
Pacific Journal of
Mathematics

ON CERTAIN FINITE RINGS AND RING-LOGICS

ADIL MOHAMED YAQUB

Vol. 12, No. 2 February 1962



ON CERTAIN FINITE RINGS AND RING-LOGICS

ADIL YAQUB

Introduction. Boolean rings (By x , +) and Boolean logics ( = Boolean
algebras) (B, n, *) though historically and conceptionally different, are
equationally interdefinable in a familiar way [6]. With this equational
interdefinability as motivation, Foster introduced and studied the theory
of ring-logics. In this theory, a ring (or an algebra) R is studied modulo
K, where K is an arbitrary transformation group in R. The Boolean
theory results from the special choice, for K, of the "Boolean group",
generated by x* = 1 — x (order 2, #** = x). More generally, in a com-
mutative ring (R, x, +) with identity 1, the natural group N, generated
by αΓ= 1 + x (with αf= x — 1 as inverse) proved to be of particular
interest. Thus, specialized to N, a commutative ring with identity
(R, x, +) is called a ring-logic, mod N if (1) the + of the ring is
equationally definable in terms of its TV-logic (R, x, ~, ̂ ), and (2) the +
of the ring is fixed by its ΛΓ-logic. Several classes of ring-logics (modulo
suitably chosen groups) are known [1; 2; 7], and the object of this manu-
script is to extend further the class of ring-logics. Indeed, we shall
prove the following:

THEOREM 1. Let R be any finite commutative ring with zero radical.
Then, R is a ring-logic, mod N.

1. The finite field case. Let (R, x, +) be a commutative ring with
identity 1. We denote the generator of the natural group by aΓ = 1 +
x, with inverse x" — x — 1. Following [1], we define a x J) = (a" x b~y.
It is readily verified that axj) = a + b + db.

Let (Fpk9 x, +) be a finite field with exactly pk elements (pprime).
We now have the following:

THEOREM 2. (Fpk, x, +) is a ring logic (mod N). Indeed, the ring
(field) + is given by the following N-logical formula:

(1.1) x + y = {(χ(yχph-T)} x

Proof. It is well known that in the Galois field Fpk, we have

(1.2) ^ M = l,ae^,a^0.

we now distinguish two cases:
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Case 1. Suppose x φ 0. Then, by (1.2), the right-side of (1.1)
reduces to {x(l + yxpk~2)} x Jd = x + yx*16-1 = x + y, since ((α**-1)")2 =

(Γ)2 = 0; α x J) = α. This proves (1.1).

Case 2. Suppose a? = 0. Then, oΓ = 1 + a? = 1. Ήence, the right
side of (1.1) reduces to 0 x Jy(((FY} = y = 0 + y = x + y, since ((xpk~Yy =
(O )̂2 = 1; 0 x ^a = a. Again, (1.1) is verified. Hence, (Fpkf x, +) is
equationally definable in terms of its JV-logic. Next, we show that
(Fpk, x, +) is fixed by its JV-logic. Suppose then that there exists
another ring (Fpk, x, + '), with the same class of elements Fpk and the
same " x " as (FJc, x, +) and which has the same logic as (Fpk, x, +).
To prove that + ' = +. Again, we distinguish two cases.

Case 1. Supposes Φ 0. Then, using (1.2), we have x +'y = x(l+f

yx**-2) = χ(yχ**-*)~ = x(l + yxplc~2) = x + y, since, by hypothesis, αΓ =

1 + x = l + ' x.

Case 2. Suppose x = 0. Then, x + ' y = 0 +'y — y = 0 + y = a? + y.
Therefore, +' = +, and the theorem is proved.

COROLLARY. (FP, X, +), the ring (field) of residues (modp), p
prime, is a ring-logic (mod N) the + being given by setting k = 1 in
(1.1):

(1.3) x + y = {(χ(yχ*-T)} x Avi^ΓY}.

2. The general case. In attempting to extend Theorem 2 to any
finite commutative ring with zero radical, the following concept of inde-
pendence, introduced by Foster [3], is needed.

DEFINITION. Let A = {Alf A2, , An} be a finite set of algebras
of the same species Sp. We say that the algebras Al9 A21 , An satisfy
the Chinese residue condition, or are independent, if, corresponding to
each set {φ{} of expressions of species Sp (i — 1, ••, n), there exists at
least on expression Ψ such that Ψ = φ{ (mod At) (i = 1, , n). By an
expression we mean some composition of one or more indeterminate-
symbols ξ, •••, in terms of the primitive operations of Alf A2, •• ,i4n;
Ψ = φ (mod A), also written Ψ = φ(A), means that this is an identity
of the Algebra A.

