. Preliminaries and notations. We shall usually follow Bourbaki
definitions and notations [2]. The phrases " a topological vector space"
or "a locally convex topological vector space" will be abbreviated to "a
TVS" or "an I.e. space." A TVS which is metrizable and complete is
called an Jf̂ -space ([1], §1, p. 35) and an I.e. F-space a Frechet space
([2], Chap. 2, p. 59). The strict inductive limit of Frechet spaces is
called an LF-space [6].

Let e-w* denote the finest topology on the dual Er of an I.e. space
E, which coincides with the weak* topology σ(E', E) on each equicon-
tinuous set. This topology is not necessarily locally convex or even
linear. However, by Collins' Theorem 5 [3] it is semi-linear (i.e., the
mappings: (x,y)-+ x — y and (λ, x) —> Xx are continuous in each variable
separately, unlike the linear topology in which these mappings are con-
tinuous in both variables together, e-w* can be described more explic-
itly as follows: A set W of Eτ is β-w*-open (or e-w*-closed) if and only
if W Π U° (U° is the polar of U) is open (or compact) in the relative
weak* topology of U° for each neighborhood U of 0 in E. A linear
mapping / of an I.e. space E into another I.e. space F is said to be
almost open if for each neighborhood U of a point x e E, /(U) (the
closure of f(U)) is a neighborhood of the point f(x)eF [19]. An I.e.
space E is said to be B-complete if for an I.e. space F, a linear,
continuous and almost open mapping of E into F is open [19]. A set
Qf in E' is said to be almost closed if Q' Π U° is weak* closed for
each neighborhood U of 0 in E. In terms of the e-w*-topology to
say that Qr is almost closed in Ef is equivalent to saying that Qf is
€-w*-closed. An I.e. space E is called fully-complete if every almost
closed subspace Q' of Er is weakly closed. Ptak [19] proved that the
notions of ^-completeness and full-completeness are equivalent. We
shall use the term " Incomplete " only in the sequel. An. I.e. space E is
called Br-complete if every almost closed dense subspace Qf of Er coin-
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cides with Er. Br-completeness can be described in terms of topologies
on E. For this let u and v be two locally convex topologies on E such
that uz)v. Let v{u) denote the topology for which a fundamental sys-
tem of neighborhoods of 0 consists of ^-neighborhoods which are t -closed.
If v is Hausdorff so is v(u) and u Z) v(u) z> v. Now an I.e. space E,
endowed with a locally convex topology u, is called Br-complete if for
any locally convex topology v such that u D v and v(u) — v imply u = v
{[19], 4.2).

Given a family @ of bounded sets of a TVS, then a sub-family %
is called a fundamental system of @ if each set of @ is contained in
a set of g [11].

The following notations will be used for denoting different topologies:

<τ(E'', I?) = the simple convergence topology on Ef (also called weak*-

topology)

tc — the uniform convergence topology over convex compact sets

of E on E'.

tk = the uniform convergence topology over compact sets of i?

on Er.

tp = the uniform convergence topology over precompact (totally

bounded) sets of i? on Er.

β = the uniform convergence topology over bounded sets of i?

on £" (also called strong topology).

τ(E', E) = the Mackey topology on £".
e-w;* = the finest topology which coincides with σ(E', E) on each

equicontinuous set of E\

tw = the finest locally convex topology which coincides with σ(Ef',

E) on each equicontinuous set of Er.

There are some similar topologies on an I.e. space E itself. For
example:

<i(Ef E
f) = the weak topology on E.

τ{E, E') = the Mackey topology on E.

ω = the finest locally convex topology on E.

If the dual E' of an I.e. space E is endowed with a topology other
than σ(E\ E), then we shall denote the space by En°, En*f Efτ, Erβ

etc., depending upon which topology te, tp, τ or β is put on J5". A
linear space E with a topology u will be denoted by Eu and will be
assumed Hausdorff over the field of the reals.

The two topologies uτ and u2 on a linear space E are said to be
equivalent if they generate isomorphic duals and the notation for this
is ux ~ u2.
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3 S-spaces and their characterization*

DEFINITION 1. An I.e. space Eu is called an S-space if on its dual
E', e-w* = ί p .

The definition implies e-w* — tw and consequently e-w* is a locally
convex topology for S-spaces.

A simple characterization of S-spaces is given as follows:

THEOREM 1. An I.e. space Eu is an S-space if and only if for
each e-w*-open neighborhood Wr of 0 in E' there exists a u-precompact
set P in Eu such that P° c W.

Proof. If Eu is an S-space then e-w* = tp on E' which implies the
condition in the Theorem. On the other hand, if the condition P° c W
holds, e-w* atp. But in general, e-w* D tp ([3], Theorem 10) and there-
fore, by combining the two inequalities, we get e-w* = tp on Ef. In
other words, Eu is an S-space.

Metrizable I.e. spaces (in particular, Frechet spaces and Banach
spaces) form an important class of S-spaces ([3], Theorem 12).

