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l Introduction. This paper is concerned with the spectral theory
of closed operators in Hubert space determined by the Laplace operator
and certain general boundary conditions. The method is that of J. W.
Calkin [5, 6, 7, 8]. In this series of papers Calkin developed a theory of
abstract symmetric boundary conditions in Hubert space, and indicated
how these general results might be applied to the Laplace operator and
slightly more general operators on certain regions in the plane conformally
equivalent to the unit circle. The boundary conditions there are of the
type du\dn — Lu, where L is an arbitrary, bounded, self-adjoint operator
in L2{dG). The potential theoretic details necessary to apply the general
results were given in Calkin's thesis, but not published elsewhere. They
were subsequently also obtained by J. W. Smith [21] (for the case of
the unit circle), who studied cases where the operator L was unbounded.
R. S. Freeman [12] extended Calkin's results to a general class of plane
domains and obtained a method for treating unbounded domains in Em,
m ^ 2, once the results were known for bounded domains. In this paper
we treat the case of a bounded domain in Em with C 1 1 boundary. In
addition, we extend the method to cover the case for which the operator
L in the boundary condition is not necessarily self-ad joint. The case of
unbounded domains is treated in another paper [13].

Following Calkin's method, we show there exists an appropriate
linear class of functions Sr

ι (G) £Ξ L2(G) such that the operator S in the
Hubert space L2(G) φ L2 (dG) with domain

and
S[u, u] = {-Δu, un] , u e

is self-adjoint. Here u and un are the values of u and du/dn on dG.
If L is an arbitrary (not necessarily self-adjoint) bounded operator in
L2(dG), then the operator TL — — Δ on the domain

&(TL) = {ue&x(G)\u% = Lu}

is closed, and Tt is equal to TL*. It is shown that the spectrum of TL

is discrete and is contained in a parabola with horizontal axis and opening
to the right. One of our aims is a precise determination of ^Ί(G). It
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396 W. G. BADE AND R. S. FREEMAN

consists of the class of functions in the domain of the maximal operator
associated with —Δ such that u and du/dn have L2 boundary values. In
potential theoretic terms it is the set of all sums p + h, where p is the
potential due to a charge g in G and h is a potential due to a surface
charge / on dG, where g and / are, respectively, square integrable over
G and dG (Theorem 3.4).

Section 2 contains geometric preliminaries and definitions. Section 3
develops the potential theory necessary to define the S operator in § 4.
In § 5 certain bounded perturbations of S lead, via a projection argument,
to the properties of the operator TL. The possibility that L is not self-
adjoint leads to new difficulties not treated by previous authors. It
should be remarked that Ohdnoff [20] has independently introduced the
S operator for general second-order elliptic operators, utilizing the
method of Friedrichs. He does not obtain its domain explicitly.

It follows from general results of Browder [2] and others, that when
dG is C2 and L is multiplication by a smooth function, then £&(TL) £
W22(G). It would be interesting to know whether &r(TL) S W2\G),
whenever L is an operator in L2(dG) with the property that Lf is at
least as smooth as /.

2. Preliminaries. Throughout the paper G will be a bounded,
connected, open set in Em whose boundary is a C 1 1 surface. The boundary
need not be connected, but will necessarily consist of a finite number of
components. Points of G will be denoted by x, y, etc., and points of dG
by θ, φ. At θedG, nθ will be the exterior unit normal. We summarize
first certain properties of such surfaces that we will need. They may
be found in the systematic exposition of Lucas [18]. See also [1],

2.1. THEOREM. If S is a C 1 1 surface, there exists a positive
constant r0 called the "minimal radius" of S, such that

(i) All segments of length r0 centered at points of S and normal
to S are mutually disjoint and exhaust a neighborhood of S.

(ii) At each point θ of S, spheres (exterior and interior) of radius
r0 can be found tangent to S at θ which contain no points of S.

(iii) The normals to S satisfy a Lipschitz condition with constant
To1:

\nθ-nφ\ ^ \θ -φ\jr0 , θ,φ,eS .

(iv) The set

Sp = {θ - ρnθ\θeS}

is a C1'1 surface for p < r0 with minimal radius rp satisfying r0 — \p\ ^
τp ^ r0 + \p\. Such surfaces will be called "parallel surfaces to S."

