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J. BARROS-NETO

Introduction. In a previous paper [2], we have studied the strue-
ture of analytic distribution kernels, in rough terms, those which carry
analytic functions on a manifold G into analytic functions on G (see defini-
tion in §6 below). We have shown that such kernels are analytic off
the diagonal on G X G (the converse being not true, i.e., there exists
kernels, analytic functions off the diagonal, which are not analytic distribu-
tion kernels) and we have given a condition in order that a kernel,
which is an analytic function outside the diagonal, be an analytic kernel.
As we pointed out, analytic kernels cannot be characterized in an analo-
gous way as the so-called very regular kernels in the infinitely differenti-
able case. It has been proved ([5], tome I, 2nd edition; [2], §I, th. I)
that a distribution kernel is very regular if and only if it is an infinitely
differentiable function outside the diagonal.

Nevertheless, if we restrict ourselves to composition kernels (see §5
below) then those which are analytic can be characterized as being
analytic functions off the diagonal.

In this paper we study the composition kernels on a general Lie
group and characterize those which are analytic. In §1 to §4 we define
and state some properties of the composition produet of distributions on
a Lie group G that we shall use later on. Section 5 is devoted to define the
composition kernels and to derive its main properties. In §6 we discuss
and characterize the analytic composition kernels on Lie groups. We
use there the results of our previous paper [2] and some techniques
employed by L. Schwartz in [6], exposes 5 and 6, in the study of com-
position kernels on a Euclidean space, which have to be adapted to the
present situation.

We should like to thank Professors Leopoldo Nachbin and Felix
E. Browder for discussion, suggestions and criticism.

1. The composition product on a Lie group. Let G be a connected

Lie group of dimension n. We denote by G), £ (G), £€'(G) and D'(GF)
the spaces of infinitely differentiable functions with compact support,
infinitely differentiable functions, distributions with compact support, and
distributions, respectively, on G with their usual topologies. (Schwartz[5]).
For a fixed left invariant Haar measure dx on G, we have the
Received July 1, 1961. Fellow from ‘“‘Comissao Nacional de Energia Nuclear’’, Brazil.
The preparation of this paper was partially supported by N. S. F. Grant G-8236. The
material of this paper is part of the writer’s thesis ([1]) at the University of Sao Paulo,

1960, written while the writer held a fellowship from the Conselho Nacional de Pesquisas
of Brazil at the Instituto de Matematica Pura e Aplicada, Rio de Janeiro.

661



662 J. BARROS-NETO
natural imbedding fe ¢ (G) — ¢, = fdx € D'(G), where

St 95 = | g(o)f@)de

for all g€ D(G). We will usually denote by f simply the distribution g,.

If S and T are two distributions of D'(G), their tensor product
S,® T, is a well defined ([5], tome I, 2° edition, pg. 106) distribution
on G x G, If feS(G), the pairing

8. & Ty fla-y))

makes sense whenever the intersection of the support of S, ® T, with
the support of f(x-y) is a compact subset of G x G. This is always the
case when either S or T has compact support.

DEFINITION 1.1. Let S and T be two distributions on G, one of
them having compact support. The composition product of S with T
will be the distribution SxT, defined by

(ST, f> =<8 ® T, flz-y)y
Jor all fe(G).
If S, T and R belong to ©'(G), then
(SxT)«R = Sx(T+R)

is true if at least two of these distributions have compact support. The

composition product on G is not necessarily commutative, if G is not
commutative.

The following proposition is an easy consequence of [5], tome I, II°
édition, pg. 109, th IV.

ProrosITION 1.1. If h is an infinitely differentiable function and
T is a distribution, one of them having compact support on G, then
T+h and hxT are infinitely differentiable functions given by:

(T+h) (x) = LTy, h(y~'=))
and

(hxT) (x) = <Ty, Ay~ Hl2y™)y ,

where 4 denotes the modular function of G.

COROLLARY. If h and g are infinitely differentiable functions, one
of them having compact support on G, then we have

(gxh) (v) = ggg(y)h(y‘lw) dy = ggg(wy*)h(y) dy
and

(h9) @) = | A ehiey) dy = | @) m)hiw) dy
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2. Support of the composition product. In this section we transpose
to the case of Lie groups the results of [6], exposé 5, théoréme 1,
Proposition 1 and corollaire.

First of all, it is easy to see that if S and T are two distributions
such that the support of S is A, the support of T is a compact set B,
then the support of ST is contained in A-B, where A-B denotes the
set all products -y with x€ A and ye B.

If M and N are two subsets of G, let us denote by M 'N the set
{e=ty:xe M,ye N}.