An example of an S-space which is not metrizable is as follows:

EXAMPLE. Let E be the linear space of finite sequences (i.e., the
sequences with only a finite number of non-zero components), endowed
with the finest locally convex topology for which the embeddings:
Ren-^E (where en is the vector with all components except the wth,
zero and R is the field of real numbers) are continuous for n ^ 1.
In this case E is the strict inductive limit of an increasing sequence
En(n ^ 1) of finite-dimensional Euclidean spaces which are metrizable
(actually Frechet spaces). By using the open mapping theorem of
Banach and Baire's theorem (Every Frechet space is of 2nd category),
it is easy to see that E is not metrizable. But E is complete. Now
we show that E is an S-space. For this consider the dual Ef — R*
(the countable product of the reals). Since E is complete, tp = tc on
Ef. Moreover, tc = σ(E', E) on Ef because every convex compact set
in E [is finite dimensional. But σ(E', E) is simply the product topo-
logy which is metrizable and therefore, by Theorem 13 ([13], p. 231),
e-w* = σ(E\ E). Combining the latter with the above equations we
get e-w* = tp. This proves that E is an S-space.

4. S-spaces and B-completeness By one of the examples due to
Collins [3] it follows that a complete I.e. space need not be an S-space
(the example will be quoted later on). Nor is it true that an S-space
is always complete because a metrizable (not necessarily complete) I.e.
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space is an S-space ([3], Theorem 12). The following theorem gives a
sufficient condition for an S-space to be incomplete.

THEOREM 2. An S-space Eu is B-complete provided every u-closed
u-precompact set in Eu is u-compact.

Proof. By the definition of S-spaces, e-w* — tw = tp. Further the
hypothesis that every ^-closed and w-precompact set is ^-compact, cou-
pled with tw = tp, implies Eu is complete by Theorem 10 [3]. Moreover,
completeness of Eu implies tp = tc on E'u, and for the same reason tc on
El is compatible with duality. Hence e-w*f being locolly convex and
equal to tc is compatible with duality; and therefore, by the Mackey's
theorem ([2], Chapitre IV, §2, N° 3, Proposition 4), the closed convex
sets of e-w* = tc are the same as those of σ(E', E).

Now let Q be a linear almost closed subspace of E'. But to say
that Q is almost closed is the same as saying that Q is e-w*-closed.
Hence Q, being convex (because it is a linear space) and e-w*-closed, is
also σ(E', Enclosed. This proves that E is .B-complete.

COROLLARY 2.1. A complete S-space is B-complete.

Proof. Since, in a complete I.e. space, every closed precompact set
is compact, the Corollary follows from Theorem 2.

In the above theorem, though the condition that every closed pre-
compact set in E be compact is sufficient for an S-space to be B-
complete or complete ([3], Theorem 10) it need not be necessary because
the e-w*-topology on Ef for B-complete I.e. spaces E need not be locally
convex. However, the following propositions deal with necessary and
sufficient conditions.

PROPOSITION 1. An S-space E is complete if and only if every
closed precompact set of E is compact.

Proof. If an I.e. space is complete then the condition is evidently
satisfied. On the other hand, the condition implies E is -B-complete by
Theorem 2 and therefore, a fortiori, complete.

PROPOSITION 2. A complete I.e. space E is an S-space if and only
if e-w*, on its dual Er, is a locally convex topology.

Proof. The fact that e-w* is locally convex for S-spaces follows
from the definition. On the other hand, if e-w* is locally convex then
e-w* = tw on Er. By the Theorem 10 [3], completeness implies tw = tp.
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Combining these two equations we get e-w* = tw — tv which proves that
E is an S-space.

COROLLARY. An LFspace E is B-complete if e-w* on E' is local-
ly convex.

Proof. It follows from Proposition 2 because each LF-space is
complete.

The following theorem is know as the Krein Smulian theorem and
is known to be true for Banach spaces and more generally for Frechet
spaces. Here we show that it is true for complete S-spaces as well.

THEOREM 3. Let E be a complete S-space. For a convex set Mr

in E' to be σ(E', E)-closed it is necessary and sufficient that M' (Ί U°
be σ{Ef E)-closed for each neighborhood U of 0 in E.

Proof. The necessary part is obvious because U° is always σ(E' E)-
closed. That it is sufficient follows from the fact that E is a complete
S-space and hence e-w* = tc on E. But tc is compatible with duality
(because E is complete) and therefore closed convex sets under e-w*
and σ(Ef', E) are the same by the Mackey's Theorem ([2], Chapitre IV, §2,
N° 3, Prop. 4). Now the Theorem follows by observing that saying
Mf Π U° is σ(Ef ί?)-closed for each neighborhood U of 0 in E is equiva-
lent to saying that Mf is e-w*-closed.

J. L. Kelley [12] has recently studied hypercomplete spaces. He
proved: A linear topological space F is hypercomplete if and only if
each e-w*-closed convex circled subset of F' is σ(E', i?)-closed. He
studied hypercomplete spaces in connection with the closed graph The-
orem. He does not touch on any of the theorem proved here for
S-spaces. It is clear from Theorem 3 that a complete S-space is hyper-
complete. We do not know if the converse is true. We conjecture
that complete S-spaces and hypercomplete spaces are the same.

