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1. Introduction^ We study in this report some orthogonal decom-
positions of the space Γh of harmonic differentials of finite norm, on a
Riemann surface W. We obtain generalizations of the known decom-
positions (I)

1 h — L hm ̂ Γ ί hse

' h — * ΛO "I" ' he

We then prove some existence theorems for differentials on W harmonic
except for the singularity dz/(z — ζ), of finite norm on W — Δ, where Δ
is a disk about z = ζ.

A necessary and sufficient condition for their existence is the existence
on I f - J of a differential in Γh( W — S) with nonzero period about
the boundary β of W.

We then construct "Green's differential", "Capacity differentials",
and prove some of their properties on compact bordered Riemann surfaces.
The orthogonal property of Green's differential is extended to open
hyperbolic Riemann surfaces.

2 Some subspaces of Γh.

2A. Let W be a compact bordered Riemann surface, with boundary
β. Partition β into 7 and δ = β — 7 where 7 is a union of contours yi9

We shall define the following subspaces of Γh:

= {ω : o) e Γh, ω = 0 on 7} .

= \o): ω e Γh9 ^ ω - θ} .

Those subspaces are clearly closed. We shall denote by Γh{mΎ) the
subspace Γhe Π Γmy). We shall prove some orthogonal decomposition
theorems.

THEOREM. Γh = Γh{my) + Πisey) n /\*(ββ) .

Proof. Let ω e ί\ and d/* e Γ,*mγ). Then (ω, df*) = \ ωf =
Jβ

ίfyλ ω + \ ωf where fy. is the constant value of / on 7». Now, ifΣ
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770 GEORGES G. WEILL

ω e ΓMsey) Π ΓMoδ), ( ω = 0, and ( ωf = 0. It follows that (ω, df*) = 0.
J Y$ J δ

Conversely, if (ω, df*) = 0, then ΣiΛ.l ω + \ ωf = 0 .
Jγ$ J δ

Select / = 1 on one of the yi9 say 7»0, / = 0 an δ and all other yim

It follows that \ ω = 0. This is true for any contour j i Q . Hence

ωeΓh{sey). Now take}*= 0 on 7; then [<of= 0 for all such /. This

readily implies ω = 0 on S, which proves the theorem.

2B, Define Wy to be the double of W with respect to 7. It is
obtained by partial welding of W along 7. It can be shown by a method
analogous to the one in (I. Chapter V. § 14) that the harmonic differ-
entials which can be continued to Wy form the subspace ΓMoγ) + Γ*ΐw

2C. We shall consider here the subspace:

Γhem = {ω : ω e ΓΛ, ω = dfj = 0 on δ} .

The following theorem gives an orthogonal decomposition of Γh involving

' h{sey)

THEOREM. Γh = ΓtiseΊ) + Γhem n Γhm .

Proof. Let df* e Γhm n Γft.(oS)> ω e / \ . Then (ω, d/) = ( a ι / =

^ / γ . ( ω + ί ω/ = I / γ ί ω. If ωeΓ Λ ( s e V ) , then ί ω = 0, and (ω, df*) =
Jϊj Jδ Jγ,£ Jγ^

0. Conversely if (ω, d/*) = 0, then Σfy. \ ω + \ ωf = 0. Take / = 1
Jγ$ J δ

on 7< o,/ = 0 elsewhere. Then \ α) = 0 for any 7 io and ωeΓh{sey).

2D. The next theorem gives an orthogonal decomposition of Γh9

involving Γhm.

THEOREM. Γh = ΓΛ(oy) + Γ?β(oβ) .

Proo/. Let df* e Γ*β (oδ), o> e ΓΛ. Then (ω, d/*) =\ ωf=\ ωf. If
Jβ JΎ

G ΓMoγ), 1 ω/ = 0 = (ω, d/*). Conversely, if (ω, d/*) - 0, then ( ω / =
_ , jy . . _ J y

0. This readily implies ω = 0 on 7, hence ω e Γft(0V)

2E. We shall now extend our results to open Riemann surfaces.
Let W be an open Riemann surface. Consider a closed partition of the
ideal boundary β into 7 and δ = β — 7. Consider a neighborhood of 5,
say N0(δ), bounded by a set of contours So. δ0 divides TF into
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and W — NQ(δ). We shall exhaust Wo = W — NQ(δ), using a regular
exhaustion {Ωn}. Let ωhm e Γh{oy). The restriction of ωmy) to Ω has a
decomposition:

Where ωhmQ e I\m(Ω) and ωheioBo)Ω e Γ f te(o8o)(β). If β' ID β, ωM 0 7 ) β - ωhmΩ ~
- MheίoδtfΩ' — ^>he(oδo)Ω where the right hand side is an element of

