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MARKOV PROCESSES WITH STATIONARY MEASURE

S. R. FOGUEL

In [1] we studied Markov processes with a finite positive stationary
measure. Here the process is assumed to have a positive stationary
measure which might be infinite. Most of the results proved in [1]
remain true also in this case. Some proofs that remain valid in this
case will be replaced here by simpler proofs.

The main problem studied here, and in [1], is the behaviour at oo
of μ(xn e A Π x0 e B) where μ is the stationary measure and xn is the
Markov process.

In addition we study the quantities

μ(xn e A for some n Γ\ xo£ B) , μ((xn£ A infinitely often) Π x0e B) .

For Markov chains the results given here are well known even
without the assumption of the existence of a stationary measure.

DEFINITIONS AND NOTATION. The notation here will be the same as
in [1]. Let (£?, Σ, μ) be a measure space where μ ^ 0 but is not
necessarily finite.

Let xn(co) be a sequence of measurable real functions defined on Ω.
Let the measure μ(xό\ )), on the real line, be σ finite.

ASSUMPTION 1. The process is stationary:

μ(xn+k eAf] xm+k e B) = μ(xn eA[]xmeB).

ASSUMPTION 2. If i < j <k let A be a Borel set on the line such
that μ(xk e A) < co then:

The conditional probability that xk e A, given xo and xif is equal
to the conditional probability that xke A given x3.

L2 — L2(Ω, Σ, μ) will be the space of real square integrable function.
Let Bn be the subspace of L2 generated by functions of the form

I{x~\A)) where μ(x~\A)) < co .

By I(σ) we denote the characteristic function of σ.
Let En be the self adjoint projection on Bn.
It was shown in [1] that Assumption 2 implies

i<j <k .
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Finally let T(n) be the transformation from BQ to Bn defined by

T(n)I(xoeA) = I(xneA) .

It is easily seen that x e Bn if and only if x(ω) = f(xn(ω)) a.e. and
f(xn(ω)) is square integrable.

Thus

T(n)f(xQ(ω))=f(xn(ω))

and

2. a. ||Γ(tt)&|| = | | a | |

b. T(n)B0 = £„
c. (Γ(w + fc)&, τ(™ + *)») = (T(n)x, T(m)y) .

See [1] Lemma 2.4.

l Behaviour at ooφ Following [1] let us define

Cm = Π Bn C_m - TimY'C, Π Co

Theorems 3.6 and 3.7 of [1] hold here thus:

If x ± H then weak lim T(n)x = 0 .
n—oo

Also by Theorem 3.9 of [1] H is invariant under T(n), and T(n) = T"
is a unitary operator on H.

LEMMA 1. The subspace H is generated by characteristic functions
of a Boolean ring.

Proof. I t is e n o u g h t o s h o w t h a t if xeH t h e n I{χ-\A))eH a n d
if /(tfi), I(σ2) e H then I(σ1 n σ2) e H.

lίxeHthen xe Bn so /(ar^A)) e 5 n . Also x = Γ(^)t/W where i/n e Co.
Now

2/w(ω) = fn(x0(ω)) for yneB0 .

Also /(^(A)) 6 5 m for all m and n. Thus

α(α>) = T(n)yn(ω) = f%(xn(ω))

x~\A) - xΛfΛ

and
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where

I{x^{f-\A)) = I(vΛA)) e Bm for all m .

Thus

I(χ-\A)) e H.

Finally if Ifo) e H and I(σ2) e H then I{σ1 Π o2) e Bn for all n. Also

σx - x~\An) σ2 = x~\Bn)

where

I(x»\An))eC0 I{x;\Br))zCn.

Thus

I(σλ Π σ2) = /(aj-^A. Π Bn))

where

In the rest of the paper it is assumed that if I(σ) e H then I(σ)
contains an atom in H. This is equivalent to assuming that H is
generated by /(#•;) where σ{ are disjoint measurable sets.

Notice that H may be empty.
The above assumption holds if xQ has a countable range or if a

"Doeblin Condition" holds:
There exists a measure rj on Borel sets on the line and an ε > 0

suet that:
1. If μ(xΐ\A)) < oo then η{A) < oo.
2. If η(A) < ε then T(n)I(x^(A)) 0 Bo for some n.

This condition is enough for if /(^(A)) e H then rj(A) is finite and
by 2 contains only finitely many sets in H.

For every set σi T(n)I(σt) is in H hence is either I{σt) or is disjoint
to I(at).

Ler £?! be the union of all the σ{ for which

T(n)I(pϊ) — I(σ>) for some n .

Let Ω2 be the union of all the sets σi such that

(T(w)J(O, Ifo)) = 0 for all n .

In this case

{T{n)I{σx)y IXm)/^)) - 0 if n Φ m ,

by 2.c.



508 S. R. FOGUEL

Let Ω3 be the complement set of Ωλ U Ω2.
If μ is finite then Ωλ = Ω.

THEOREM 1. Let Abe a Borel set on the line such that XQ\A) C #;
for some i.