5. Completion of S-spaces

THEOREM 4. The completion Eu of an S-space Eu is an S-space.

Proof. We can identify the duals E'u and E'u of Eu and Eu respec-
tively, under the mapping i: /—>/(/e E'U1 fe E£) where / is the unique
extension of /. As i is an algebraic isomorphism of El onto E'u, it is

easy to see that e-w* on Ef

u and e-w* on El are the same. Let tp and
tp denote the uniform convergence topologies on precompact sets of Eu

and Eu respectively. Since every precompact set of Eu is precompact
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in Eu, we have t p z> £p. But in general e-w* 3 ?p and so e-w* ZDtpZD tp.
By hypothesis Eu is an S-space (i.e., e-w* = tp) and therefore e-w* =

•e-w* =: tP = tp which proves the Theorem.
The following Corollary 4.1 follows immediately from the above

Theorem.

COROLLARY 4.1. The completion Eu of an S-space Eu can be ob-
tained by completing the precompact sets of Eu only.

REMARK. The above Corollary shows that S-spaces and metrizable
I.e. spaces share the property that their completion can be obtained by
completing their precompact sets only. In the case of metrizable spaces,
precompact sets are to be replaced by Cauchy sequences.

COROLLARY 4.2. // Eu is an S-space then Eu is B-complete.

Proof. By the above theorem, Eu is an S-space, and being com-
plete it is incomplete by Corollary 2.1.

6 S'Spaces and bornological spaces* In view of the fact that
every metrizable I.e. space is bornological ([2], Chapitre III, §2, Exercise
15) as well as it is an S-space ([3], Theorem 12), one would like to
know if there is any relation between bornological and S-spaces. We
give an example of bornological I.e. space which is not an S-space.
Actually we prove more than that. More specifically we have the fol-
lowing:

THEOREM 5. A bornological I.e. space need not be an S-space.
Also a complete, bornological, t-space need not be an S-space.

Proof. For this let E be an infinite dimensional Banach space on
the field of the reals. It is easy to see that Ew is a bornological I.e.
space. On the other hand, Collins [3] has shown that Ew is not incomplete
and hence not an S-space. For the second part of the theorem, the
same example works because Ew is a reflexive, complete ί-space ([2],
Chapitre II, §2, Exercise 3, and Chapitre III, §1, Exercise 3).

7 Subspaces of an S-space In this section we shall show that a
subspace of a complete S-space with the Closure property (defined below)
is an S-space.

DEFINITION 2. A TVS E is said to satisfy CP (Closure-property) if
for any dense subspace Q of E, each precompact set of E is contained
in the closure of a precompact set of Q.
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REMARK. It is clear from the Definition that CP is equivalent to
saying that the closure of a dense subspace Q of a TVS E is obtained
by taking the closures of its precompact sets only.

In gendral an S-space need not satisfy CP. Every metrizable I.e.
space of course does so.

First of all we prove the following:

PROPOSITION 3. A closed subspace Q of a complete S-space E is
also a complete S-space.

Proof. Q is clearly complete and therefore, it is sufficient to show
that e-w*λ— tCl on Qf — E'lQ0, where e-w*λ is the finest topology which
coincides with σ(Q'', Q) on each equicontinuous set of Q\ and tCχ is the
uniform convergence topology on convex compact sets of Q. By Exer-
cise 12(c)([2], Chapitre IV, §3, N° 4) the quotient topology tq on Q' is
the same as tCl i.e., tq = tCχ because the convex hull of a compact set
in E as well as in Q, is compact because of E and Q being complete.
But the equality e-w* = tc on Έf (because E is a complete S-space)
implies e-w*q = tq on Q' (where e-w*q is the quotient topology of e-w*
on Q' and clearly Hausdorff because Q° is weakly closed and therefore
e-w*-closed due to continuity of the identity mapping). Hence we have

( i ) e-w*q = tCl

Furthermore, e-w*q coincides with σ(Q' Q) on each equicontinuous.
set of Qf because tCχ — tPl does so according to Proposition 5 ([2], Chapi-
tre III, §3, N° 5). Since e-w*! is the finest topology which coincides-
with σ(Q', Q) on each equicontinuous set of Q', we have

(ii) e-w*xZ) e-w*q .

In view of (i) it is clearly sufficient to show the reverse inclusion-
in order to complete the proof. For this let Wf be an e-wVopen
neighborhood of 0 in Q'. We wish to show that Φ~\W), where φ is
the canonical mapping: E' —> E'/Q°, is an e-w*-open neighborhood of 0
in Er. For each neighborhood U of 0 in E, U° is σ(E', i£)-compact in
E'. Let φ(U°) = Y and Φ'\Y) = X. Due to σ(E', ^-continuity of ψt

Y is σ(Er, £r)-compact and X is σ(E', £7)-closed in Ef. On the compact,
set Y, e-w*λ and σ(Qf

y Q) are the same. Let us now consider

φ-\wr)nx.
Clearly

Φ-^W) n x = ψ-^w n Y).