,δo)(β) and therefore is orthogonal to o)hmΩ on β. It follows that

Therefore || ωM o γ ) β | |β increases with β. But it is also bounded, for
the orthogonal decomposition ωh{oy) \Ω = ωmy)Ω + ω*e(Oδo)β shows that
l|ft>Λ(oγ)flllfl < \\ωMoy) \\Ω ^ l|ft>Λ(oy)ll- "We find that | |ωΛ ( f f y ) f l | | f l has a finite
limit and this implies that

II cohmo - ωMoy)Ωf |U —> 0 a s Ω a n d Ωf —> Wo .

For a fixed β0, the triangle inequality gives: || ωhm)O, ~ ωhm)O,f \\ΩQ —> 0
as β', β" —> l̂ o independently of each other. We conclude (I. Chapter
II. Theorem 13C) that ωh{oy)Ω tends to a harmonic limit differential a)hmwQ-
Furthermore:

II Λ) ft) | | » O OQ O > W
II UJh{oy)Ω tJJh(oy)wQ \\Ω * ^ ^ ^ ^ ^ " o

Let now σ* e Γ£ e ( o δ o ). Then (ωhm)WQ, σ*)Ω = (ωMOγ)TFo - ωΛ ( 0 γ ) i 3, σ*); as Ω ->

Wo. Then for S v c f l

(ωy σ*) = lim (α>, (7j) = lim lim (a) — (ϋhms3, σ*)Ω

\(ω,σ*)\2 ^ lim Γlim || ω ~ ωhmΩ\\l\ .

II σ* \\l ^ lim lim || ω - ωMoy)Ω \\2

Ω \\ σ* \\2

W
V->oo [_Ω-+W J

= ljm || ω - ωmy)Ω \\Q. l im || σ* \\2

W .

The last limit being finite, it follows that (α>, σ*) = 0. We conclude
that α)eΓMoS)(ff). Thus Γhm(W) is formed precisely by those differ-
entials which can be approximated by differential of class Γhm{Ω).

We state this result as a theorem.

THEOREM. Γhm(W) is the limit of Γhm{Ω) for Ω-*W in the
sense that ωeΓMVί)(W)ζ=$ there exists differentials ωhmΩ e Γh{oy)(Ω)
such that || ω — ωh{Qy)Ω \\Ω —• 0.

or
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2F. We shall now extend Theorem 2C to open surfaces.

THEOREM. On an arbitrary Riemann surface

' h = *• h(sey) H~ ' A(oy) Π I Λe(θδ)

Proof. It is easy to see that Γh{sey) A_ Πm n ΓJβ(oδ). Let σeΓh{sey)

and ωeΓM0Ϋ) f] Γhe{08). Consider a canonical exhaustion {£?}. Let ω be
approximated in norm by ωΩ e Γhm)(Ω) ΓΊ Γhem(Ω). Then, β being canoni-
cal, (σ, α>J)fl = 0 thus (σ, ω*)Ω = (σ, ω* — ω£) and the inner product can
be made arbitrarily small, while Ω is arbitrarily large. Hence (σ, ω*) = 0
and the orthogonality is proved.

Conversely, if ωeΓh and ω J_ Γϊi8gy)(W), for a canonical 42 let ωh

be the projection of ω, restricted to Ω on Γhm n Γhem. Then ω —
ω1/2 G Γt{sey)(Ω). For β' 3 β, we conclude that ω l β — ω l β, e Γt{seΊ)(Ω)y hence
ω l f l - ω1Ω, ± ω10. Therefore || ω10 - ωJ0, \\l = \\ ω1Q. \\l-\\ ω10 \\l^\\ ω1Q, \\\, -
||ce>ifl||β. It follows that ||&>1/2||fl increases with Ω. But ||ft>lfl|| ^ \\o>\\.
Therefore ωx = \imo^wω1Ω exists and lies in Γhm Π Γhem. Furthermore
because ω — ω1Ω e ΓMsey)(Ω) and every dividing cycle lies in an Ω, it
follows that ω — ω1eΓt{sey)(Ws). On the other hand, ω _L Γ%{sey) by
assumption and ω J_ Γ*{sey). We conclude that a) — ωx and Γh{oy) Π

Γhe(08) 1 Π(sey). ^h(sey) being closed, Π ( s e γ ) IS 1 Γft(08, Π /\e(Oδ).