If G{ c Ωx and n is the smallest integer such that T{n)I{σ^) — I{σ^)
then

weaklim T(kn + d)I(xό\A)) = μ{σi)~1 μ{x^
k-><χ>

If ύi c Ω2 then

weaklim T(ri)I(x*\A)) = 0 .

Proof. If Γίn)/^,) = I(σf) define

flf(α)) = - / ( ^

Now ί/(ω) J_ H hence

+ d)g(ω) = T(kn

and this expression tends weakly to zero when k —* co. If xς\A) c ffi
where σ; c £?2 then the functions T(n)I{x^\A)) are disjoints.

THEOREM 2. If x*\A) c β3

weak lim T(n)I(Xo\A)) - 0 .

Proof. It is enough to note that /(^(A)) ± iί, for βj U £?2 contains
all the sets σi#

Let

U(A) = lim 1/(Λ, A) .
n—>oo

Thus

(17(0, A), IiXo'iB))) = μ((xne A for some ri) Γ\ xoe B)

(U(A), I(Xo\B))) = i"((» e A infinitely often) Π xoeB) .

THEOREM 3. Let A be a Borel set such that x^(A) c σ{for some i.
If σi c Ωx and T(n)I{Oi) = I(σ{) then

U(m, A) - U(A) = Σ
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// σt c Ω2 then U(A) = 0

Proof. If T{n)I{στ) = I{σ%) then

U(A) ^ U(0, A) g

On the other hand if I(σ) ^ T(d)I{σ%) then

Σ
d=0

^ lim(T(kn

= μiσ,)-1 μ(Xo\A)) μ(σ) > 0 .

But £7(A) is a characteristic function therefore the above equation implies
that U(A) ^ T(d)I(σi). Thus

If (T(n)I(σi)f I(σ{)) = 0 for all n, then Z7(w, A) is disjoint to
Γίmjifao"1^)) m < n. Thus ?7(A) is disjoint to T(m)I{x~AA)) for all m
and therefore C/(A) = 0.

COROLLARY. In the first case studied above

μ({xn e A for some n) Π x0 e B)

" K(χn e A infinitely often) Π ^0 e B) .

Iw ί/̂ e second case

μ((xn £ A infinitely often) n #0 e JB) = 0 .

REMARKS. Let a Markov chain be defined by the matrix (P{ 3)
PiΛ+1 - 1 Pu = 0 if j Φ i + 1, - c o < i,j < co. Then if ^(x. = i) = 1
β can be chosen as the union of countably many atoms. In this case
H = L2(Ω) and Ω — β2. Let {Pi3) be the matrix of a free random walk
(See K. L. Chung Markov Chains p. 23) and again μ(xn = i) — 1
— oo < i < co. In this case for every i and j there is a sufficiently
large n such that μ(ocn = i Π ^0 = i) = P™ > 0. Thus each set α;0 = i
is neither in βx nor in Ω2 and β = Ω3.

Let P(a?, A) be a transition function of a Markov process with the
real numbers as state space. Let μ be a stationary measure that is not
finite. One can construct a measure space Ω and the sequence xn(ω) with

μ(xn e A n Xo e 5) = ί

Notice that we use alternatively μ(B) or μ(xΌ e B) to mean the same
thing. This construction is well known.
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Let μ(x0 = 1) > 0 and let the set Γiϊ=0{x\Pn(x, 1) = 0} be empty.
Then if μ(x0 e A) > 0

(*) supμ(xn = l n ^ 0 e ^ ) > 0 .
n

Otherwise Pn(x, 1) = 0 x e A except on a set of measure zero.
We will prove that in this case H = 0 hence Ω = Ω2

and

lim μ(xn eAr\x0eB) = 0.
n—oo

If H contained any characteristic function of a set {ω\xoe A} (always
H c BQ) then this set intersects the set {ω \ xn(ω) = 1} for some n. But
H c Bn and this set is an atom in Bn. Therefore {ω\xoeA} contains
the set {ω\xn(ω) = 1}. There exists an atom in if that contains this set.
This proves that H is generated by atoms. Let H be generated by σ{

where σλ ~D {ω\xn(ω) = 1}. Now

sup (/(o ,), Ί\m)I(σύ) ^ sup μ(σ{ n xn+m = 1) .
m m

But oi — {ω\xn(ω) c A%) for /(σj e Bn. Hence

sup (Ifa), Γ(m)/(σ1) ^ sup μ(xn e A, n ^% + w = 1)

= s u p x0eAίC]xm = l)>0.
m

By (*).
Thus for some m /(σ^) = Γ(m)7(σ1). Now

sup μfo Π Oi) = sup (/((JO, ^(m)/^,)) ^ sup /ι(a?n = 1 Π ^%+wι = 1) > 0 .
m m m

They can not be disjoint: for some m,

T(m)I(σd = I(σ1) .

Now

ϋ °i = V T{k)i(σi)

and this is a set of finite measure. But Ω had infinite measure. Since
U Oi c Bo there is a set in i?0 disjoint to U o{ which contradicts (*).
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