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The existence of a Gibbs phenomenon for the Hausdorff summability
method given by dg(x)[dg any measure on [0, 1] with total mass 1 and
no mass point at 0] is equivalent to the statement

Slg“ﬁ;l_tdt dg(x) > _72"_ for some A > 0. (See [3])
0Jo

Recently A. Livingston [1] has treated the case of a dg composed
of finitely many mass points and has shown that the Gibbs phenomenon
holds under certain additional restrictions. Our result, which follows,
.containg his and does not require these additional restrictions.

THEOREM 1. Let dg have at least 1 mass point and satisfy
g (| dg(x) |[x*) < oo then the Gibbs phenomenon occurs for dg.

[In particular if dg consists of finitely many mass points, then we
have the Gibbs phenomenon].

It seems peculiar that any condition at 0 is necessary, and L. Lorch
had even made the conjecture that the Gibbs phenomenon persists for
any dg with unbounded Lebesgue constants [and so certainly for any dg
with at least one mass point]. Nevertheless we show that some condition
at 0 is necessary.

THEOREM 2. There exists a positive dg composed solely of mass
points for which the Gibbs phenomenon does not hold.

Thus Lorch’s conjecture is definitely false and although our Theorem
1 is by no means best possible it is qualitatively the correct one.

Proof of Theorem 1. We are required to prove that, for a dg
satisfying the hypotheses, there is an A > 0 for which

F(A) = g:gw g%ﬁdt dg(x) becomes negative.

Az

This we accomplish by showing that

1. SVF(A)dA remains bounded as y — o
2. F(A) ¢ L', ).
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LEMMA. F(4A) = 1/A S:((cos Ax)/x)dg(x) + 0(1/4%), [assuming, of
course, that S:([ dg(x) |)]/2* < «].

Proof. By two integrations by parts we have

+

S“’ sint g, _cosAw | sin Az 28“’ sint ;.
Ax

t Az Ax? 4 3
cos Ax 1 =1
= 1 0(5 ——dt>
Ax + Ax? + 4z 1B
cos Ax 1
= 0
Ax + Ax?

hence

F(A) = SCOZAxd (@ )+ Soldg(x)l

and the latter integral is finite, by hypothesis.

Proof of 1.

S F(A)dA = S S COZA“ dg(z) + 0(1)

by the lemma. Invert the order of integration (this is valid by hy-
pothesis) and we obtain

["praaa = | [ede g4 90@) 4 oq)

_ SIS”_"OS % gu P9®) | o) .
0Ja u X

But

=y ' Y cos U
S cosudu:g cosudu+s du
z u » U 1 U

0 log 1/x + 0(1) since Sw((cos u)/u)du converges. Finally then
S”F(A)dA _ S g L ‘dg(”)‘ +0(1) = 0(1) .
1

Proof of 2. Again by the lemma,

F(A) = AS cos Aacdg(x) + OA
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Now call

Slcos Ag 99@) d-"(”) — G(A) .

If we split the measure (dg(x))/x into its continuous part and its mass
points, then we split G(A) into A(A) + j(A) where j(A) is almost periodic.
It is shown by Lorch and Newman [2] that

1 T
—fgom(A)}dA—»O

while, of course,

1(7,.
TSgta(A)ldA~M>o,

M denoting the mean value of the positive almost periodic function
T

|7(A)|. Hence 1/ TS |G(A)|dA — M. Integration by parts gives that
1

1/(log T) S]T(\ G(A)|JA)dA — M and so, since
g;"[F(A) |dA - ST'@%.UM | 0(1),
we find that
Sy F(A)|dA ~ Mlog T
and F(A) ¢ L(1, «). The proof is complete.

Proof of Theorem 2. Call ¢(x) = r((sin Hitydt. We will find a
sequence of «, in (0, 1) such that 25211(1/2”)925(&” A) =0 for all A =0.
This being so, the choice of dg with the masses 1/2" at the points «,
will satisfy our requirements.

We will choose the «, inductively so that >3, (1/2")¢(x,4) = —1/27
for all A. Clearly the choice «, = 1 satisfies this requirement when
N =1. Suppose that «,, «,, ---, @, have been chosen so that this re-
quirement is satisfied. Since ¢() =0 we can determine A, such
that A = A, insures >\, (1/2")¢(a, A) = —1/2¥*%,  Also since #(0) = 7/2
we can determine an « > 0 so small that ¢(@d) =1 for A < 4,. The
claim is that this serves as our ay.,.

We have

S ged) = 3 e d) + 244
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= 1+ 1 + 1 for A = A,

Tortam T T

while, since #(x) = —1/2 always, we obtain

21 #(aA) 1 -1/2 1
nzzlé—n—‘ﬁ(a”A) + oN+1 = _2N+2 + oN1 - 275
for A = A,. The construction of the «, completes the proof.
It is interesting to note that the above construction, when carried

out carefully, leads to a dg satisfying Sldg(w) |[x'* < oo, 8o that our

Theorem 1 is false when the exponent 2 is replaced by 1/2. It would
be interesting to find the correct exponent.

We wish to thank L. Lorch and A. Shields for their useful sug-
gestions in regard to the above results.
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