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1. Introduction. Let X{ be a metrizable continuum for each positive
integer i, and let f{ be a mapping of Xi+1 onto Xt. Let X be the inverse
limit space of the inverse system ({XJ, {ft}); in notation X — lim ({XJ, {/«}),
and let πt be the projection mapping of X onto X4. In [2] it is proved
that if metrics dί for X{ are properly chosen then the inverse limit space
X = lim ({XJ, {ft}) is locally connected if and only if the collection
{{Xudi)\i a positive integer} of metric spaces is equi-uniformly locally
connected. Also the Xi were embedded in their cartesian product in such
a way that Xis locally conndected if and only if the sequence X^ X2, X3,
converges O-regularly to X.

In this paper similar relations between semi-local connectedness,
equi-uniform semi-local connectedness and O-coregular convergence are
established. These results are then combined with known results about
0-regular and O-coregular convergence to obtain properties of certain
inverse limit spaces. For example, if each X% is a simple closed curve
and X is semi-locally connected and cyclic,(i.e., without cut points), then
X is a simple closed curve. Similar theorms for 2-spheres and 2-cells
are also obtained.

For definitions and results on semi-local connectedness see [5] or [6],
equi-uniform local connectedness [2], inverse limits [1], 0-regular and
O-coregular convergence [3] and [4]. Throughout this paper S2(p) will
denote ε-neighborhood of p.

REMARK 1. Note the following relationship for the case where X
is cyclic between semi-local connectedness and local connectedness:

τ , v . r + i . ., (locally connected 1 , . , .£ ,
lί X is cyclic then it is i . , ,Ί λ . at a point p it and

Isemi-locally connectedJ
only if for each ε > 0 there exists a δ > 0 such that any two points
/inside Sδ(p) \ , . . -, , , , , , . ίinside Ss(p)
i 4. -A o/D\ί c a n b e J ° m e d by a connected set lying 1 , ., o /loutside SS{P)) loutside Ss(
Note also that since X is compact it is locally connected (semi-locally
connected) if and only if it is uniformly locally connected (uniformly
semi-locally connected).

2 Equi-uniform semi-local connectedness

DEFINITION 1. A collection {(YΛ, pa)\a€ A} of metric spaces is equi-
uniformly locally connected if and only if corresponding to each e > 0
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there is a δ > 0 such that if a e A and s and t are members of YΛ for
which pjβ, t) < δ then s and ί lie in a connected subset of YΛ of diameter
less than ε.

DEFINITION 2. A collection {(Y«, pa)\ae A} of metric spaces is equi-
uniformly semi-locally connected if and only if corresponding to each
ε > 0 there is a δ > 0 such that if a e A then for any p in Yω and s and
t in Y* — Ss(p) we have s and ί lie in a connected subset of F α — S&(p).

DEFINITION 3. Let dt be a metric for Xt for each positive integer i.
The sequence dx, c?2, d3, is admissible if there exists a metric c£ for
X such that

lim dfaiίu), π^v)) = d(u, v)
•i-»oo

uniformly on X x X.

REMARK 2. Let Z)4 be a metric for X* such t h a t Ot(xy y) ^ 1 for all

# and y in Zj . If i > j let / t i denote the composite mapping /,-••• /1-2Λ-1.

Define

for each positive integer i and all a; and z/ in X£. Also define

d(uf v) = Σ 2-^A ( ^ (w), ίΓ W) .

In ([7], Theorem 1) it is shown that limd^π^u), π4(ι;)) = d(u, v) uniformly
1—00

on X x X and hence the sequence du d2 is admissible.

THEOREM 1. Suppose dt is a metric for Xi for each i and the
sequence dlf d2, d3, is admissible. Then if X is cyclic it is semi-
locally connected if and only if the collection {(Xt,dt)\i^n} is
equi-uniformly semiΊocally connected for some positive integer n.

Proof. Suppose {(Xi9 dt)\i ^ n} is equi-uniformly semi-locally con-
nected. For any ε > 0, there exists a δ > 0 such that for any p in X,L