Since W is an e-w*1-open neighborhood and Y is compact, W Π Y ist
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relatively weakly open in X. Further, since U° is σ(E'', i?)-closed and
σ(E', £r)-compact,

φ-\W)nine/0- ΦΛW')n u°
{because Xz) U°) is σ(Ef, E)-open for each neighborhood U of 0 in E.
This shows, by definition, that φ~1(Wf) is an e-w*-open neighborhood of
0 in Ef and therefore e-w* c e-w*Q. This completes the proof.

PROPOSITION 4. Let E be an S-space satisfying CP. Then every
dense subspace Q of E is an S-space.

Proof. Density of Q implies Q' = Ef. Since for every neighborhood
U of 0 in Q, U° = (Uf (where E7 is the closure of U in E and hence
a neighborhood of 0 in E), the topologies e-w* and e-wί with regard
to E and Q respectively are the same on Er. By hypothesis for each
precompact set P in E, there exists a precompact set Pλ in ζ) such
that P13 P. This means that tPι — tp on Er (where tPl is the uniform
convergence topology over precompact sets of Q) and therefore,

e-w* = e-w* Z) ί^ — tp .

But JE is an S-space and therefore e-w* = ί^. This proves the proposition.

THEOREM 6. Let E be a complete S-space satisfying CP. Then
every subspace Q of E is an S-space.

Proof. According to Proposition 3, Q is an S-space in which Q is
a dense subspace and satisfies CP. Therefore, by Proposition 4, Q is
.an S-space.

8 Permanence property of S'spaces.

THEOREM 7. Let f be a linear, continuous and almost open map-
ping of an i.e. space E onto another I.e. space F. If E is an S-space
then F is also an S-space.

Proof. By hypothesis, the transpose mapping fr:F'—> Ef is a
homeomorphism (into). Therefore Ff can be identified with its image
f\F') in Ef. Let W be an e-w*-open neighborhood of 0 in F' i.e.,
W Π V° is σ(F', F)-open for each neighborhood V of 0 in F. Since

w n u° =
= rn
= w n
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is σ(Fr, F)-open for each neighborhood U of 0 in E (bacause / being-
almost open implies f(U) — V), and therefore σ(Ef, £r)-open, W is an
β-w*-open neighborhood of 0 in E'. E being an S-space, due to Theo-
rem 1 there exists a precompact set P in E such that P° a W. But

(f(P)f = f'ΛP0) c f'-\ W) = W

(because / ' is 1 : 1) implies that F is an S-space due to Theorem 1,.
because / being continuous and P a precompact set implies f(P) is.
precompact in F.

COROLLARY 7.1. Let E and F be I.e. spaces and f a linear, con-
tinuous and open mapping of E onto F. Then F is an S-space if E
is an S-space.

Proof. The Corollary is immediate from Theorem 7 because every
open mapping is almost open.

COROLLARY 7.2. Let E be an S-space and M a closed subspace of
E. Then E\M is an S-space.

COROLLARY 7.3. Let Eu be an I.e. space and v another locally
convex topology on E such that u D v and v(u) = v. Then Eυ is an
S-space if Eu is an S-space.

COROLLARY 7.4. // every bornological space is an S-space then
every quasibarrelled space is also an S-space.

Proof. For this let Eu be a quasi-barrelled space and EB its asso-
ciated bornological space ([2], Chap. Ill, p. 13). By Theorem 2.3 [17], the
identity mapping: EB —> Eu is linear, continuous and almost open. Hence
the Corollary follows from Theorem 7.

REMARK. Corollary 7.4 can also be taken to prove the first part
of Theorem 5.

9. Strict inductive limit of S-spaces From a result ([9], 5°, p. 93)
due to Grothendieck it follows that an Li^-space need not be incomplete
and hence the strict inductive limit of S-spaces need not be an S-space.
In Proposition 2 we have had a sufficient condition for any complete
I.e. space, in particular, for any LF-space to be an S-space. That con-
dition is too obvious and almost the definition of an S-space. Here we
shall have another condition which is more practicable.

First of all we have some lemmas.
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LEMMA 1. Let Kx and S2 be two collections of convex compact
sets of an I.e. space Eu such that S^ c (£2. Let k(&u u) and fe(&2, u)
denote the finest topologies which coincide with u on each Ct e Eα and
Co G E2 respectively. Then &(&!, u) ~D fc(S2, u).

Proof. Let W be an open set in /c((£2, u) i.e., ? Π C 2 is open under
the induced topology u on C2 for each C2 e K2. Since each d e E2, there-
fore W Π CΊ is open under the induced u-topology on d for each CΊ e GL̂
and hence W is an open set in

LEMMA 2. Lei £7 δβ an I.e. space and £" its dual. Let K
d2 6β ίt(;o collections of all convex tv-compact and convex closed equi-
continuous sets of Ef respectively. Let &(&i, tp) and e-w* be the
topologies defined as usual. Then k(&lf tp) Z) e-w* ZD tp.

Proof. Since each ^-compact set is σ-compact because tp Z) σ(E', E),
and tp coincides with σ(Ef', E) on each equicontinuous set, the first in-
clusion in the Lemma follows from Lemma 1. The second inclusion is
true in general.

LEMMA 3. Let Eu be an I.e. space which has a countable funda-
mental system of u-precompact sets. Then E is an S-space.

