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Let M, , denote the vector space of all m x m matrices over the
complex numbers. A general problem that has been considered in many
forms is the following: suppose U is a subset (usually subspace) of M, ,
and let f be a scalar valued function defined on 2. Determine the
structure of the set A, of all linear transformations T that satisfy

1) AT(A)) = f(A) for all Ac¥U.

The most interesting choices for f are the classical invariants such as
rank [3,4, 7] determinant [1,2,3,5,10] and more general symmetric
functions of the characteristic roots [6,8]. In case U is the set of
n-square real skew-symmetric matrices (m = n) and f(4) is the Hilbert
norm of A then Morita [9] proved the following interesting result: A,
consists of transformations T of the form

T(A) = U'AU for n+ 4,
T(A) = U'AU or T(A) = U'A*U for nm =4

where U is a fized real orthogonal matriz aend A* is the matrix
obtained from A by interchanging its (1, 4) and (2, 3) elements.

Recall that the Hilbert norm of A is just the largest singular value
of A (i.e., the largest characteristic root of the nonnegative Hermitian
square root of A*A).

In the present paper we determine 2, when 2 is all of M, , and
f is some particular elementary symmetric function of the squares of
the singular values. We first introduce a bit of notation to make this
statement precise. If Ae M, , then MA) = (M(4), «++, M (A)) will denote
the n-tuple of characteristic roots of A in some order. The rth ele-
mentary symmetric funection of the numbers AMA) will be denoted by
E,[\A)]; this is, of course, the same as the sum of all r-square principal
subdeterminants of A. We also denote by p(A) the rank of A.

THEOREM. A linear transformation T of the space M, , leaves
mvariant the rth elementary symmetric function of the squares of the
singular values of each Ae M, ., for some fixed r, 1 < r =< n, if and
only if there exist unitary matrices U and V in M, , and M,, re-
spectively such that
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2 T(A) = UAV if m + n and
3) TA) = UAV or T(A) = UA'V if m=mn.
The sufficiency of (2) and (3) is clear and we prove the necessity

in a sequence of lemmas some of which may be of interest in themselves.
Assume without loss of generality that m = =.

LEmMMA 1. Let A, Be M, , and let @x(x) = E(xA + B)* (xA + B))]
where x 18 a real indeterminate. Then

4) deg @,(x) < 2 for all Be M,,,
if and only if
®) p4) =1.

Proof. We first remark that @z(x) is actually a polynomial in =
since it is the sum of all () r-square principal subdeterminants of
(xA + B)* (xA + B). The matrix A can be written, by a slight extension
of the polar factorization theorem to rectangular matrices, in the form
A = UH where H is n-square hermitian positive semi-definite and Ue M, ,,
satisfies U*U = I,, the n-square identity matrix. Then

(%) = E[M(xzUH + B)* (xUH + B))]
= EM(zH + U*B)* (vH + U*B))] .

Now let H= V*DV where V is unitary and D is diagonal. Then

pp(x) = E[MV*@D + VU*BV*)*VV*@D + VU*BV*) V)]
= E[M@D + B)* (xD + B))]

where B, = VU*BV*. Now suppose p(4) = p(D)=1. Then D has
exactly one nonzero entry which we may clearly assume to be in the
(1,1) position. It follows that (xD + B)* (xD + B,) has a quadratic
polynomial in x in the (1, 1) position, first degree polynomials in the other
first row and first column positions and constants elsewhere. Therefore,
every principal subdeterminant of this matrix is a polynomial in 2z of
degree at most 2.
On the other hand, if (4) holds then in particular for B =0

Po(w) = E,[M«*D*D)]

and deg @,(x) = 2; this implies that the diagonal matrix D*D can have
at most one nonzero entry. But then 1 = p(D*D) = p(D) = p(A).

LEMMA 2. Let f(t,, ---,t,) be a monotone strictly increasing func-
tion of each t; for t; > 0. If T is a linear map of M,, into itself
satisfying
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JMA*4)) = fFM(T(A)N*T(A)), AeM,,

then T is monsingular.

Proof. Suppose T(A) =0. Then

SMX* X)) =fO(T(X))* T(X)))
=fM(T(A + X)*T(A + X))
=fM(4 + X)*(4 + X)) .

Let A= UH where U*U = I, and H is nonnegative Hermitian. Then
taking H = V*DV where D is diagonal and V is unitary we find as in
Lemma 1 that

SMX*X)) = fM(D + Y)(D + Y))),
Y = VU*XV*. Now as X runs over M,,, Y runs over M, , and moreover

MX*X) = MV*Y*VU*UV*YV) = MY*Y).