Let V be a compact neighborhood of EeG and O an open set of G.
We denote by O, the set

Oy = ¢(V-0(0)) ,

(e(4) will represent, in what follows, the complement of A in G).

O, is obviously an open set, since V being compact and ¢(O) closed,
V.c(0) is a closed set. Furthermore, O, is contained in O because
¢(0) c V.¢(0). If V, and V, are two compact neighborhoods of ¢ such
that V, c V, it is quite obvious that O, > O,,.

If V runs through a fundamental system of symmetric compact
neighborhoods of e, the union of the open sets O, is O. In fact, if
x <0, it is possible to choose a symmetric compact neighborhood V of
e such that Vz N ¢(0) = ¢. It follows that x ¢ V-¢(0); otherwise, v7'¢ = a
with ve Vand aec(0). Since V is symmetric, v e V and thenae Vi
which is a contradiction.

Let us define also

05, = ¢(c(0)- V).
This set has the same properties as the set O,.
ProrosiTION 2.1. If S and T are two distributions such that T has

compact support B and S is equal to zero on OB~ where O is an open
set, then S+xT 1s equal to zero on O.

Proof. By the remark in the beginning of this section, the support
of SxT is contained in ¢(OB™)-B. If zec¢(OB™?) any y< B we cannot
have zye O, for then, xc Oy < OB which is a contradiction. We
conclude that ¢(OB*).-B < ¢(0O) and SxT is equal to zero on O, q.e.d.

COROLLARY 1. Under the same hypothesis of the theorem, if S is
equal to zero on (OB™), then SxT 1is equal to zero on O,.

Proof. The support of SxT will be contained in the set
c[(OB),]-B = V.¢(OB™)-B .
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Since
¢(OB™)-B c ¢(0)
it follows that
V.c(OB™):B c V-¢(0) = ¢(0,)
which proves that SxT is equal to zero on O,, g.e.d.

Using the same method one can prove the following

COROLLARY 2. Let B be a compact and V be a symmetric compact
neighborhood of e. Let us suppose that the distribution S s equal to
zero on OB-' and that the support of the distribution T 1is contained
wm B.V. Then, SxT is equal to zero on O).

3. Translations and vector fields. Let us denote by o, (resp. 7,)
the left (resp. right) translation x — sx (resp. £ — xs) defined on G. If
f is any function defined on G we define po,f and z,f to be the functions:

0. f(@) = f(sx) and 7,f(x) = f(xs) .

Now if T is a distribution on G we define its left translation ¢,T,
and its right translation, 7,7, by

<0-3T1 f> = <T7 0'3—1f>
and
<TST’ f> = <T7 Ts_1f> ’

If X is a left invariant vector field on G and T € ®'(G), define XT
by

XT, f>=—<T, Xf>, for all feDG).
It is easy to show that
XT = T+X0 ,

for all T'e ®'(G), where 6 denotes the Dirac measure at the identity e
of G. It follows that

X(SxT) = SxXT .
Analogously, if Y is a right invariant vector field we have:
YT = YoxT and Y(S*xT) = YS«T .

We remark that these results can be extended to left (resp. right)
invariant partial differential operators ([3]).
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4, Linear transformations which commute with the composition
product. Let S be any fixed distribution of ®©'(G) and consider the
two linear continuous maps:

g€ D(G) — Sxge D(G) and g e DG) — g+S € D(G)

We know that the distributions Sxg and g¢+S belong to % (G)
(proposition 1.1) and these two maps are continuous from D(G) into
Z(@) ([5], tome II, pg. 23, th. XII). Moreover, they can be extended
to continuous maps from & ’(G) into D'(G) ([5], tome II, pg. 13, th. V).

It is easy to show that the first one of the above maps (as well as
its extension) commutes with the right translations, while the second
(as well as its extension) commutes with left translations. More precisely,
we have the following result:

ProrosiTioN 4.1. Ewvery linear continuous map L:E'"(G)— D(G)
which commutes with the right translations on G is of the form
L(g) = Sxg
where S = L(J) is a distribution of D'(G).

The proof which follows the same line as [5], tome II, th. X, is left
to the reader. In the same order of ideas, one can prove the following

ProrosITION 4.2. A continuous linear map L: £'(G) — D'(G) com-
mutes with right tramslations if and only if it commutes with the left
imvariant vector fields on G.

Analogous results can be stated for left translations and right invariant
vector fields.

5. Composition kernels. Let S be a fixed distribution in D'(G).
To the continuous map

g € DAG) — Sxg € D'(G)

there corresponds by the kernel theorem of L. Schwartz ([7]) a unique
kernel S, ,eD'(G x G) called the left composition kernel associated to
the distribution S. In the same way to the continuous map

g € DG) — Sxg € D'(G)

there corresponds the so-called right composition kernel S, ,.
One can easily prove the following result:

ProrosiTioN 5.1. The kernels S, , and S,,, are given by the relations
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8oy O, y)) = <Sx, SG@(wy, y)dy>
(St 0o, 9> = (S, | 06, my)dx> ,
respectively, for all @ e (G x G).

