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1. Introduction. The Cayley-Hamilton theorem states that any
linear transformation (sometimes called “operator”) on a finite dimen-
sional vector space over a field is a root of its characteristic polynomial.
On the other hand an operator on an infinite dimensional vector space
need not be the root of any nonzero polynomial with scalar coefficients.
It is our purpose to give necessary and sufficient conditions for a bounded
operator on a complex Hilbert space to be the root of a nonzero poly-
nomial with complex coefficients.

Significant in much linear algebra is the fact that an operator A
on a finite dimensional vector space V over an algebraically closed field
F must have an eigen value; more precisely, there is a scalar » in F
and a nonzero vector z in V such that (A —\)z = 0. We make the
following

DEFINITION. An element N in a field F is said to be an eigen
value for the operator A on a (possibly infinite dimensional) vector
space V over F if there exists at least one monzero vector z in V such
that (A — Nz = 0. An operator A on V is said to be an eigen value
producing (henceforth abbreviated “evp”) operator if for each linear
maniforld V' reducing A and =V, the operator A’ induced by A on
the quotient space V|V’ has at least one eigen value.

In particular if A is evp it has an eigen value, because (0) reduces
A. One example of an evp operator is any operator on a finite dimen-
gional vector space over an algebraically closed field. The central result
of the present paper is that a bounded operator on a complex Hilbert
space is evp if and only if it is the root of a nonzero polynomial with
complex coefficients. Before we introduce Hilbert space operators we
establish some algebraic machinery.

2. The structure of evp operators. In this section let A be an
operator on a vector space V over the field F, and let V, be the linear
manifold consisting of all vectors annihilated by some power of the
operator A — \, for each \ in F.

LEMMA 1. Let N and p be distinct scalars and let z be a wvector
such that
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A—-NN"=0£A4A—-Nz.
Then
(A= N)""A—pz=0=%=(4A—N(A— .

In particular if t, <<+, 1, 18 a finite set of scalars different from N,
then

(A= \)"w=0#%(A4—\Nw
where w = (A — ;) +++ (A — ,)z.

Proof. Since A commutes with itself
(A—=N"A—-—pwe=(A—-)A—-N"2=0.
On the other hand (4 — N4 — ¢)z = (A — pu)(A — \)*z
=(A-NM"2+ (M — (A -2z
=N—mA—-N)2+0

because N # ¢. The final statement follows by induction on n.
LEMMA 2. The V, are linearly independent.

Proof. Suppose V, contains a vector z which is also in the subspace
spanned by V., .-, V. where ¢, #\. Say 2 =2+ ++- + 2z, where 2;
is in V,, and (A — )*2; = 0. Then

(A—p)rees (A= )z =(A—p)ree (A= p)m2, + -+ +2,)=0.
By Lemma 1, z = 0.

LEMMA 3. The V, together span V if and only if A is evp.

Proof. Assume the V, span V. Let V' be a subspace of V reducing
Aand #V,and select zin V—V’. Then z2=2,+ +++ + 2, where z;is in
V., and consequently there are scalars p, .-, ¢, such that (A—p)---
(A — )z =0. Among the vectors

2, (A - lu‘m)zy (A - #m—l)(A - ‘u'm)z! ctty (A - !"1) cee (A - Ium)z =0

the first is not in V’ but the last is in V’. Let w be the last vector
listed which is not in V’. Obviously there is a scalar ¢ such that
(A — p)yw is in V', It is clear that A’, induced by A on V/V’, has the
eigen value ¢. Hence A is evp.

Assume A is evp and let V' be the subspace spanned by the V,. We
will show V' =V by contradiction; suppose V = V’. Because A is evp
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there exists a scalar » and a vector z in V — V’ guch that (4 — \)z is in
V'. Say y,, .-+, t, are scalars such that (4 — )+ (4 — ¢, )(A —\)z=0.
Clearly [m.;«.(A — )]z is a vector which is annihilated by some power
of A—;itisin V,. Now let A, -+, \, be those £; = . We have

(A= A=A+ M=\
and
A-2)A-N)z=A—- 2 )NA - N)z+ A=A A =1+ A=) —N)z .

Recalling that V'’ reduces A and repeating this argument we see finally
that [7(A —\;)]z =¢cz +w where w is in V'’ and ¢ is the scalar
wi(M — N\;). Since ¢ # 0 and ¢z + w i8 in V', z must be in V' contrary
to the choice of z.

Thus A is evp if and only if V is the direct sum of all the V,.
Of course in this general context infinitely many V, might be +#(0) and
V. might not be annihilated by any power of A — . We leave to the
reader the construction of examples demonstrating these possibilities.

LEMMA 4. If A is evp then for each vector z in V there exists a
nonzero polynomial p with coefficients in F (depending perhaps on z)
such that p(A)z = 0.

Proof. Assume A is evp and select z in V. By Lemma 3, z is in
the subspace spanned by the V, and there exist scalars \,, «++, A, such
that (A — A )(A —N\y) «++ (A —2N,)2=0. Then (x — )<+ (x —2,) is an
appropriate polynomial.