We shall now extend the concept of ring-logic to the direct sum of
certain ring-logics. We shall denote the direct sum of the rings Aλ and
A2 by Aλ © A2. The direct power Am will denote A 0 A 0 0 A (m
summands).
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THEOREM 3. Let (Al9 x , + ), , (Aε, x , + ) be a finite set of ring-
logics (mod N), and let the N-logics (Au x , ", "0, ' "> (At, x , "\ ^) ί>β m-
dependent. Then A = AΓ1 0 0 Afέ is αίso α ring-logic (mod iV).

Proof. Since A; is a ring-logic (mod ΛΓ), there exist an ΛMogical
expression ψi such that, for every xif y{ e A{ (i — 1, , t),

Since the AΓ-logics are independent, there exists an expression X such
that

X =
(^t(mo

Therefore, for every xi9 y{ e A{ (i — 1, , t),

I rτ\ "V ~Vί w </s N / \

Hence, the TV-logical expression X represents the + of each A{. Since
" + " and " x " are component-wise in A, therefore, for all x9yeA9

x + y = -3Γ(a?, ?/; x , ", " ) .

Hence, A is equationally definable in terms of its iV-logic. Next, we
show that A is fixed by its iV-logic. Suppose there exists α + ' such
that (A, x, +') is a ring, with the same class of elements A and the same
" x " as the ring (A, x , + ) , and which has the same logic (A, x , ~, ~) as
the ring (A, x , + ) . To prove that + ' = + .

Now, let a = (αn, , α l m i, α21, , α2m2, , αβl, , α ί m ί) e A. A new
+ ' in A defines and is defined by new +ί in Au +'2, in A2, , +J in At9

such that (A4, x , +•) is a ring (i = 1, , t); i.e., for α, 6 e A,

(2.1) α + ' 6 = (αu, •••, α21, •••, atl1 •••) +'(&u, •••, 621, •••, btl9 •••)

Furthermore, the assumption that (A, x , +') has the same logic as
(A, x, + ) is equivalent to the assumption that (Au x , + 0 has the same
logic as (Alf x , + ) , and similarly for (Ai9 x , +•) and (Ai9 x , + ) (i = 2,
• ••,£)• Since (Al99x + ) is a ring-logic, and hence with its + fixed,
it follows that + ί = + ; similarly + $ = + , . . . , + J = + . Hence, using
(2.1), + ' — + , and the proof is complete.

A careful examination of the proof of Theorem 3 shows that the
independence of the logics was not used in the "fixed" part of the proof.
Hence, we have the following

COROLLARY. Let (Al9 x , + ) , , {At9 x , + ) be a finite set of ring-
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logics (modN). Then, AT1 © ••• © A p * is fixed by its N-logic.

We now examine the independence of the logics (F^kiy x , +){i —

1, •••,*).

THEOREM 4. Let ply , pt be distinct primes, and let F^ki be the
mi direct power of the Galois field Fv^ίi (i = 1, •••,£)• Then the logics
(Fp.%, x , ", v ) (i = 1, , t) are independent.

Proof. Let n{ = p\\ and let P(i) = Πi=i%> J ^ { L s t F ; = F * Λ
(i = 1, •••, £). Clearly, P(ΐ) and w< are relatively prime. Hence, there
exist integers r< > 0, β< > 0 such that riP(i) — s^ = 1. Define e(ίc) and
<5(#) as follows:

e(x) = a.ci-«<»2-i)—(»β-i); ^(a.) = φ ) x ^((ε(x))^)2 .

It is easily seen that d{x) — 1, x e Ff4 (ΐ = 1, , t). Let α?"fc =
(••• ((αO'X " Γ> fc iterations. Then one easily verifies that for i Φ j ,

Now, to prove the independence of the logics (JFV*S X , " ,") (i — 1, , t),
let {δ' } be any set of t expressions of species x ,^, v ; i.e., a primitive
composition of indeterminate-symbols in terms of the operations x , ^, ".
Let X = 5 ^ x ^ δ ^ 2

 χ ^ * x ^^ί^ί. Then it is easily seen that X=<5
(mod Fίmi) (i — 1, , t), since α x Λ 0 = α = 0 x Λ α , and the theorem is proved.