Proof. In view of Lemma 2 it is sufRcient to prove that &(Ei, tp) = tp

on Ef. But this follows from the fact that, by hypothesis, tp is metri-
zable and therefore, &(&!, tp) being its /^-extension is equal to tp ([13],
p. 231, Theorem 13).

THEOREM 8. Let Eu be a complete I.e. space which has a countable
fundamental system of u-precompact sets. Then Eu is B-complete.

Proof. By Lemma 3, E is an S-space and being complete it is a
complete S-space. Therefore, by Corollary 2.1, Eu is B-complete.

THEOREM 9. Let E be the strict inductive limit of complete I.e.
spaces En's (n ^ 1) such that each En contains a countable fundamen-
tal system of precompact sets. Then E is a complete S-space and a
fortiori B-complete.

Proof. By Exercise 9 ([2], Chapitre II, §2, N° 5) E is complete.
Moreover, each precompact set of E is contained in some Em for some
m and is a precompact set in Em ([2], Chapitre III, §2, N° 4, Proposi-
tion 6). Since each Em contains only a countable fundamental system
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of precompact sets, so does E. Hence by Theorem 8, E is .B-complete.

COROLLARY 9.1. An LF-space E with a defining sequence of
Frechet spaces En's is B-complete provided each En has a countable fun-
damental system of precompact sets.

COROLLARY 9.2. Let En (n ^ 1) he a sequence of complete I.e.
spaces each of which contains a countable fundamental system of
precompact sets. Let E be the direct sum of En

ys. Then E is acompl ete
S-space and a fortiori B-complete.

REMARK. The ί-spaces and quasi-barrelled spaces with a countable
fundamental system of compact sets have been studied by Dieudonne
[7], and by Mahowald and Gould [17] respectively.

lO Dual of an S-space It is known ([19], 6.5) that the dual Er,
endowed with the £c-topology of a Frechet spach E is incomplete for
all locally convex topologies finer than tc and coarser the τ(Ef, E).
However, this need not be the case for B-complete I.e. spaces is shown
as follows:

PROPOSITION 5. The dual of a B-complete I.e. space, endowed with
the tc-topology, need not be incomplete.

Proof. Consider E = /7Λi2α (an arbitrary Cartesion product of real
numbers), endowed with the Cartesian product topology. According to
Corollary 17.2 [3], E is B-complete and every closed bounded set in E
is compact ([11], Lemma 6). Hence tc = β on Ef. As β is the direct
sum topology of finite-dimensional spaces, it is the finest locally convex
topology and E'β = Ertc is a complete, bornological and reflexive ί-space.
We show that it is not B-complete.

For this let F be an infinite dimensional Banach space. It is clear
that the identity mapping i: Fw-+ F is linear, continuous, 1 :1 and
onto. It is also known ([3], pp. 271-272) that i is almost open but not
open. Hence Fr is dense and almost closed in F'w but not closed. This
shows that Fw is not incomplete (α fortiori not B-complete). But
then it is known that Fw is nothing more than ΣUe^ ί U where H
is the Hamel base and Ra is a copy of real numbers, and therefore

Ff = Σ « 6 * # Λ . T h u s > i f w e t a k e Fto f o r E h = E'β i n the Proposition,
the conclusion immediately follows.

THEOREM 10. Let Eu be a complete S-space satisfying CP. Then
E'tc is Br-complete for all locally convex topologies finer that tc and
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coarser that τ(Ef, E).

Proof. Let Q be an almost closed (i.e., Q Π C00 is σ(E, £")-closed
for each ^-compact set C of E) dense subspace of E. By Proposition
4, Q is an S-space. Further, the density of Q implies E' = Qr and
hence the e-w*-topology is the same with respect to E and Q. Q being an
S-space, e-w* is locally convex and e-w* — tPl, where tPl is the uniform
convergence topology over precompact sets of Q on Er.

Now we show that the almost closedness of Q implies every closed
precompact set in Q is compact. For this let tc and ίCl, on E', be the
uniform convergence topologies over convex compact sets of E and Q
respectively. Since E is complete, it is clear that tc and tH are com-
patible with duality. It is also clear that tCχ c tc. By virtue of result
3.2 [19], almost closedness of Q in E is equivalent to the fact that the
identity mapping: Ettc —»EftCl is almost open or in Ptak's notation:

But in general ([19], Theorem 5.10) or ([3], Theorem 10)

where tWχ is the finest locally convex topology which coincides with
<f(Qr, Q) on each equicontinuous set of Qf. But since Q is an S-space, so

tCl(e-w*) = tPl .

But E being a complete S-space implies

e-w* — tp = tc .

Hence we have

*Cl = tcStc) = tCl(e-w*) = ί^

which proves that closed precompact sets in Q are compact. By Propo-
sition 1, this implies that Q is complete and hence closed in E. This
shows that Q = E because Q is dense in E. This proves the first part
of the Theorem. The remainder follows from Ptak's result 4.3 [19].

11. S-spaces which are strong duals of certain I.e. spaces-

THEOREM 11. The strong dual of a semi-reflexive t-space Eu is a
complete S-space and hence a fortiori B-complete.