Hence

©) FOY*Y)) = FM(D + Y)*(D + Y)))

for all Ye M,,. Let Y be a real diagonal matrix with diagonal elements
Yi, ***, Y. Then if D has diagonal elements d,, -+, d, we conclude from
(6) that

f(y?’ "’,yi):f(df"l“?ﬂ, "',di‘*“yi)-

Thus D=0,4 =0 and T is nonsingular.

We remark at this point that the elementary symmetric functions
satisfy the conditions of Lemma 2 and hence the T of the theorem is
nonsingular.

LEmMA 3. If o(4) =1 then p(T(A)) = 1.

Proof. 1f p(A) =1 then, by Lemma 1, deg @5(x) =< 2. Now

p5(x) = E,[M(xA + B)*(xA + B))]
— EIM(T@A + B))* T(xA + B))]
= E[M@T(A) + T(B)*(xT(4) + T(B))] .

By Lemma 2 T is nonsingular so 7(B) ranges over M,, as B does.
Hence, by Lemma 1, p(T(4)) < 1. But T(A) # 0 since p(4) =1. Thus
o(T(4)) = 1.

At this point we invoke [7: p. 1219] that tells us that a linear
transformation on M, , which preserves rank 1 has the desired form:
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T(A) = UAV for all Ae M,
or
T(A) = UA'V for all Ae M, ,

where U and V are nonsingular m-square and n-square matrices re-
spectively and the second eventuality occurs only if m = n. The proof
of the theorem will be complete if we show

LEMMA 4. U and V may be chosen to be unitary.

Proof. We show this when T has the form (2); if T has the form
(3) the argument is essentially the same. Let V= HP and U= QK

where H and K are positive definite Hermitian and P and Q are unitary.
Then

E.[MA*A)] = E[M(UAV)Y(UAV))]
= E[MV*A*U*UAV)]
= E[MP*HA*K*AHP)]
= EMHA*K*AH)]
= E[MHA*K*4)]

for all A. Let H= XDX*, K= YGY*, X and Y unitary, D and G
diagonal matrices with main diagonals d,, ---,d, and g¢,, +-+, 9, re-
spectively. Then

EMA*A)] = E[MXDX*A* YG?Y* A)]
= EMD*B*G*B)]

where B = Y*AX. Now
MA*A) = MXB*Y*YBX*) = MB*B)
and hence
E.IMB*B)] = E,]MD*B*G*B)]
for all B. Choose B as follows:
CRETE
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in which the upper left block is the indicated r-square permutation
matrix. Then clearly E,[MB*B)] =1 and

D*B*G*B = [ dig: )
dig?_, 0

Thus
1= BIMB*B)] = [T dig} -

Now set D* = RD:R where R is an #n-square permutation matrix and
D? is a diagonal matrix obtained from D? by a permutation o of the
diagonal elements of D?®. Then

MD*B*G*B) = M(RD:R*B*G*B)
= MDZ(BR)*G*(BR))
= NMDLC*G*C) ,
where C = BR, and
MB*B) = M(R*B*BR) = MC*C) .
Therefore
E[MC*C)] = E[MD:C*G*C)]
for all C. It follows that

.

d;09i =1

t=1

for any permytation ¢ of 1, ---,n. From this we conclude that
dP= oo =d2 = d?
and similarly

2

= =0=9.

Then G =gI, D=dI and U= ¢Q, V =dP, i.e. U, V are scalar multi-
ples of unitary matrices. Now,



332 MARVIN MARCUS AND HENRYK MINC

E.[MA*A)] = EM(UAV)(UAV))
= E[MgI"V*A*AV)]
= E[Mgd [ A*4)]
= |gd["E,[MA*A)] .

Hence |gd|” =1 and we can choose U and V to be gd@ and P which
are unitary. This completes the proof.

We remark that in case » = 1 T does not necessarily have the form
indicated in (2) and (3). For

EMATA)] = tra*4) = 5\ oyl

) =(1,1}
and if T is merely a unitary operator on M, ,
ENM(T(A)*T(A)] = E[MAT4)] .

For example T can be the operator that interchanges the (1, 2) and (2, 1)
elements of every Ae M,,, (assume m,n > 2) and this cannot be ac-
complished by any pre- and post-multipliplication as in (2) or (3).
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