We are now in a position to prove the following theorem (see intro-
duction).

THEOREM 5. Any finite commutative ring R with zero radical is
a ring-logic (mod N).

Proof. First, if R consists of one element, then R = {0}. Clearly,
R is a ring-logic (mod N) in this case, since a + b — a xb, for example.
Hence, assume that R has more than one element. It is well known
(see [5]) that any finite commutative ring R with zero radical and with
more than one element is isomorphic to the complete direct sum of a
finite number of finite fields FpJcl9 , FPtkt: i.e., R = 2 ^ © ••• φ
Fnkt. Now, by Theorem 2, each (FPιkif x , + ) is a ring-logic (mod N).
Hence, by the corollary to Theorem 3, Fplkλ © © FPLkt is fixed by
its iNΓ-logic. Therefore, by the above isomorphism, R, too, is fixed by
its iV-logic, and there only remains to show that the + of R is equation-
ally definable in terms of its iV-logic. To this end, we distinguish two
cases.
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Case 1. Suppose pl9 ,p t are all distinct. By Theorem 2, (FPιkίf x , + )
is a ring-logic (mod N) (i = 1, , t). By Theorem 4 (with m1— =
m t = 1), the jV-logics (FpJcif x , ", ") are independent (ί = 1, •••,*)• There-
fore, by Theorem 3 (with m2 = = mt = 1), the direct sum FPιkx 0
• Θ -P^A ( a n ( i hence R, by the above isomorphism) is a ring-logic
(mod N). Hence, in particular, the + of R is equationally definable in
terms of its ΛMogic.

Case 2. Suppose pl9 *"ypt are not all distinct. Let qlf

 m ,qr be
the distinct primes in {pl9 •••,#*}. Since the Galois fields Fpki and
Fpkj are both subfields of Fpk{kjf it is easily seen that FpJcr © ©
FPtkt is a subring of a direct sum of direct powers of Fqlίii (i = 1, , r);
i.e., l^Aά© ••• Θ ^ Λ is a subring of F£%® ••• 0 F ; i , for some
positive integers /^, •• ,hr,m19 « , m r . Now, the rest of the proof is
similar to that of Case 1. Thus, by Theorem 2, (Fqthi9 x , + ) is a ring-
logic (mod N) (i — 1, , r) . By Theorem 4, the ΛΓ-logics (FHhi9 x , ", ")
are idependent (i = 1, , r) . Hence, by Theorem 3, F^hλ 0 0 Fq

M/hr

is a ring-logic (mod N). Therefore, in particular, the + of F^hγ 0 0
Fζrhr is equationally definable in terms of its iV-logic. Hence, afortiori,
the + of the subring Fpfa 0 0 FPtkt (and therefore the + of R,
by the above isomorphism) is equationally definable in terms of the N-
logic of R. Therefore, R is a ring-logic (mod N), and the theorem is
proved.

3 p*rings and parings. We shall now make an attempt to gener-
alize Theorem 3, and apply this generalization to p-rings and pk-rings.
We first observe that the proof of Theorem 3 does not depend on the
cardinality of the powers m t . Furthermore, the proof still remains valid
if one considers a subdirect sum of subdirect powers of Ai instead of
the complete direct sum of direct powers of A{ (i — 1, , t). In view
of this, Theorem 3 can now be cast in the following more general form.

THEOREM 3'. Let (Alf x , + ) , « ,(A{, x , + ) be a finite set of ring-
logics (mod N)9 and let the N-logics (Alf x , " , " ) , , (At9 x , ~, ") be inde-
pendent. Let A be any subdirect sum with identity of (not necessarily
finite) subdirect powers of A{ (i = 1, , t). Then A is a ring-logic
(mod N).

Now, it is well known (see [2; 4]) that every p-ring (p prime) is
isomorphic to a subdirect power of FP9 and every paring (p prime) is
isomorphic to a subdirect power of Fpk. Hence, by letting t = 1 and
Ax = Fp (respectively, Fpk) in Theorem 3', we obtain the following corol-
lary (compare with [1; 2]).
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COROLLARY. Any p-ring ivith identity, as well as any pk-ring with
identity, is a ring-logic (mod Λτ).

In conclusion, I wish to express my gratitude to the referee for
his valuable suggestions.
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