Proof. It is sufficient to prove that Efβ is an S-space because, ac-
cording to Exercise 3(c) ([2], Chapitre IV, §3, N° 4) coupled with the
observation that a metrizable I.e. space is bornological, Etβ is complete.
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Furthermore, semi-reflexiveness implies that E'βf — E and E'β is a ί-space
([2], Chapitre IV, §3, N° 3, Proposition 4); and also that β = τ(E', E).
Further, according to Exercise 12(b) ([2], Chapitre IV, §1, N° 6) every
σ-bounded set (hence every τ-bounded set because tf-bounded and τ-bounded
sets are the same by the Mackey's Theorem) is τ-precompact. But
every τ-precompact set, being σ-bounded, is equicontinuous because E is
a ί-space by hypothesis. Hence u — tp on E, where tp is the uniform
convergence topology over τ-precompact sets of E'. This proves that u
coincides with σ(E, E') on each equicontinuous set of E because tp does
so. But tp = u being metrizable, e-w* ~ tp because of Theorem 13 ([13],
p. 231) and the argument used in Lemma 3. Hence Etβ is a complete
S-space and by Corollary 2.1, it is l?-complete.

COROLLARY 11.1 The strong dual of a semi-reflexive Frechet space
is a complete S-space and a fortiori B-complete.

Proof. The Corollary follows from Theorem 11 because every
Frechet space is metrizable and a £-space.

COROLLARY 11.2 The strong dual of a metrizable Montel space is
a complete S-space.

Proof. The Corollary follows from Theorem 11 becanse a Montel
space is reflexive (hence semi-reflexive) and is a ί-space.

The following Corollaries are immediate from the above Theorem
and §9. Their proofs are omitted.

COROLLARY 11.3 The strong dual of a Montel space Eu is a com-
plete S-space and hence B-complete provided E'β is metrizable.

COROLLARY 11.4 The strong dual of a Montel space Eu is a com-
plete S-space provided Eu contains a countable fundamental system of
bounded sets.

COROLLARY 11.5 A Montel space E is a complete S-space provided
E contains a countable fundamental system of bounded sets.

REMARK. In view of the fact that every metrizable I.e. space is
bornological, one might be tempted to prove Theorem 11 for semi-
reflexive bornological ί-spaces. But this is not true due to an example
given in Theorem 5.

12» the open mapping theorem* Banach [1] proved that if E
and F are two F-spaces then a linear and continuous mapping of E
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onto F is open. Our object is to replace the range space F in Banach's
theorem by a more general linear space which we call T-spaces (defined
below). The purpose of defining T-spaces is to knock out local convexity
from t-spaces. For locally convex linear spaces the Theorem has been
carried over to more general linear spaces Frechet space, for example,
see Dieudonne et Schwartz [6], Grothendieck [10], Ptak [19], Robertsons
[21].

DEFINITION 3. A topological vector space is called a T-space if every
closed, circled and absorbing set is a neighborhood of 0.

THEOREM 12. If E is an F-space and F a T-space then a linear
and continuous mapping f of E onto F is open.

Since E is an i^-space, there exists a countable fundamental system
of neighborhoods Un {n ^ 1) of 0 in E such that Ϊ7w's are closed, circled
and absorbing with the following properties:

( a ) Un±L + Un+1 c Un for all n ^ 1 ,

For the proof of theorem we need the following two lemmas. The
proof of Lemma 4 is straightforward and therefore omitted.

LEMMA 4. Let E be a topological vector space and F a T-space.

Let f be a linear mapping of E onto F. Then for each neighborhood

U of 0 in E, f(U) is a neighborhood of 0 in F.

Now for each neighborhood Un of 0 in E, let us define

f(Un) = Wn for each n.

Evidently Wn+1d Wn for all n ^ 1.

LEMMA 5.

n wn = {0}.

Proof. L e t y e f]Z ± Wn. T h e n yef(Un) f o r a l l n^l. L e t V b e
a closed and circled neighborhood of 0 in F, then (y + V) Π /(Un) Φ Φ
for all n §? 1. That means there exists xn e Un such that f(xn) e y + V
for all n: ^ 1, or

(i) ΛxJ-veV
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since xn e Un and Un (n ̂  1) forms a decreassing sequence of a funda-
mental system of neighborhoods of 0 in E, xn-+0. f being continuous
and V being closed, ( i ) implies /(0) — y e V or y e V. But V is arbi-
trary, therefore y — 0.

Proof of Theorem 12. Since Un (n ̂  1) forms a fundamental sys-
tem of neighborhoods, so in order to prove that / is open, i.e., for any
open set P in E f(P) is open in F, it is sufficient to show that f(Un)
is a neighborhood of 0 in F for each n. More specifically what we
shall show is that f(Uk)Z) Wk+1 for any k.

Let ye Wk+1. Since f(Uk+1) is dense in Wk+1, there exists yx with a
preimage xτ =/- 1(y 1) e ?7fe+1 such that y — yxe Wk+2. Inductively proceed-
ing we assume that there exists yn with a preimage xn — f~\yn)

 e Uk+n

such that

(A) y - Σ V; e ΐ^ f c + n + 1 .