LEMMA 5. Let F be algebraically closed and suppose for each
vector z im V there exists a nonzero polynomial p with coefficients in
F such that p(A)z =0. Then A is evp on V.

Proof. Let V' be a subspace of V reducing 4 and V' V. Select
any 2z in V— V'. Let p be a polynomial such that p(4)z = 0. Since F
is algebraically closed there exist scalars ¢, A, -+, N, such that

p(A) = (A —N) -+ (A=)
and
(A—=XN) - (A—N)2=0.
By the argument employed on the vectors
2, (A —\)2, (A — M)A — N2y oo, (A—N) oo (A — N2

in Lemma 38, it follows that A is evp.
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3. Evp operators on Hilbert space. We now have all the algebraic
machinery necessary to tackle the structure of bounded evp operators
on complex Hilbert space. Until further notice assume that 4 is a
bounded evp operator on the complex Hilbert space k.

LeMMA 6. For each scalar N\ there exists an integer N such that
(A4 — NV, =(0).

Proof. Our proof is by contradiction; suppose there exists no inte-
ger N such that (A — A"V, =(0). Let Z, be the null space of the
operator (A — A\)". Then each Z, is a closed subspace of & and together
the Z, span V,. The inclusions

L, C Ly CZyCene

are all proper, for if Z, = Z,,, for some n every vector annihilated by
(A — A)*** is annihilated by (A — \)* and likewise every vector annihi-
lated by (A — 2™, m > n, is annihilated by (A — \)* contrary to as-
sumption. Setting Z, = (0) select a unit vector 2z, in Z, N Z,-, for each
index » >0 and put z = 3©2™"%,. By Lemma 4 there is a nonzero
polynomial p with complex coefficients such that p(A)z = 0. For each
index % > 0 we have (A — \N)Z,C Z,,. For each index m

0 = (p(A)z, 2,)
= ((0(4) — p(V)z, 2s) + PNz, 24)

= 27"([p(4) — p(%)][ngn“h‘?’“*”zn], 2u) +277P(N)

because p(4) — p(\) containg a factor of A — X and z, is orthogonal to
[p(4) — pMI[Z. 2 "2,]. Dividing out 2-™* we obtain

[p(V) | = 27" [ p(4) — p(M) |

for and m, and clearly p(\) = 0; indeed if ¢ is a polynomial such that
q(\) #= 0, then (q(A4)z, z,) = 0 for infinitely many indices m. Let ¢
be the polynomial such that p(4) = (A — 1\)°q(4) and q(A) # 0. Now
0 = p(A)z = (A — \)q(A)z and q(A)z is in Z,. But by the above argu-
ment (¢(4)z, z,,) + 0 for infinitely many indices m and z,, | Z, for m >e,
contradiction.

LEMMA 7. There are at most finitely many complex scalars N for
which V, # (0).

Proof. Our proof is by contradiction; suppose there are infinitely
many )\ for which V, # (0). Since A is bounded, the set of such \ is
bounded. Let {\,} be a sequence of distinct members of this set con-
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verging to a fixed scalar ¢ such that \, # ¢ for all n. Let N be an
integer such that (A — ¢)V, = (0). (It makes no difference if V,= (0)
already.) Let Z, be the null space of the operator (A—c¢)"(A—\):++(A—)\,)
for n > 0 and set Z, = V,. All the inclusions

Ly C Iy CLyC one

are proper by Lemma 1, and (A — \,)Z, C Z,—,. Select in each Z, N Z,-,
a unit vector z, and put z = 32 ""2,. There is a nonzero polynomial
p such that p(A)z = 0. For each index m

0 = (p(A)z, 2,)
= ([p(4) — p(\)]2, 20) + ([P(Nm) — P(E)]2, 2) + (P(0)2, 2,)

and

27 ([0(A) — PO 3 272,], 2)
+ 27" [p(\) — p(e)] + 27"*p(c) = 0 .
Dividing out 2™ we obtain
[p(e)| = 27 || p(4) — p(MR) || + [ P(Nm) — p(O) | -

As m tends to oo, [[p(A) — p(\,)l| tends to |[p(A) —p(e)l| and [p(\,.) — p(c)l
tends to 0. Clearly p(c) = 0; indeed if q is a polynomial such that ¢(c) + 0,
then (¢(A4)z, z,)) # 0 for infinitely many indices m. Let ¢ be the polynomial
such that p(4) = (4 —c)’q(A) and g(c) #0. Then 0= p(A)z = (A — c)°’q(A)z
and q(A)z is in V, = Z,. By the above argument (q(A4)z, 2,) + 0 for in-
finitely many m but z, | Z, for all m > 0, contradiction.

We are now able to prove our theorem. Let A be a bounded
operator on the complex Hilbert space » and drop the assumption that
A is evp.

THEOREM. The following properties are equivalent for A.