(v) The surface measures on S and Sp are mutually absolutely
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continuous with uniformly bounded Radon-Nikodym derivatives for
\p\<r0l2.

Let θ e S and J7~ be the tangent plane to S at θ. Choose Cartesian
axes with t = (ξl9 , ξm^) e J7~ and positive ξm axis along the inner
normal to S at θ. Let λ(ί), |ί[ < r0, be the function representing S
locally near θ. We shall need the following facts.

2.2. LEMMA. There exist constants kly fc2, and ρ0 independent of
θ such that

(a)

<b)

<0

where φ = [*,

\Φ

λ(ί>]

ι>

- pnφ

, \t\<

mi
/Ί |2

n/2.

fci 1 * I 2 »
11/2

1*1

+

<n/2

| ί | < » o/2

Proof. Statement (a) follows from (ii) above, while (b) follows from
(Hi). To prove (c) we note

m—l

1̂  - pnφ - θ\* = Σ 1^ - pΩdtrvxie&l* + |λ(ί)
i=i

- />2 + I ί I2 + I Mt) I2 + 2pΩ(t)-1 [λ(t) - £ l

where

[ TO-i ηi/2

1 + Σ (βλ/9|4)»J .
Thus we have

^ | 2 ^ ft + | ί | 2 - 2/0^ + k2) \t\* ,

which yields the desired result with ρ0 = 4"1 (&! + fca)"1.
Next we shall need certain classes of functions on G. In the notation

of Browder [3], Wnp(G) is the class of all functions in LP(G), 1 ^ p < oo,
all of whose distribution derivatives of order ^ n are functions of LP(G).
It is a Banach space under the norm which is the sum of the Lp norms
of all derivatives of order ^ n. We shall be concerned only with the
cases n = 1 and 2.

Let u be a function defined on the intersection of G with a neighbor-
hood of dG. Let /> < r0 and wp(6>) = u(θ — /tmβ), 6> e dG. Thus ^ p is the
restriction of u to the parallel surface at a distance p along the normal.
If Up e Lp(dG) and u = limp_0 %p exists in Lp(dG), we say w has the L p —
boundary value u. It is known that every function in WlιP(G) has an
Lp — boundary value. (See for example [19].)
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The following class of functions will be of basic importance throughout
the paper.

2.3. DEFINITION. We denote by ^Ί(G) the class of functions
u e L2(G) such that

(i) u belongs to W2 2(G1) for each open set Gλ whose closure lies in G,
(ii) ΔueLJG),
(iii) u and dujdn have L2 boundary values u and un on dG.
Clearly, W2\G) C ^Ί(G) C W12(G). The inclusions are proper (as

one sees, for example, by considering the case of harmonic functions in
the unit circle). Conditions (i) and (ii) are the conditions that u should
lie in the domain of the "maximal operator" corresponding to the
Laplacian on G—that is, the adjoint of the "minimal operator" which
is the closure of the Laplacian on C°° functions with compact support.

It follows easily from Theorem 2.1 (v) that Green's identities hold
for functions in

I [ (-Δu)vdx = [ Σ — — dx - \ ujΰdθ, u,ve
JG Jθi=i dx{ dXi ha

II 1 ( — Δu)v dx — \ u(—Δv)dx = \ (uvn — unv)dθ , u, v e Sfλ(β).

3. Potential theory* In this section we prove that the inhomogeneous
Neumann problem

— Δu = 0 , du\dn = k on dG

has a solution in ^ ( G ) whenever k e L2(dG) and ί k(θ)dθ = 0. This fact
JdG

will be needed in later sections. The solution u will be a single-layer
potential

I ? » *3

or

u(x) = - \ f(θ) \og\x-θ\dθ, xeG, fe LJΘG), m = 2 .
J9(?

The argument that for such potentials both u and du/dn have boundary
values works equally well in Lp, 1 < p < oo, and we present it in that
generality for convenience of reference for a later paper.