In these two formulas, the right hand side denotes the distribution
on x (resp. ¥) acting on the infinitely differentiable function with compact
support in x (resp. y) obtained after integrating @(xy, y) (resp. @(x, xy))
with respect to the y(resp. x) variable on G.

Composition kernels are regular, i.e. the two mappings defined in
the beginning of this section carry ®(G) into & (G) and can be extended
continuously to mappings from &’(G) into D'(G), as we have already
remarked in the preceding section.

Let s e G, o, and 7, denote the left and right translations, respectively
on G. If K,, is any distribution kernel on G x G, let us denote by
oK., and by 7,K,, the kenels defined by

<0-8Kx,y’ @(96, ?/)> = <Kz,yy ¢(8_1w, S_ly)>
<TSKE¢ZI, @(x7 y)> = <Kx.y’ $(x8017 y8w1)> ’
respectively, for all @€ (G x G).

DEFINITION 5.1. The kernels 0,K, , and 7,K,, be will be called the
left, respectively, right translation (parallel to the diagonal of G x @)
of K,, by s.

DEFINITION 5.2. A distribution kernel K, , is said to be invariant
with respect to the left (resp. right) translations, if
o,K,,=K,, (resp. 7,K,, = K,,) .
for all se@.

PROPOSITION 5.1. A distribution kernel K,, is a left (resp. right)
composition kernel if and only if it is invariant with respect to right
(resp. left) translations.

Proof. If K,, is a left composition kernel then there exists a
distribution Se ®'(G) such that we have

K, f(2)-9(y)) = {Sxg, >

for all f, ge D(G). We have to show that in this case 7,K,, = K, ,.
This follows easily from Definition 5.1 and the definition of the translation
of a distribution (Section 3).
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Conversely, if 7,K, ,= K, ,, denoting by L the continuous may from
D(G) into D'(G) defined by the kernel K, ,, one can easily see that Ly
commutes with the right translations. Then, by proposition 4.1 it is of
the type:

g€ D(G) — Sxg e D(G)

where S is a well defined distribution of G. Then K,, is the left
composition kernel defined by S, q.e.d.

Let X be a left invariant vector field on G and K, , a distribution
kernel on G x G.

DEFINITION 5.8. The kernel X, (K, ,) is defined by

for all @ e DG x G).

Analogously one can define the kernel X, (K, ,).

ProposITION 5.2. A distribution kernel K, , is a left composition
kernel if and only if

(X)AK,,) = —(X)y(K. )
where X;,1 <1 < n, denotes a basis of the left invariant vector fields
on G.
Proof. Suppose that K, , is a left composition kernel. We have:
L(9) =8Sxg, 9geD@G).
From Propositions 4.1 and 4.2 we have:
Xi(Lg(g)) = Le(Xi(g9)) foralli=1,.+,n.
Thus for all fe D(G):
Xl L9, f(2)y = —<Lxl9()), Xif (%))
= (K, Xif(@)9)) = (Xi).K,.., (%) 9(v)>

and

{Le(Xg(), f(x)) = LK., f(#)(X; )9(y))
= —X),K, ., f(%)-9(y)>
Hence it follows that (X)).K,, = —(X,),K,.,.

Conversely, this relation means that the map Lx: D(G) — D'(G)
commutes with the left invariant vector fields X;, 1 < ¢ < n, which again
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by Propositions 4.1 and 4.2 implies that K, , is a left composition kernel,
g.e.d.
An analogous result can be stated for right composition kernels.

6. Analytic composition kernels. In this section we discuss the
analytic composition kernels and give the characterization of these kernels.
In what follows we shall prove that the three conditions:

(a) the distribution S is an analytic function in the complement
of {e};

(b) the composition kernel (left or right) is an analytic function
off the diagonal of G x G;

(¢) S.., is analytic kernel (see below):
are mutually equivalent,

First we recall the basic definition of [2], Section III: if K,, is a
kernel and L, the corresponding linear continuous mapping of (G) into
D'(G), then K, , is said to be an analytic kernel if the following conditions
are satisfied:

(i) K, , is very regular ([5]),

(i) If Te &€(G) then L,(T) is analytic on each open set on which
T is analytic.

The equivalence of the three conditions above gives for the composition
kernels a complete answer to a question studied in the general case in
[2], Section III. It shows us that analytic composition kernels are those
analytic off the diagonal, a property not true, in general, for analytic
kernels.