(1) A is evp.

(2) There is a monzero polynomial P with complex coefficients
such that P(A) =0 on h. :

Proof. Assume (1). By our development A is the direct sum of
Vip+++» Vi, and for each index ¢ =1, .-+, n, there is an integer e; such
that (A — \)%V,, = (0). Clearly 7}(A — \) =0 on h and nj(x = \;)*
is an appropriate polynomial P.

Now assume (2). By Lemma 5, A is evp, and the proof is complete.

The next corollary is of particular interest because it states that a
pointwise property is equivalent to a global property. The proof is an
immediate consequence of Lemma 5 and our theorem.
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COROLLARY 1. The following properties are equivalent for A.

(1) For each vector z in h there exists a nonzero polynomial p
(depending perhaps on z) such that p(A)z = 0.

(2) There exists a nonzero polynomial P such that P(A)=0 on h.

Any operator on a finite dimensional complex Hilbert space is of
course evp. Such an operator A must also be bounded and the polyno-
mials in A must constitute a uniformly closed subset of the ring of all
operators; the latter fact is due to the theorem that any linear manifold
in a finite dimensional normed linear space is closed in norm. Conse-
quently we should not be surprised by

COROLLARY 2. Let A be a bounded operator on a complex Hilbert
space h. Then the following properties are equivalent for A.

(1) A is evp.

(2) the polynomials in A constitute a unmiformly closed subset of
L(h), the ring of all bounded operators on h.

Proof. First suppose A is evp. Let P be a nonzero polynomial of
minimal degree such that P(4) = 0 and say » is the degree of P. Then
any polynomial in A is equal to an appropriate polynomial in A of
degree less than n. It follows that the polynomials in A form a finite
dimensional linear manifold in the normed linear space L(kh) over the
complex field, and this manifold must be closed in norm.

Now suppose the polynomials in A form a uniformly closed subset
of L(h). (The author is indebted to B. Yood for the remainder of the
argument.) Select a positive scalar » greater than the spectral radius of
A. Then A — r is nonsingular and (» — A)™* is the limit of a convergent
series in A and this series must converge to a polynomial p(4). Thus
(r — A)p(A) =1 and A is a root of the nonzero polynomial (» — x)p(x) — 1.

4. Principal idempotents. Given operators A and B on the respec-
tive Hilbert spaces » and k& we say A is similar to B if there exists an
invertible linear tranformation S of % onto %k such that S and S~ are
bounded and SAS™ = B on k. This section concerns the theorem on
principal idempotents on finite dimensional vector spaces (see [7], pp.
175-7) which states that a matrix is similar to a diagonal matrix if and
only if it is a linear combination of mutually orthogonal idempotent
matrices (of course no condition of boundedness enters here). In partic-
ular if the field of scalars is the complex field this theorem remains
valid when “normal matrix” replaces “diagonal matrix”.

The following corollary generalizes this result by means of bounded
normal evp operators. By the spectral mapping theorem all the spectral
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values of a bounded normal evp operator are roots of a certain nonzero
polynomial; hence such an operator N has finite spectrum, and further-
more by the spectral theorem all of its spectral values are eigen values
and N is a linear combination of finitely many mutually orthogonal
projections the sum of which is the identity.

COROLLARY 3. For an operator A mapping h into h the following
are equivalent.

(1) A is similar to a bounded mormal evp operator N on a
Hilbert space.

(2) There exist a finite collection E\, ---, E, of mutually or-
thogonal nonzero idempotent operators, each mapping h onto a closed
subspace of h, and distinct scalars N, «++, N, such that I = S'E,; and
A =S"\E,.

Proof. Assume (1). Then N is a linear combination of mutually
orthogonal nonzero projections P, ..., P,; say N =>"\P; and I=3P,
where \; = \; if ©# j. There exists an invertible linear transformation
S such that SAS~™ = N and

A = S-'NS = S7(SP)S = SinS-PS
] 1 1

and obviously E; = S7'P;S suffices in (2). Of course the operators A,
E,---, E, are bounded because S, S, N, P, ..., P, are bounded.
Furthermore each linear manifold KA is closed in % because the range
of a bounded idempotent operator on Hilbert space must be closed.
Now assume (2). Then each E;k is a closed linear subspace of &
and h is the direct linear sum of the E . Let k be the direct orthogonal
product of the Hilbert spaces Eh. Let S, be the linear transformation
mapping & onto Eh (regarded as a subspace of k) which is the identity
on E;h and which annihilates every vector in E;h, j #¢. Then S = 378,
is an invertible linear transformation of % onto k. It suffices to show
that S and S—* are bounded; for if they are, the operators SE, S~ are
mutually orthogonal projections on & and A is similar to the bounded
normal evp operator SAS™* = S\, SE,S™* on k. That S is bounded
follows immediately form the inequality |[S72|? = n,]|[2]P all z in k.
By the closed graph theorem S is bounded also, and the proof is complete.
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