If u is a single-layer potential with charge / in Lp(dG), then

= ( TO, θ)f(θ)dθ ,
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where, writing φ — pnφ = φp, we have

_ ^ ' w ^ 2

Let Tp be the bounded linear mapping of Lp(dG) into itself which carries
/ i n t o the function (Tpf)(φ) = (duldri)(φp), φ e ΘG. It is well known that
when / has a continuous derivative

\ C y ^ ? )

 9 φedG,

uniformly on dG, where ωm-λ is the volume of the unit sphere in Em~λ.
Thus to prove that dujdn has an Lp boundary value, it suffices to prove
that the maps Tp are uniformly bounded in Lp(dG). Then the integral
in formula (*) will determine a bounded linear map, and (*) will hold
for all / in Lp(dG). To prove the maps Tp are uniformly bounded, it
suffices (cf. [9], page 518) to prove the existence of constants M and p0

such that

(i) s u p \ \Np(φ, θ)\dφ ^M, ρ < ρ 0 .

sup ( \Np(φ, θ)\dθ ^M, ρ< ρ0

Then | |Γp| | ^ M, p < ρ0.
We first prove (i). Let θ be any fixed point of dG and jf be the

tangent plane to dG at θ. Choose Cartesian axes for Em with origin at
θ, t = (ξu , ξm- ) e ^ and positive ξm axis along the inner normal at
θ. Let ξm = λ(ί), | ί | < r0, be the C 1 1 function representing dG locally
near θ. Then we have

- θ I cos (φp - θ, nφ) = β(ί)"2 ΪΩ(t)
L

where

1

and t = P^, P being the perpendicular projection of Em onto ^ " . Now
by Lemma 2.2 (c) we have
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for all small p. Combining this fact with 2.2 (a) and (b), we see

for all p less than a suitable p0, where CΊ and C2 are constants independent
of p and θ. The integral (with respect to t) of the right side is bounded
independent of p over | ί | < ro/2; so therefore

sup ( \Np(φ, θ)\ dφ < oo, p < pQ .
θβdG J(7(0.(l/2)ro)

Since

if p < rjά and |^ — # | > r o / 4 , it follows that |iVp(0,#)l is uniformly
bounded independent of θ if \φ — θ\ > ro/2. Thus (i) follows. The proof
of (ii) is simpler. If we now take the tangent plane at φ instead of θ,
I φp — θ I cos (φp — θ, nφ) = \(t) — p, t — Pθ, and similar estimates apply.
Thus we have

3.1. THEOREM. Let 1 < p < c», αwcί t& 6e ίfeβ single-layer potential
in G with charge /, where feLp(ΘG). Then u and du/dn have Lp

boundary values u and ΐίn given by the formulas

u(φ) = - ί f(θ) log I φ — θ\ dθ, m = 2

m - 2 J3

f(θ)dθ

\Φ-Θ\m~

and

u»(Φ) = TΓ dm-ifiΦ) —

m ^ 3

The maps B: f-^u and T: f ->un are bounded linear maps in Lp(dG).

The fact that du/dn has a boundary value implies the same for ur

as one sees by an elementary estimate from the formula

u(θ - ρxnθ) - u(θ - ρ2nθ) = - ί"1 — (θ - anθ) da .
Jp2 dn

The formula for u follows from the fact it is valid for C1 functions.

3.2. COROLLARY. If u is a single-layer potential with charge in
L2(dG), then ue
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3.3. THEOREM. Let keLΛdG), Kp< oo, and suppose I k(θ)dθ =

0. Then there exists a single-layer potential with charge in Lp(dG)
such that un — k.

Proof. It suffices by Theorem 2.1, to find a function / in Lp(dG)
which satisfies the integral equation

(*) f(Φ) - \ K(φ, θ)f(θ)dθ = k(φ) ,

where k = 2<w;;!_1 k and

e\- 2 c o s (φ ~ θ'%φ)

The Fredholm theory is applicable to this equation since an appropriate
iterate of the kernel K is bounded (cf. the discussion in [22], Chapter
XI and [11], p. 542). Thus equation (*) has a solution / if and only if

( k(θ)ΐ(θ)dθ = 0 for all solutions I in Lq{dG), p~λ + g"1 = 1, of the
Jΰθ

adjoint homogeneous equation

= ( K(φ, θ)l(φ)dφ .