3 Existence theorem*

3A. We shall now prove some existence theorems for harmonic
differentials with a singularity of the type dz\(z — ξ). Let W be an
open Riemann surface, z = ξ a point of TF. Let us consider a disk j
mapped on | z \ < 1 such that ξ e J. Select rx and r2 positive such that
I ξ\ < T\ < 1*2 < 1- Construct a function e^z) e C2 which has value 1 for
I z I < rx and value 0 for | z \ > r2, and the function e2(z) such that e1 +
e2 = 1 on ΫF.

Let W = TΓ — {2:: 12 I < r j . We shall call α0 the contour \z\ = rx.
Let us assume that on JΓ there exists a reproducing differential for α0,
say σ(a0). To σ(<x0) corresponds an analytic differential on W: ω = σ(α0) +
iσ*(α0). Denoting by g the period of ω around a0, we consider φ =
(2πijq)ω. In the annulus r2 < | 2 | < r2, cZ«/(« — ζ) — φ is exact; let 0
be an analytic function such that dΦ = ds/(s — ξ) — φ in the annulus.
Notice that Φ is defined up to an additive constant. We now construct
the following differential:

Θ = eγdz\(z - ζ) + Φdeλ + e2φ

Θ is an element of C1 and is closed on W punctured at z = ζ. Moreover
Θ — iΘ* = 0 near the singularity and in a boundary neighborhood. Hence
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Θ is square integrable and by de Rham's decomposition theorem:

Θ - iΘ* = ωe0 + ωh + ω% .

Then τ — Θ — ωe{) — iΘ* + ωh + ω% is closed and coclosed in any region
which does not contain z = ξ. τ is therefore harmonic on W except
for the singularity dz\(z — ξ). Such a differential is necessarily unique;
in fact, let τ and τ9 be 2 solutions corresponding to the same Θ. Then
τ — τ9 is harmonic and τ — τ9 e ΓeQ. Therefore τ — τ9 = 0. We shall
remark that two different functions Φ, differing by a constant C will
yield the same τ: for in Θ, Cde, is an element of Γe0, hence immaterial
for the definition of τ.

3B. Let us consider a closed partition of the ideal boundary β of
W into 2 parts 7 and δ, and the corresponding partition into 7' = a0 U 7
and δ for JF. On W we perform the decomposition:

ωh = ω? + ω2

where α>? = ΠM)(W) and ω 2e ΓΛe(oγ)(T7) n Γhm)(W). Then r - i{eλdzl{z-
ξ) + Φdeλ)* + β29? + cc>f + ^2 + β̂!o and T — co2 = ifadzftz — ξ") + Φdex)* +
e2<p + ωf + ωe*0. The left hand side has the same periods about δ as Θ,
and so does the right hand side. It follows that t = τ — ω2 and r*
have the same periods about δ as the given Θ. (They have actually on
W the same periods as Θ).

In particular, if there exists on W a differential φr analytic with
zero period along δ, we can repeat the construction outlined in § 3A and
get differentials τ and τ* with zero periods about δ.

3C. We may write the decomposition

where χ is analytic and ψ is analytic except for the singularity at z — ξ.
If τ and τ* have zero period about δ, the same is true for f and % for:

f = i(τ + if*)

χ = i(τ- it*).

Notice that t = r for 7 = β.

3D. Let Δ be the disk | z \ < rx. On W, (φ + ψ)β e Γhe n ΓΛ0. We
shall call dg = <K<P + ^ ) , where fif is harmonic and constant on every
component of the boundary of W. In Δ, h[dzl(z — ζ) + dzj(z — ζ)] is
the differential of log |z — ζ\. To sum up we have here:

(Θ + 0)/2 = d(β! log I z - ζ I) + d(e2g) .
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By the procedure outlined in § 3A we obtain a differential (τ + τ)/2,
which is harmonic exact. Putting (τ + τ)/2 = dh, h is constant on every
component of β(W).

3E. We show here that one may get a function h which is constant
along β. Let σ(a0) be defined as in § 3A. σ(a0)* e Γt,{W), therefore
σ(a0)* $ Γhe( W). Then σ{a^ has a nonzero period along a0 and
σ(ao)*<£ΓMseΰύQ)(W). It follows that φ o ) ^ Γ ί ( M f l ) and the orthogonal
projection of σ(a0) on Γhe{oβ) f] Γ\{0ΛQ) is not zero. (Theorem 2C.) Let
σ'(aQ) be that projection; using σ'(a0) instead of σ(a0) in the previous
construction one gets a function h with the required property, say hQ.
We suggest for dh0 the name of Green's differential, and for the cor-
responding τ, say τ0, the name of capacity differential.