Let us prove the equivalence between (a) and (b).

THEOREM 6.1. The composition kernel S,, is analytic in the
complement of the diagonal of G x G if and only if the distribution
S is an analytic function in the complement of {e}.

Proof. Suppose S, , is an analytic function in the complement of
the diagonal in G x G and let H(x, y) be the restriction of S, , to this
complement. It is easy to check, on one hand, that L(8) = H(z, e)
(here, L, denotes the continuous map from T(G) into D'(G) defined by
the distribution kernel H(x, y)) and, on the other hand, that L,(6) =
Ly(©0) = S in the complement of the set {¢}. Since, by our hypothesis,
H{(x, e) is an analytic function in the complement of {¢} the statement
follows.

Conversely, suppose S is analytic in the complement of {¢}. Let us
denote by A(x) this function and by H(x, y) the function A(z-y') which
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is, obviously, analytic in the complement of the diagonal in G x G. We
want to prove that S, , coincides with H(x, y) in the complement of the
diagonal in G x G, which proves the theorem. It suffices to show that
for all f, g e D(G) with disjoint supports we have:

(1) 8o f(@)-9(y)) = <H(x, ¥), f(2)-9(¥)) .
Since S, , is a left composition kernel, we have:

On the other hand,
CH@, ), £(@), 9> = || 1-v™) F@o)dady
= | @z | vy

By the corollary of Proposition 1.1, the integral in y is (h*g) (x), so we
have:

(3) {H(x, ), f(x)-9(y))y = <hxg, f>.

Let U and V be two open sets such that U contains the support of
gand UN V = ¢, which is always possible by our assumptions on f and
g. It follows, denoting by K the support of g, that the open set U-K™
does not contain e so, in this open set, S and % coincide. By Proposition
2.1, we conclude that Sxg and hxg coincide in U, thus we have

{8xg, ) = <hxg, [

and then (2) and (3) imply (1). Q.E.D.

Before proving that conditions (b) and (c) are equivalent, we need
to establish some results concerning analytic functions on Lie groups.
We are going to show that in order to prove that a function f is analytic
at a point x,€ G, it suffices to obtain the usual bounds for the absolute
value of Z?f at x, where Z? =Zn,Zp2 -+ Zn  with 9y, D5 -+, Da
nonnegative integers, and Z;, 1 = 7 = n, denotes a basis of left (or right)
invariant vector fields in G. More precisely:

LEmmA 6.1. Let (U, %, +++,2,) be a local coordinate system on G
and let Z;,1 <1 =< n, be a basis of left (or right) invariant vector fields.
A function f is analytic on U if and only if to each compact subset
k < U there corresponds a constant C > 0 such that

|Z7f(x)] = C*' ]!

for all xek.
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The proof of Lemma 6.1 will be based on the following general lemma
and its corollary below.

LEMMA 6.2. Let F be a finite set of analytic functions on
(U, 2, +++,2,) and let D denote any one of the partial derivatives
djox;,,1 =1 =<mnon U. Let g, 9, *++, 9. be m arbitrary functions (not
necessarily distinct) chosen from the set F. Then, to each compact
subset k of U there corresponds a constant K > 0, independent of m,
such that

(1) | D*g.D(---g.D(g))]| < {;;;1 < 1 __1Kx %y*lﬁi}fg{)}x:o

uniformly on k, for all p = (p, Dsy +++, D). (On the right side x denotes
a real variable).

Proof. Since F is a finite set of analytic functions on (U, x,, «- -, )
to each compact subset k& of U, there corresponds a constant K > 0
such that:

|D*(g)| = K"'p!

uniformly on %, for all ge F. By remarking that:

{;;;(1 _le>}$:0 = K'"':|p|!

and that p!l =p!--- 2,0 =< (p, + --+ + p,)!, we may conclude that

diz! 1 } .
2 )| < <1 1<
@ 1) = {-L (L)) 1=ism,
uniformly on k.
Let us proceed by induction on m. The case m = 1 follows trivially
from (2) setting j = 1. Suppose, then, that relation (1) is verified for
m — 1. We can write

D?[g,D(--- 9.D(g))] = hga:p D"(g,.) D’ D(gp—D(-~+ 9,D(g.)))] .

Using relation (1) which is by assumption true for m — 1 and relation
(2) and remarking that, in the last summand, the number of terms
containing D’(g,) = D™ ... D™»(g,) with degree [r|=17 4+ -« + 7, is.
precisely [p|!/|7]!|s|! we obtain the majoration:

IDp[ng(' -+ 9,D(g.))]]

lply A / 1 dlei+t
=
- {m+%:|p| [r]s|! da'"' \1— Kx>dm”'+1
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e el

_{ S plt d"l( L) d-
TR TS de N1 — K/ d)

e o) e,

- {di:;\ ( 1 —~1Koc %Y‘(TSW»

r=

uniformly on %k, which establishes the lemma.