Further, since

^n + »»+l + * * * + ίCn + p € Uk+n + + Uk + n + p

and

therefore

(B) a?n + ^u+1 + + xn+p e Uk+n + Uk+n c Uk+n-x .

Now given any arbitrary neighborhood F of 0, we can choose N large
enough so that £7fc+7l_i c V f or n ^ iV and hence

# » + • • • + ^%+p 6 F for all n ^ iV and p ^ 0 .

This shows that the partial sums of the series Σ£=i ^i form a Cauchy
sequence. But E is complete, therefore there exists x £ E such that

oo

x = Σ βj •

By putting w = 1 in (B) we have
m

Σ %s e ί/fc for each m ,
3 = 1

and since Uk is closed so (letting m—> oo),

(C) a? = S « , e J 7 f c .
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/ being continuous implies

(D) Λχ) t) tJ

From (A) follows that

V ~ Σ V ; e Wk+n+p+1 c Wk,n,x f or p ^ 0 .

Since p can be chosen arbitrarily, so

m

V — ΣIVJZ WkλnΛ1 for large m ,

and WA+w+i being closed (letting m—• oo) we have

y — ΣiVse wk+n+1
3=1

or from (D), 2/ — f(x) e Wk+n+1 for each n. That implies

1/ - f(x) e Π W*+»+1 .
n — \

Hence by Lemma 5, y = /(x). But since, from (C) xe Uk, therefore

or f(Uk)Z) Wk+1. This proves the theorem.

THEOREM 13. Let E be a Frechet space and F an I.e. space. Let
f be a linear, continuous and almost open mapping of E into F.
Then f(E) is a t-space.

Proof. It is clear that f(E) is a closed linear subspace of F. Let
B be a barrel in f(E), then B is closed in F as well, and f being linear
and continuous implies f~\B) is closed, convex, circled and absorbing
in E. But E being a Frechet space and therefore a ί-space ([2], Chapi-
tre III, §1, Corollary of Proposition 1) implies f~\B) is a neighborhood
of Oin E. Since / is almost open, f(f~\B)) = B = B is a neighborhood
of 0 and hence f(E) is a ί-space.

By virtue of the facts that every complete S-space and the com-
pletion of an S-space are .B-complete the following Theorems 14 and
15 are just particular cases of Robertsons' Theorems 3 and 4 [21], and
of Robertson's Theorems 6 and 7 [22].

THEOREM 14. Let E be a complete S-space and F a t-space. Then:
( a ) A linear and continuous mapping f of E onto F is open.
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(b) A linear mapping g of F into E with the closed graph is
continuous.

THEOREM 15. Let E be an S-space and F a t-space. Then:
( a ) A linear and continuous mapping f of E onto F is open

provided f satisfies the filter condition ([22], Theorem 6).
(b) A linear mapping g of F into E with the closed graph

is continuous provided g satisfies the inverse filter condition ([22],
Theorem 7).

We have also investigated a kind of " converse " of the open map-
ping theorem. More precisely, let % (or S£) be the class of all Frechet
spaces (or ί-spaces) F. We ask if a locally convex linear space E for
which a linear, continuous 1:1 and almost open mapping / of E onto
F (for each Fe% or X) is actually open, is indeed a Frechet space (or
a Incomplete I.e. space). We have answered both of these questions
in the negative and will be published later on.

BIBLIOGRAPHY

1. S. Banach, Theorie des Operations Lineares, Warsaw, 1932.
2. N. Bourbaki, Elements de Mathematique, Espaces vectoriels topologiques, Chapitre I-V
livre V, Paris, 1953, 1955.
3. H. S. Collins Completeness and compactness in linear topological spaces, Trans. Amer.
Math. Soc, 79 (1955), 256-280.
4. J. Dieudonne, Natural Homomorphisms in Banach Spaces, Proc. Amer. Math. Soc. 1
(1950), 54-59.
5. , Recent developments in the theory of locally convex vector spaces, Bull.
Amer. Math. Soc, 59 (1953), 495-512.
6. , et L. Schwartz, La dualite dans les espaces (F) et (LF), Ann. Inst. Fourier,
Grenoble (1950), 61-101.
7. , Denumerability conditions in locally convex vector spaces, Proc. Amer. Math.
Soc. 8 (1957), 367-372.
8. A. Grothendieck, Sur la Completion du dual d'un espace vectoriel localement convexe,
C. R. Acad. Sc. t. 230 (1950), 605-606.
9. , Sur les espaces (F) et (DF), Summa Bras. Math. t. 3 (1954), 57-123.
10. , Produits tensoriels topologique et espaces nucleaires, Mem. Amer. Math. Soc,
16 (1955).
11. S. Kaplan, Cartesian products of reals, Amer. J. Math., 7 4 (1952), 936-954.
12. J. L. Kelley, Hypercomplete linear topological spaces, Michigan Math. J., 5 (1958),
235-246.
13. , General Topology, New York Van Nostrand, 1955.
14. A. Kolmogoroff, Zur Normierbarkeit eines allgemeinen topologischen linear en Raumes,
Studia Math., 5 (1935), 29-33.
15. G. Kothe, ϋber zwei Sάtze von Banach, Math. Zeitschrift 5 3 (1950-51), 203-209.
16. G. Mackey, On infinite dimensional linear spaces, Trans. Amer. Math. Soc, 57(1945),
155-207.
17. M. Mahowald and G. Gould, Quasi-barrelled locally convex spaces, Proc, Amer. Math.
Soc, 11 (1960), 811-816.
18. V. Ptak, On complete topological linear spacis, Cechoslovack Math. J. 3 (78) 285-290