It is well known that the constant functions are the only continuous
solutions of this equation. However, any solution I also satisfies the
equation obtained by replacing K by any of its iterates. Since an ap-
propriate iterate is bounded, I is continuous and hence constant. Thus

equation (*) has a solution if and only if I k{θ)dθ = 0.
' JdQ

Returning now to the case p = 2, we seek a potential theoretic
characterization of ^i(G). If geL2(G), the function

P(a)= ί g-^—dy, m^3
Jβ \χ — y\m~2

= - 9(y) log\x — y\dy , m = 2 ,

will be called the space potential with charge #. Since G is a bounded
domain, p belongs to W2\G), and —jp = mojmg almost everywhere in
G. These facts may be derived from [4], pp. 130, 134. There the
point-wise existence of the first two derivatives is established almost
everywhere. Since they are given by formulas that define bounded
maps in L2(G), it follows that ue W2>\G).

3.4. THEOREM. A function u belongs to &λ{G) if and only if u —
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p + h, where p is a space potential due to a charge in L2{G), and h is
a single-layer potential with charge in L2(dG).

Proof. If u has this form, then, clearly, u e £^i(G). To prove the
converse, let u be given in ^Ί(G) and let p be the space potential whose
charge is — (mωj" 1 Δu. Then Δp = Δu, and therefore v — u — p is

harmonic and belongs to i^Ί(G). By Green's second identity, I v(θ)dθ = 0;

thus by Theorem 3.3 there exists a single layer potential w such that
wn = vn. But then Green's first identity implies w — v is constant.
However, the function 1 in G is a single layer potential. Its charge is
the (normalized) solution of the homogeneous equation

f(φ) = \ K(φ, θ)f(θ)dθ .
JdG

It follows from the Riesz theory that the set of solutions is one dimensional
(since this was the case for the adjoint equation).

We next consider the inhomogeneous Neumann problem.

3.5. THEOREM. Let g e L2(G), I e L2(dG). The equations

— Δu — g, un — I

have a solution u in .f̂ i(G) if and only if

(*) ( g{x)dx + \ l(θ)dθ - 0 .
JG JdG

Proof. Suppose condition (*) holds. Let p be the space potential
with charge (mω^g. Then pe W2\G) and —Δp = g. By Green's
identity.

( g(x)dx + \ Vn{θ)dθ = 0 .
JdG JdG

Thus ί \pjβ) - 1{Θ)} dθ = 0, and therefore by Theorem 3.3 there exists
JdG

a harmonic function v in ^Ί(G) such that vn = pn — I. The function
u — p — v solves the problem. Conversely, if u is a solution, formula
(*) results from applying Green's identity to u and 1.

3.6. THEOREM. Let g e L2(G). The equations

— Δu = g9 un = 0

have a solution u in ^i(G) if and only if \ g dx = 0. The operator
JG

TN in L2(G) with domain &r(TN) = {ue &λ{G)\un = 0} and TNu= —Δu
is: self-adjoint. Moreover ,^{TN) = ΛS°(TNy, the null manifold con-
sisting of the constant functions.
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Proof. The first statement follows from the previous theorem. To
prove the second, we recall that the method of Friedrichs [14] yields a self-
adjoint operator FN in L2(G) corresponding to —Δ and the boundary
condition dujdn = 0 in dG. Explicitly, consider the closed semi-bounded
form

on the dense subspace Wι\G) g L2{G). Then ue &(FN) if and only if
there exists an element g e L2(G) such that

D(u,v) = (g,v), all ve W12(G) ,

and FNu = g for ue£gr(FN). The range of FN is closed and is the
orthogonal complement of its null manifold, which clearly consists of the
constant functions. Thus ^T(TN) = ^V\FN), ^{TN) = &(FN) and TN g
FN. However, if ue^r(FN), then FNu = Γ ^ for some 'ye^(ΪV);
therefore JFV(^ — v) = 0. Thus u = v + constant e 3t(TN), showing

REMARK. It is known [2], that when dG is of class C2, then

4 The S operator* In this section, following Calkin [6], page 435,
we introduce the operator S in L2(G) φ L2(dG). In the next section,
certain bounded perturbations of S lead, via a projection argument, to
closed linear operators in L2(G) corresponding to restricting — Δ by
boundary conditions.