COROLLARY 1. If the functions ¢., @,, +++, §. Satisfy the hypothesis
of Lemma 6.2, then we have

(3) |9, D(- -+ 9.D(¢))| = 2K)"(m — 1) |

uniformly on k.

Proof. It follows from Lemma 6.2 that the left term of (8) is

majorized by
e )

uniformly on the compact subset k. Thus we have to evaluate the above
expression at © = 0. By setting

1— 11— 2Ky

€r =
K

we reduce the problem to evaluating the function

dm——l

i (V1 —2Ky)

at ¥y = 0. An easy calculation gives us:

i vi—emy), | = 2222028 @Ry < @K)™m — 1)

and the corollary is proved.

Without going into the proof (which would be a repetition of the argu-
ments above) let us state a slight variant of Lemma 6.2 and corollary 1
which will be more convenient for our purposes.

LEMMA (6.2). Let F be a finite set of functions on G and let Z
denote any one of the elements Z;, 1 < 1 < n, of a bastis of left (or right)
wnvariant vector fields on G. Let f be any function on G and suppose
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that to each compact subset k of U, there corresponds two constants
K >0 and M > 0 such that

|Z*(g)| = K'"'p!,
for all ge F, and
| Z*(f)| = MK'"'-p!,

both untformly on k. Then if g, +++,9,. are m arbitrary functions
(not necessarily distinct) chosen from F, we have, for all p = (p,, +++, D,):

| Z7[gnZ(- - 9. Z(FN]]| = {j;;l ( I —1Kw %>m<T_£IZx_>}=o

uniformly on k.

COROLLARY 1'. Under conditions of Lemma (6.2) we have
|9nZ(- -+ 9.2(f))| < M-2K)"-m !
uniformly on k.
Proof of Lemma 6.1. Suppose that f is an analytic function on U.

As we know, each vactor field Z; can be represented as a linear combination
with analytic coefficients in U of the partial derivatives 8/0x, 1 < ¢ < n:

G 0
Z; = Z a;i(%) — .
j=1 0x;

J

Now, if » = (p, s, +++, P, and if m denotes the sum |[p|=
P+ Dy + +++, p, then it is easy to see that we can represent ZZf by

O _ﬁ_(.....a L(f)),

Pt ML L T W
From the corollary of Lemma 6.2, it follows that:
R G % ()| = @By m !
uniformly on a given compact subset k¥ of U. Hence we obtain the
following majoration
| Z7f(x)| = n™-(2K)"m !

for all xe k. Now, setting C = 2Kn, the “‘only if’’ part of Lemma 6.1
is proved.

Conversely, suppose that f verifies condition of Lemma 6.1. To
prove that f is analytic on U, we have to state the usual bounds for
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the absolute value of D?f(x) on compact subsets of U. Since U is by
hypothesis a local coordinate system and Z;,,1 < 7 < n, a basis of left
(or right) invariant vector fields in G we can write

a n

—-— = Z b;(%)Z;
ax,. Jj=1

where the functions b; (v) are analytic on U. Thus we can represent

D?f by the sum

Drf = ; Z;a o bima‘m Zim(e- biljl Zjl(f)) .
oy
Since f verifies condition of Lemma 6.1, then to each compact subset
k < U there corresponds a constant C > 0 such that

|Z7f(z)] = C*' [p] !

for all ze k. On the other hand, the functions b,; being analytic on U
we may conclude from that we have just proved above that

| Z7b;5(2)| = C™'|p] !

for all xek. We are then under conditions of Lemma(6.2) and the
conclusion follows from Corollary 1'.

THEOREM 6.2. The composition kernel S,, is analytic if and only
iof S is an analytic function in the complement of {e}.

Proof. Suppose that S,, is an analytic distribution kernel. As we
have shown ([2], Section II, thm. 2), S, , is an analytic function outside
the diagonal of G x G. From Theorem 6.1, it follows that S is an
analytic function in the complement of {e}.

Conversely, suppose that the distribution S is an analytic function
in the complement of {¢}. As we have remarked (section 5), the kernel
S.., is a regular kernel, and by Theorem 6.1, it is an analytic function
outside the diagonal of G x G. To conclude that S, , is analytically very
regular, all we have to prove ([2], Section III, Theorem 3, corollary) is
that for all fe D(G), Sxf is analytic in every open subset on which f
is analytic.