and x and y in Xt — Ss!i(p) we have x and y are contained in a connected
subset of Xi — Sδ(p). Now suppose u and v are in X — S8/3(g) where
π^q) = p. There exists a positive integer m such that if i ^ m then
π^u) and TC^V) are in Xt — Sε/3(p). For iΞ>max(m, w) let iΓ« be a
connected subset of X{ — S5(p) containing π^u) and π^v). Let fl"4 denote
the closure of \Jj^ifjί[Kj]. Each fli is a continuum, /*[-£?,•] c Hi for
i > i, so H— l i m ^ ί ί j , {/41 Hί+1)}) is a subcontinuum of X— S&(q) containing
u and v. Hence since X is cyclic it is semi-locally connected.
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Now assume X is semi-locally connected and cyclic. Suppose ε > 0.
Then there exists a δ* > 0 such that for any p in X if u and v are in
X— Sφ(p) they lie in a connected subset of X— & / 2(p). There is a
positive integer n such that if i ^ n and w and υ are in X then
\di(πi(u), π^v)) — cZ(̂ , v)\ < min (8*/6, ε/2). Now suppose i ^ n and a; and
y are in X{ for which x and t/ are in X{ — Sε(Pi) where π%{p) = p t . There
exists u and v in X such that π^u) = x and ^(v) = #. It follows u
and v are in X — *Sε/2(p) and hence u and i; lie in a connected subset
K of X- Sδ*/2(p). Since diam (π:^P,)) < δ*/6 we have K (Ί ^ ( p j = Φ
Therefore iti(K) is a connected subset of X; which contains x and 2/ and
is contained in X{ — Ss*ιB(pt). Let 8 = 8*/3. Then the collection
{(-XT*, di)\i ^ ^} is equi-unif ormly semi-locally connected.

3 O*coregular convergence. Let P be the cartesian product of the
sequence Xu X2, . Let Dif d{ and d be metrics defined as in Remark 2.
If we define a metric d* for P by

d*(α, 6) = Σ 2-JDj(aj9 bά) for α = (αlf α2, •) and 6 = (6^ 62, •) ,

then the inclusion map is an isometry of (X, d) into (P, d*). Choose a
point p = (Pi, p2, •••) in P, and define for each positive integer i an
isometry h{ on (Xi9 dt) into (P, d*) by letting

h(x) = (Λίa?), ,/«(aO, Pi+i, Pi+2, •)

where fu is the identity map. In the following denote ^[Xi] by

THEOREM 2. The sequence X?, X*, ••• converges 0-coregularly to

X if and only if X is semi-locally connected and cyclic.

Proof. It is obvious that X*, X*, converges to X. Suppose X
is semi-locally connected and cyclic, then it follows from Theorem 1 that
the collection {(Xiy dt)\i Ξ> n) of metric spaces is equi-unif ormly semi-locally
connected for some positive integer n. Since each ht is an isometry,
it follows at once that X*, X2*, must converge 0-coregularly to X.

Now suppose the sequence X*, Xt, converges 0-coregularly to X.
Then by ([4], Theorem 2.1) X must be semi-locally connected and cyclic.
White proved the following lemma in [4].

LEMMA 1. // At -> A 0-coregularly and if each At is a
(simple closed curve ]
12-sphere and At -> A 0-regularly >
[2-cell and At -> A 0-regularly J

then A is a simple closed curve or a point)
2-sphere or a point >
2-cell, 2-sphere or a point
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THEOREM 3. If X is semi-locally connected and cyclic and each Xx

is a simple closed curve, then X is a simple closed curve.

Proof. Since X is semi-locally connected and cyclic, by Theorem 2
Xf -> X O-coregularly where Xf is isometric to X4. So by Lemma 1 X
is a simple closed curve.

LEMMA 2. ([2], Theorem 3) The sequence Xf, Xf, converges
O-regularly to X if and only if X is locally connected.

THEOREM 4. // X is locally connected and cyclic and each Xt is a
2-sphere then X is a 2-sphere.

Proof. For compact spaces local connectedness implies semi-local
connectedness. So X is semi-locally connected and cyclic. Therefore by
Theorem 2 Xf -• X O-coregularly and by Lemma 2 Xf -> X O-regularly
where Xf is isometric to Xt. So by Lemma 1, X is a 2-sphere or a
point and since π{ maps X onto Xif we have X is a 2-sphere.

THEOREM 5. If X is locally connected and cyclic and each Xt is
a 2-cell then X is a 2-cell.

Proof. Since X is locally connected and cyclic Xf -> X O-coregularly
and by Lemma 2 Xf -* X O-regularly where Xf is isometric to X*. So
by Lemma 1 X is a 2-cell, 2-sphere or a point. The third possibility is
ruled out since π{ maps X onto Xt. Since the second Cech homology
group of each X{ is zero so is that of X. Hence the second possibility
is ruled out also. So X is a 2-cell.

REMARK 3. To see the need for requiring X to be cyclic in Theorem
5 consider Example 1 of [2]. Each Xf is a 2-cell but X is an arc. So
since X is locally connected X* -• X O-regularly but not O-coregularly
since X has a cut point.
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