S-SPACES AND THE OPEN MAPPING THEOREM 271

and 301-364; (1953) (Russian and English Summary).
19. , Completeness and the open-mapping theorem, Bull. Scoiete Math, de France
t. 86 (1958), 41-74.
20. G. T. Roberts, The bounded weak topology and completeness in vector spaces, Proc.
Camb. Phil. Soc, 49 (1953), 183-189.
21. A. P. Robertson and W. Robertson, On the closed graph theorem, Proc. Glasgow Math.
Ass. 3 (1956), 9-12.
22. W. Robertson, Completion of topological vector spaces, Proc. London Math. Soc. 8
(1958), 242-257.

SYRACUSE UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RALPH S. PHILLIPS

Stanford University
Stanford, California

M. G. ARSOVE

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7. California

LOWELL J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH
T. M. CHERRY

ASSOCIATE EDITORS
D. DERRY
M. OHTSUKA

H. L. ROYDEN
E. SPANIER

E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 12, No. 1 January, 1962

Jonathan L. Alperin, Groups with finitely many automorphisms . . . . . . . . . . . . . . . . . . . . . . . . 1
Martin Arthur Arkowitz, The generalized Whitehead product . . . . . . . . . . . . . . . . . . . . . . . . . . 7
John D. Baum, Instability and asymptoticity in toplogical dynamics . . . . . . . . . . . . . . . . . . . . 25
William Aaron Beyer, Hausdorff dimension of level sets of some Rademacher series . . . . . 35
Frank Herbert Brownell, III, A note on Cook’s wave-matrix theorem . . . . . . . . . . . . . . . . . . . . 47
Gulbank D. Chakerian, An inequality for closed space curves . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Inge Futtrup Christensen, Some further extensions of a theorem of Marcinkiewicz . . . . . . . . 59
Charles Vernon Coffman, Linear differential equations on cones in Banach spaces . . . . . . . 69
Eckford Cohen, Arithmetical notes. III. Certain equally distributed sets of integers . . . . . . . 77
John Irving Derr and Angus E. Taylor, Operators of meromorphic type with multiple poles

of the resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Jacob Feldman, On measurability of stochastic processes in products space . . . . . . . . . . . . . 113
Robert S. Freeman, Closed extensions of the Laplace operator determined by a general

class of boundary conditions, for unbounded regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Robert E. Fullerton, Geometric structure of absolute basis systems in a linear topological

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Dieter Gaier, On conformal mapping of nearly circular regions . . . . . . . . . . . . . . . . . . . . . . . . 149
Andrew Mattei Gleason and Hassler Whitney, The extension of linear functionals defined

on H∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Seymour Goldberg, Closed linear operators and associated continuous linear

opeators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Basil Gordon, Aviezri Siegmund Fraenkel and Ernst Gabor Straus, On the determination

of sets by the sets of sums of a certain order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Branko Grünbaum, The dimension of intersections of convex sets . . . . . . . . . . . . . . . . . . . . . . . 197
Paul Daniel Hill, On the number of pure subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Robert Peter Holten, Generalized Goursat problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Alfred Horn, Eigenvalues of sums of Hermitian matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Henry C. Howard, Oscillation and nonoscillation criteria for

y′′(x) + f (y(x))p(x) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Taqdir Husain, S-spaces and the open mapping theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Richard Eugene Isaac, Markov processes and unique stationary probability measures . . . . 273
John Rolfe Isbell, Supercomplete spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
John Rolfe Isbell, On finite-dimensional uniform spaces. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
N. Jacobson, A note on automorphisms of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Antoni A. Kosinski, A theorem on families of acyclic sets and its applications . . . . . . . . . . . 317
Marvin David Marcus and H. Minc, The invariance of symmetric functions of singular

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Ralph David McWilliams, A note on weak sequential convergence . . . . . . . . . . . . . . . . . . . . . . 333
John W. Milnor, On axiomatic homology theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Victor Julius Mizel and Malempati Madhusudana Rao, Nonsymmetric projections in

Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Calvin Cooper Moore, On the Frobenius reciprocity theorem for locally compact

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Donald J. Newman, The Gibbs phenomenon for Hausdorff means . . . . . . . . . . . . . . . . . . . . . . 367
Jack Segal, Convergence of inverse systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Józef Siciak, On function families with boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Hyman Joseph Zimmerberg, Two-point boundary conditions linear in a parameter . . . . . . . 385

Pacific
JournalofM

athem
atics

1962
Vol.12,N

o.1


	
	
	