Suppose, then, f analytic on an open set 2; all we have to prove
is that if @ is any relatively compact open subset of 2 such that @ c &,
then Sxf is analytic on w. This subset @ being fixed, let ac D(2) such
that « is equal to 1 on an open neighborhood of @. We can write

f=af + 1 —-a)f

and
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Sxf = Sxaf + Sx(1 — a)f .

Let us prove that both the summands on the right of the last
expression are analytic on w. The easiest part is the analyticity of
Sx(1 — a)f. From our choice of &, (1 — «)f is an infinitely differentiable
function with compact support, which is zero on w. We can derive our
conclusion from the more general result:

PROPOSITION 6.1. Suppose that S is a distribution which is analytic
wn the complement of {¢}. For all distribution T with compact support
i G, SxT is analytic in the complement of the support of T.

Proof. We may suppose without loss of generality that the support
B of T is contained in a suitable coordinate system. Using the same
argument as in [5], tome I, 2° édition, théoreme, pg. 91, XXVI, one a
conclude that T can be represented in the following way:

T:’Zngp,

where the g,’s are continuous functions with compact support contained
in an arbitrary neighborhood of B, sey BV (here V denotes symmetric
compact neighborhood of ¢), X? = XnXr..- XP», with p, 0, ¢+, Dy
nonnegative integers and X, X,, ---, X, a basis of the left invariant
vector fields in G.

Let now B be a fixed but arbitrary compact open set, which closure
is contained in the complement of B and suppose that B is contained
in a suitable coordinate system. All we have to prove is that SxT =
> SxX?g, is analytic in .

Since the support of X*g, is contained in BV, by Proposition 2.1,
Corollary 2, the values of each summand SxX?g, (hence of SxT) on
B depend only of the values of S on 8-B~*. In this open set Sis, by
our hypothesis, analytic. Let us prove then that each summand SxX?g,
(hence SxT) is analytic on B}, from which, since 8 is the union of all
8% when V runs through a fundamental system of symmetric compact
neighborhoods of ¢ in G, it will follow that SxT will be analytic on £.

By Lemma 6.1, it suffices to state the usual bounds for the absolute
values of YYSxX?g,) on compact subsets of S, where, here, Y*=
Yn--- Yo with g, +--, q, nonnegative integers and Y, 1 <1<, a
basis of the right invariant vector fields in G. We have, using the
remarks following Proposition 3.2:

Y(SxX*g,) = Y'SxX*g, = X*(Y"'Sxg,) .

On the other hand, each X, can be written as a linear combination
of Y;,1<j=<mn, with coefficients which are analytic functions on &.
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We can write X? = 3, 1<1p @(2)Y" with a.(z) analytic on B8, and then
YoS«Xrg,) = 2 a(2) (Y7 Sxg,) .
iri=

Now, for each compact subset %' of 8},
k={xy " xek,ye BV}

is obviously, a compact subset of 8SB~* where S is analytic. There exist,
then, two constants M, depending on k', and N, depending on k, such
that:

la(x)| = M for all xzck’ and all
and
| Y S(ey™)| < N (q + )l on k.

If we denote by P a bound of the continuous functions g, on BV, we
have, on k', the following majoration for each of the above summands:

la () (Y*"Sxg,)| = P.M.N.""""(q + 7) !
Thus:
| Y{SxX?g,) (x)| = C'""*'*i(q + |p]) !

for all ze k', C being a suitable constant which proves that SxX?g, is
analytic on 8}, and so the proposition is proved. It follows from Proposition
6.1 that Sx(1 — a)f is analytic in w.

Let us prove now that Sxaf is analytic on @. As before, we are
going to show that the system of derivatives X?(Sxaf) does not grow
faster than p!C'®' on an arbitrary compact subset of w. As we shall
see some technical difficulties arise from the fact that, now, the support
of af intersects w. If |p| = m, we may write X*(Sxaf) as X; .-+ X; X,
(Sxaf). An easy induction argument gives us the following relation:

1 X, - XX (Sxaf)
= SxaX; - X; X, (f) + 72211 K e Xipy [Sx X () X5, -0 X, X ()]
First of all, let us obtain the bounds on each term of the above
right summand. Writing the left invariant vector field X;, 1 <1 < n,
as a linear combination of the right invariant vector fields Y,,1 <k < n,

with analytic coefficients a,,(x) on @ and substituting on each of those
terms we get:
(2) Xip oo Xop IS5 X (0 X2+ - X3 X0 ()]