4.1. DEFINITION. In the Hubert space, L2(G)φL2(dG) define the
operator S with domain

= {[u,u\\ue

and

S[u, u] = [-Δu, un] , [u, n] e

As we shall see, the theory of the S operator is intimately connected
to the inhomogeneous Neumann problem of Theorem 3.5.

4.2. THEOREM. The operator S is densely defined, closed, self-
adjoint, and has compact resolvent.

Proof. To see that ^f(S) is dense in ^f = L2(G) 0 L2(dG), suppose

([u, u], [v, I]) = (u, v) -h (u, 0 = 0
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for all u e ^ i ( G ) . Then (taking u = 1) we see

ί v dx + [ I dθ = 0
J0 JθG1

consequently there exists g e ^Ί(G) such that —Jg = v, gn = I. Thus,
using Green's formula, we have

(—Δu, g) + (un, g) = (u, v) + (u,l) = 0 , u e £&Ί(G) .

If we consider only those u such that un = 0, we can show that
# G ̂ ( Γ W ) J ' . It follows from Theorem 3.6 that g is constant. Thus v
and I are zero.

Since £&(S) is dense, S* exists, and Green's formula shows S C S*.
Suppose now that [^, i] e ^ ( S * ) . There exists an element [v, I] in
such that

(S[u, u], [w, j]) = ([u, u\,i[v, I]) , ue

i.e.,

(**) (—Δu, w) + (ί?Λ, ̂ ") = (u, /y)]+ (ί^,^) , u e

Thus (taking % = 1) we have

= 0 .\ v dx + I

Consequently, by Theorem 3.5 we can find 2 e ^ ( G ) such that — J]«|]=
v, £TO = i. By Green, again, we have

(-Δu, z) + (un, z) = (u, -Δz) + (u, zn)

= (u, v) + (u,l) , ue

and so

(-Δu,z-w) + (un, z - j) = 0 , ue

Restricting attention to those u with un — 0 shows ^ — w is constant.
Thus w e &Ί(G), —Δw = v, and wn = ί. Putting these facts in (**)
and applying Green again, we obtain

(un, j - w) = 0 , u 6 ^ ( G ) .

One sees easily from Theorem 3.5 that there are functions u in ^Ί(G)
for which ί£w takes arbitrary values in L2(dG). Thus w — j . Hence
[w,j] = [^, w] 6 &r(S) and [v, Z] = S[w, w], proving S is self-adjoint.

If JF(X) φ 0 and ( λ l - S) [ < v*], fc = l ,2 , ••-, is a bounded
sequence in έ%f, the sequence [v*, v*] is bounded, since (λJ— S)" 1 is
bounded. Thus

Dty*, ^fc) = ( - A v76, v16) + (ίT*, v)
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is bounded and the v* are bounded in W1>2(G). Since the maps v -> v
and v -+v of W12(G) into L2(G) and L2(dG) are compact (cf. [19], p. 208),
we can extract a sub-sequence of the [vk,vfc] converging in <%?, showing
(XI — S)'1 is compact.

4.3. COROLLARY. The range of S is closed, &(S) = ^ViβY, and
consists of the constants [a, a] in L2(G) 0 L2(dG).

5 Boundary conditions for — Δ. We now proceed to the main
results of the paper.

5.1. DEFINITION. Let L be an arbitrary bounded operator in L2(dG).
Define the operator TL in L2(G) with domain

= {u\u e

TLu= -Δu, ue

It will be shown that TL is a closed linear operator with compact
resolvent, and (TL)* = TL*. Thus TL is self-ad joint if L = L*. These
results will be proved by perturbation of the operator S and a projection
argument.

5.2. DEFINITION. Let L be a bounded operator in L2(dG), and λ a
complex number. The operators L and P(λ) are defined in L2(G) 0 L2(dG)
by the formulas

£([/, fc]) - [0, Lk] , [/, fc] G L2(G) 0

, k]) = [λ/, 0] , [/, fc] 6 L2(G) © L2(dG) .

5.3. LEMMA. | | £ | | = | |L | | , | |P(λ)| | = |λ|, and (£)* = (L*)Λ, P(λ)* =
P(λ). iVoίe ί/̂ αί the operator S — L — P(λ) carries \u, u] into [—Δu — Xuf

un — Lu\.