3F. Let us now consider a closed partition of β into 7 and δ; put
a0 U 7 = 7'. We consider here instead of σ*(a0) the projection of σ*(a0)
on /\ ( s eδ). This is equivalent to subtracting from σ*(a0) a quantity which
is an element of Γϊe{Q8) Π Γt{{riΊ\ (This means that the remaining part
of σ(a0) is still an element of Γhe n /\ 0 ) We get a nonzero projection
if and only if σ(a0) $ ΓMoy) f] Γhe{oyΊ i.e. putting σ(a0) = df,f should have
different constant values on a0 and 7. We shall call the differential τ
thus obtained a capacity differential for the boundary part 7. If 7 is
a component of β, we get the capacity differential of the boundary
component 7.

4 Reproducing properties*

4A. We shall assume first that W is the interior of a compact
bordered surface. Let "us call a the circle \z — ξ\ = r and set Wo —
W — {\z — ξ\ < r}. Let τ0 be Green's differential, and Θo the corre-
sponding singularity. For ω = dfeΓhe we write down the generalized
Green's formula on Wo:

(co, (τ0 + ro)/2) - (ω*, (τ0 + τo)*/2) = 0.

or

( f(τ0 + τo)*/2 - M / * - 0 .

First, ô being 0 on β, [ hQdf* = 0. Therefore:

/(τ 0 + τo)*/2 - ( /(τ 0 + τo)*/2 - M / * .
/3 Jα

(

Let now TΓ0 —> TΓ, or r —> 0. For r = ε on | z \ = r, h0 = log | z — ζ\ + ηλ(z).
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where η^z) is bounded. It follows that limr_>0\ hQdf* = 0. Now on | z \ < r,
Jcύ

ifa + τ«)* = (θ + β/2)* + ηlz) ,

where r/^z) is bounded. Moreover:

{θ + θ)*/2 = (-iθ + iθ)j2 = -i(θ - θ)/2 = cίarg(z - ζ) .

Therefore:

lim \ /(τ0 + ro)*/2 = lim ί fd arg (2 - ζ) = 2πf(ζ) .
r->0 J α r^O J cύ

We now may state the following theorem:

THEOREM. For all harmonic functions f or Wy the differential
τ0 + ro/2 has the following reproducing property:

\τ0 + F0)*/2 - 2πf(ζ) .

4B. If we now use h instead of h0 we need to restrict df to the
class ΓheΠΓte and state:

THEOREM. For all harmonic functions f on W whose conjugate
periods vanish along all dividing cycles, the differential τ + τ\2 satisfies:

(r + τ)/2 = 2πf(ξ) .

4C. Green's differential enjoys another important property:

THEOREM. Lei dfeΓhei and τ0 be Green's differential. Then:

{df, (τ0 + fo)*/2) - 0 .

Proo/. (d/, (τ0 + τo)*/2) = (df, (θ0 + θo)*/2)

= - lim ( /(β0 + θo)/2 - lim ί f(θ0 + θo)/2 .

4D. We shall now extend Theorem 4C to open Riemann surfaces.
Let W be an open Riemann surface and {£?} a canonical exhaustion. Let
dFΩ = (φ0Ω + φQΩ)/2; we know t h a t dFΩ e Γhe{oβ) n Γma) on β — δ. If

dί 7 = (φ0 + ^0)/2, we obtain easily by a reasoning analogous to the one
in (I, Chapter V. § 14. C) that

\im\\dF-dFQ\\0-s = 0 .
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We recall that (Θ + θ)/2 = d(e1 \og\z-ζ\) + d(etF). We now have:

(df, (τ0 + ro)*/2) = (df, (ΘQ + <90)*/2)

Ω-+W

= lim (df, i(θ, + ©„)* - i(θw + Θofl)*)fl

= lim (df, d(etF)* - d(e2F)*)0

= lim (<2/f d(e2F)* - d(e2FΩ)*)^s .
Ω-+W

Now let A be the compact set {z: rx ^ | z \ S r2} and let Ω — δ = A U A'.
We have:

Because \\dF — dFo\\Λ-+0 as Ω-+W, F->FΩ uniformly on A hence
l i m ^ || de2(F - FΩ) \\A = 0. Now on A'

lim || d F - dFx, |U, ^ lim || d F - dFΩ \\Ω-δ - 0 .
Ω-*W Ω-*W

It follows that l i m ^ || d{e2F)* - d(βaFΛ)* ||fl_δ = 0 and | (d/, (τ0 + f 0)/2) | ^
l im^^ || d/||fl_811 d{e2F)* — d{e2FΩ)* ||fl_8 = 0, which proves the theorem.
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