= i aimkalcm(a/im_lkm_l RN (v ”ﬂkHlYkHl
ISEX (@)X, ++r X, X (AD)
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Recalling that we have chosen ae D(2) equal to 1 on an open
neighborhood of @, then X; j(a)Xi o 000 X, X (f) has a compact support
o disjoint from ® and so by Proposition 6.1, SxX )X, - X X ()
is an analytic function on w. As we have proved in Proposition 2.1,
the values of S*X,-j(a)Xij_ln- X;,X;(f) on w depends only on the
value of S on wo™!, thus the bounds of this composition product on a
compact subset k& of w, amounts to bounds of X, i (@) X; PPREY X, X (f)
on ¢ and of S on a compact subset k' (correspondlng to k) of wo™.
The function f is analytic on ®, so there exists a constant M > 0,
depending on k, such that

| X, oo XX (NI EM (G -1 !
uniformly on %. On the other hand, « is an infinitely differentiable
function with compact support, so we can find a constant B > 0 such that

|| X@)d= = B

for all 1 < ¢ < n. Finally, S being analytic in wo (because w is disjoint
of 0 and S is, by hypothesis, analytic on the complement of {¢}), there
exists a constant k > 0, depending on %', such that

| Y2(S)| < K'*p!
uniformly on %'. From these inequalities it follows that
| Y2(Sx X, (@)X, , ++ X Xo(F))] < BMP(j — 1) K'»p |

uniformly on k.
Now, applying Lemma (6.2) and Corollary 1’ to the set of functions
F = {a;;(»), 1 = 4,7 = n} and to the function SxX; (@)X, iyt - X, Xo (),
which we can do because all the functions are analytm in ®, we obtain
for each term of (2) the inequality:
l@i e Y, (00 @

TmEm i5+1k 541 ij+1 [S ’ij(a)Xij_l e X’LZX’LI(f)]I
= BM’7-(7 — DI RK)"(m — j) |

uniformly on k. Then we obtain for (2) the following majoration:

| X, 0 iy, [Se X () Xy oo e X, X ()]
= o™ 2K (m — j)! - B-M'7(j — 1) |

and, finally, choosing a suitable constant C >0, we obtain for the
summand which appear in (1), the majoration:

@ | B Xy Xy, [ XK @K, - X XD = C ol on k.
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Let us consider, in the last step of our proof, the first term
SxaX; «-+ X; X;(f)of the expression (1). The function aX; --- X; X, (f)
has a compact support contained in the support s of . If V and W
are two symmetric compact neighborhoods of ¢ in &, such that (ws™), C
(ws™),, and v is an infinitely differentiable function with compact support
contained in (ws™), and equal to 1 on an open neighborhood of (ws™),,
the distribution ¥S coincides with S on (ws™),, hence, from Proposition
2.1, Corollary 1, it follows that vSxaX; --- X; X;(f) coincides with
SxaX; «+- X; X;(f) on w,.

Since the distribution vS has compact support, by the some remark
in the beginning of the proof of Proposition 6.1, we can write:

vS = >\ Y,

where the g,’s are continuous functions with compact support contained
in an arbitrary open neighborhood of the support of S, say (ws™),.
Then, we have:

VS*aXim cee Xi2Xi1(f) =3 (quq)*a'Xim s XiAXil(f)
= 5. Vi(guaX,, -+ XXl F)

which coincides with SxaX; -.- X; X;(f) on w,.

Again if we write each vector field Y;,1 < j < =, as a linear combi-
nation of the basis X;, 1 <4 <, of left invariant vector fields, with
analytic coefficients on @, we obtain:

Y= 3 b, (a) X

where the functions b,,(x) are analytic on @. Substituting Y? in the
above summand, we get:

@) Sk, eee XX (f) = 2 00() (946X (@ X, - -0 X, Xo ()

Now, remarking that:

(i) the number of the analytic functions b,, is finite and depends
only on the above expression of 7S, and so all these functions are
uniformly bounded on every compact subset of w, C w;

(ii) by the same argument of (i), one can find a positive constant
which bounds all the absolute values of the continuous functions with
compact support g,;

(iii) the functions X"a are infinitely differentiable with compact
support contained in s and the number of factors X'« which appear
developing X*(aX; --- X; X;(f)) is finite and depends only on the
expression of vS, so one can find a positive constant with bounds the
absolute values of X"« on s;
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(iv) the function f is analytic on 2 and s is a compact subset of 2;
then it is possible to find a constant N > 0, such that:

1b,,(2) (g* X (@ X, -+ X, (F))| = N**#(m + |p]) !

on a compact subset of w,. Denoting by r the maximum of the numbers
[p| and by ¢ the number of summands of (4), we obtain:

[7S*xaX; -+« X, X; ()] = tN™"(m + 7).
Hence, by choosing a suitable constant C,, we get:
|vSxaX; -+ X, X (f) = CPem !

on a compact subset of w,. This inequality combined with (8) shows us
that Sxaf is analytic on w,, hence on w, and Theorem 6.2 is proved.