5.4. LEMMA. The operator S — L — P(λ) is closed, densely defined
in L2(G) 0 L2(ΘG), and has compact resolvent. Thus, &(S — L — P(λ)) =
^r(S - £* - P(λ))\

Proof. It is well known that a bounded perturbation of an unbounded
self-adjoint operator with compact resolvent is a closed operator with
compact resolvent (cf. [6], p. 435). The last statemant then follows
from the Riesz theory.

Now consider the case λ = 0. The general element of the graph
Sf (S - £) in L2(G) 0 L2(dG) © L2(G) © L2(dG) has the form

[u, u, —Δu,un — Lu] , u e
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Moreover, &(S — L) is a closed linear manifold. We denote by JtΓ the
submanifold consisting of all those elements of ^(S — L) for which
un - Lu = 0. Clearly, 3ίT is also closed. The map J: 3ίT -» L2(G) φ L2(G)
is defined by the equation

J[u, u —Δu, 0] = [u, — Δu] .

The following facts are immediate consequences of this definition.

5.5. LEMMA. The mapping J is a one-to-one linear mapping of
K onto the graph gf(!Γz) of TL in L2(G) φ L2(G), and \\J\\ ̂  1.

5.6. LEMMA. The operator TL is a closed linear operator in L2(G)
with dense domain.

Proof. Since C~ (G) S &(TL), the domain is dense. To prove TL

is closed it suffices to prove that J has a closed range in L2(G) φ L2(G).
For this it is enough to show that J maps bounded closed sets onto closed
sets (cf. [9], page 489).

Let B be a bounded closed set in Sf and [u*, u10, — Δ u*, 0],
k = 1, 2, , be a sequence in B such that [uΊc,—AnΊc] converges in
L2(G) φ L2(G). By Green's identity we have

= {-Δu*,^) - (Lu\ u16)

where M is a bound for 5 . It follows that {uk} is bounded in W12(G).
A sub-sequence (which we may take to be {uh}) converges weakly in
ΫF1>2(G), and therefore {Ψ} converges strongly in norm (cf. [19], page 208).
Thus \ult,ult, — Δu76, 0] converges, and so J{B) is closed.

5.7. COROLLARY. There exists a constant KL such that

Proof. Since J is one-to-one and maps onto a closed manifold, its
inverse is continuous.

It follows from Green's formula that TΣήί £ Tz*. Our next objective
is to prove the two operators are equal. This will be done by consideration
of ranges and null manifolds.

5.8. LEMMA. Let λ be any complex number. Then we have

(a) ^(TL - XI) = {ge L2(G) \ [g, 0] 6 ^(S - L - P(λ))} ,

(b) ^T(TL - XI) = {ue ^i(G)I [u, u] e Λ\S - L -
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Proof. If [g, 0] e &(S — L — P(λ)), there exists u e ^ i (G) such
that — Δu — Xu — g, un — Lu = 0. Thus g e &{TL — XI). Conversely,
it is clear that if g e &(TL — λJ), then [g, 0] e &(S — £ — P(λ)). The
proof of (b) is equally direct.

5.9. LEMMA. For each complex λ, we have

&(TL — XI) = Λ^{TL* -

therefore, in particular, <%(TΣ — XI) is closed.

Proof. We know g G &(TL-Xl) if and only if [g, 0] G
By Lemma 5.4, however, the latter manifold is Λ<^(S — £* — P(X)Y,
and clearly

([g, 0], [u, u\) = 0 , [%, ffi] G ̂  (S - £* -

if and only if

(g, u) = 0 , w G ̂ (TL* — XI) .

5.10. LEMMA.

yJ-z) — ^ i *

Proof. Taking λ = 0 in the last lemma, we have
But since £P(TΣ) is closed, &(TΣ) = Λ^((TLYY. Since Γz and ΓZH< are
closed, so are their null manifolds, and

Because &(TL) is closed, so is &(TΣ*) (cf. [15]). Now TL — Tz**,
showing

From these facts we can show that TΣ* S TL*, as follows: If u e £&(TL*),
we can find y in ^ ( Ϊ Έ J by (ii) such that TL*y — TL* u. Because
TL* S Γ£*, TL*(y - u) = 0, and therefore, by (i), y -ue &{TL*). Thus
^ G ̂ ( Γ c ^ ) , and the required inclusion follows directly,

It remains to prove TL has compact resolvent. As we shall see, this
is easy to prove if it can be shown that the resolvent set p(TL) of TL is
not empty. Again the problem can be thrown onto S.

5.11. LEMMA. A complex number X is in ρ(TL) if and only if 0
is in p(S — £ — P(λ)).

Proof. By Lemma 5.8 (b), λ is an eigenvalue of TL if and only if
0 is an eigenvalue of S — £ — P(λ). If 0 is in the spectrum of
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S — L — P(λ), it must be an eigenvalue by the Riesz theory. To conclude
the proof we must show that if λ is in the spectrum of TL and (λ I — T^)"1

exists, then zero is in the spectrum of S — L — P(λ). Clearly, &(TL — XI)
cannot be dense, because it is closed. But then λ is an eigenvalue of
TL*. It follows that zero is an eigenvalue of S — £* — P(λ), and hence
of S - L - P(λ).

To determine values of λ such that 0 e p(S — L — P(λ)) we shall
need two lemmas. The first of these follows directly from the argument
of Lax and Milgram [17], p. 169.

5.12. LEMMA. Let V be a densely defined, closed, linear operator
in Hilbert space such that £&(V) = &(V*). Suppose there is a constant
K > 0 for which we have

\(Vu,u)\^K\\u\\\ ue^r(V).

Then zero is in the resolvent set of V, and || F" 1 ! ! ^ K~λ.
The next lemma may be found in Ehrling [10], p. 270.

5.13. L E M M A . There exist constants M^l and to^l such that

\\u\\2

In applying these lemmas, we determine conditions on λ such that

(*) |((S - P(λ)) [u, u], [u, u])\ > \\L\\ \\[u, uψ , u G &UG) .

For such λ, we have 0ep(S-L- P(λ)), because \\(S - Pίλ))-1!! < \\L\\-1

by Lemma 5.12, and

(S - L - P(λ))"1 = [S - P(λ)]"1 £ (- l ) [US - PM)-ψ ,

the series converging in the uniform operator topology. Let s be a
parameter, 0 < s < 1. Writing λ = σ + iτ, we have, by Green's identity
and Lemma 5.13,

- P(X))[u, u], [u> u])\ = \D(u, u)-X \\u\\2\

^ sD(u,u) + [ ( l - s ) | τ | - sσ]\\u\\2

= s \D(u,U) + Id-s)\τ\-sσ]\\u\n
L 2s J

2

-s)\τ\-sσγ»\\[u,u]\\2

2M

if (1 — s) I T I — sσ > 2ί0. Suppose, in addition, that
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(**)

where C is the larger of 2t0 and 4ikf2 | |L | | 2 . Then (*) is satisfied, and
therefore λ is in the resolvent set of TL, by Lemma 5.11. Rewriting
(**) in the form

we see &(TL) lies in each of the sectors

μ = -Cs-2 + re** , | tan φ\ ^ — ^ — , r ^ 0 .
1 — s

For each fixed value of σ > 0, we may compute the minimum value
of τ satisfying

SG . C
T ~ 1 - β 8(1 - 8)

for 0 < 8 < 1. The result is a complicated expression which is O(σlβ)
as (;-> + oo, We summarize the situation in

5.14. THEOREM. Let L be a bounded operator in L2(dG). The
operator TL with domain

and

TLu= -An , ue

is a closed linear operator with compact resolvent, whose spectrum lies
inside a parabola τ2 = aσ + b, a,b > 0. Moreover, TL* = ΓZJ|S.

All has been proved except the compactness of the resolvent. It is
enough to prove it for one nonzero value of λ. If {(XI — T^u*} is a
bounded sequence, the sequences {u*} and {Δu16} are bounded (since
(XI — Tx)"1 is bounded). Thus {uk} is bounded, by Corollary 5.7. It follows
from Green's identity that {uk} is bounded in W12(G), and therefore a
sub-sequence of {u*} converges in L2(G) (cf. the proof of 4.2).
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