Theorems 6.1 and 6.2 state, for composition kernels, that the property
of being analytically very regular is equivalent to that of being analytic
outside the diagonal. This gives us an affirmative answer in this case
to the question studied in [2] for more general analytic kernels.

BIBLIOGRAPHY

1. J. Barros-Neto, Alguns Tipos de Niicleos Distribuicoés, Thesis, Universidade de Sao
Paulo, Brazil, 1960.

2. ———, Analytic Distribution Kernels, Trans. Amer. Math. Soc., 100 No. 3 (1961),
425-438.

3. F. Bruhat, Lectures on Lie Groups and Representations of Locally Compact Groups,
Tata Institute of Fundamental Research, Bombay, 1958.

4. ——, Sur les Répresentations Induites des Groups de Lie, Bull. Soc. Math. France,
84 (1956), 97-205.

5. L. Schwartz, Théorie des Distributions, tome I and II, Hermann and Cie, Paris, 1950.

6. ————, Seminaire 1954-55, Institut Henri Poincare, Paris.
7. ————, Thedrie des Distributions & Valeurs Vectoriels, Ann. de 1’ Inst. Fourier, 1957,
t. 7, p. 1.

YALE UNIVERSITY
AND
FACULDADE DE CIENCIAS EcoNoMmIcAs U.S.P., SA0 PAULO, BRAZIL



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RaLpu S. PHILLIPS A. L. WHITEMAN
Stanford University University of Southern California
Stanford, California Los Angeles 7, California
M. G. ARSovE LoweLL J. PaiGe
University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH D. DERRY H. L. ROYDEN E. G. STRAUS
T. M. CHERRY M. OHTSUKA E. SPANIER F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may’
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. Effective with Volume 13 the price per volume (4 numbers) is $18.00; single issues, $5.00.
Special price for current issues to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $8.00 per volume; single issues
$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics

Vol. 12, No. 2 February, 1962

William George Bade and Robert S. Freeman, Closed extensions of the Laplace

operator determined by a general class of boundary conditions ............. 395
William Browder and Edwin Spanier, H-spaces and duality .................... 411
Stewart S. Cairns, On permutations induced by linear value functions . ........... 415
Frank Sydney Cater, On Hilbert space operators and operator roots of

POIYROMUGLS . .. ..o 429
Stephen Urban Chase, Torsion-free modules over K[x, y]...................... 437
Heron S. Collins, Remarks on affine semigroups ............c.ccouuiinueeennnn.. 449
Peter Crawley, Direct decompositions with finite dimensional factors ............ 457
Richard Brian Darst, A continuity property for vector valued measurable

JURCHIOMS « o oo e e e 469
R. P. Dilworth, Abstract commutative ideal theory ...................cccoovo... 481
P. H. Doyle, III and John Gilbert Hocking, Continuously invertible spaces . . ... ... 499
Shaul Foguel, Markov processes with stationary measure ....................... 505
Andrew Mattei Gleason, The abstract theorem of Cauchy-Weil . ................. 511
Allan Brasted Gray, Jr., Normal subgroups of monomial groups ................. 527
Melvin Henriksen and John Rolfe Isbell, Lattice-ordered rings and function

FIILGS . o o e e et e e 533
Amnon Jakimovski, Tauberian constants for the [J, f(x)] transformations....... 567

Hubert Collings Kennedy, Group membership in semigroups . .
Eleanor Killam, The spectrum and the radical in locally m-con
Arthur H. Kruse, Completion of mathematical systems. . ... ...
Magnus Lindberg, On two Tauberian remainder theorems . . ..

Lionello A. Lombardi, A general solution of Tonelli’s problem

VAFIATIONS . . tii ettt
Marvin David Marcus and Morris Newman, The sum of the ele

Of AMALFIX ..ot e
Michael Bahir Maschler, Derivatives of the harmonic measure

multiply-connected domains . ..........................
Deane Montgomery and Hans Samelson, On the action of SO(
J. Barros-Neto, Analytic composition kernels on Lie groups . . .
Mario Petrich, Semicharacters of the Cartesian product of two
John Sydney Pym, Idempotent measures on semigroups . .. ...
K. Rogers and Ernst Gabor Straus, A special class of matrices .
U. Shukla, On the projective cover of a module and related res
Don Harrell Tucker, An existence theorem for a Goursat problé
George Gustave Weill, Reproducing kernels and orthogonal ke

differentials on Riemann surfaces......................
George Gustave Weill, Capacity differentials on open Riemann
G. K. White, Iterations of generalized Euler functions . .. .....
Adil Mohamed Yaqub, On certain finite rings and ring-logics .



	
	
	

