Pacific Journal of Mathematics

ON CERTAIN FINITE RINGS AND RING-LOGICS

ADIL MOHAMED YAQUB

Vol. 12, No. 2 February 1962

ON CERTAIN FINITE RINGS AND RING-LOGICS

ADIL YAQUB

Introduction. Boolean rings $(B, \times, +)$ and Boolean logics (=Boolean algebras) $(B, \cap, *)$ though historically and conceptionally different, are equationally interdefinable in a familiar way [6]. With this equational interdefinability as motivation. Foster introduced and studied the theory of ring-logics. In this theory, a ring (or an algebra) R is studied modulo K, where K is an arbitrary transformation group in R. The Boolean theory results from the special choice, for K, of the "Boolean group", generated by $x^* = 1 - x$ (order 2, $x^{**} = x$). More generally, in a commutative ring $(R, \times, +)$ with identity 1, the natural group N, generated by x = 1 + x (with x = x - 1 as inverse) proved to be of particular interest. Thus, specialized to N, a commutative ring with identity $(R, \times, +)$ is called a ring-logic, mod N if (1) the + of the ring is equationally definable in terms of its N-logic $(R, \times, \hat{}, \check{})$, and (2) the + of the ring is *fixed* by its N-logic. Several classes of ring-logics (modulo suitably chosen groups) are known [1; 2; 7], and the object of this manuscript is to extend further the class of ring-logics. Indeed, we shall prove the following:

Theorem 1. Let R be any finite commutative ring with zero radical. Then, R is a ring-logic, mod N.

1. The finite field case. Let $(R, \times, +)$ be a commutative ring with identity 1. We denote the generator of the natural group by $x^{\hat{}} = 1 + x$, with inverse $x^{\check{}} = x - 1$. Following [1], we define $a \times b = (a^{\hat{}} \times b^{\hat{}})^{\check{}}$. It is readily verified that axb = a + b + ab.

Let $(F_{p^k}, \times, +)$ be a finite field with exactly p^k elements (p prime). We now have the following:

THEOREM 2. $(F_v k, \times, +)$ is a ring logic (mod N). Indeed, the ring (field) + is given by the following N-logical formula:

$$(1.1) x + y = \{(x(yx^{p^{k-2}})^{\hat{}})\} \times \{y((x^{p^{k-1}})^{\hat{}})^2\}.$$

Proof. It is well known that in the Galois field F_{r^k} , we have

$$a^{p^{k-1}} = 1, \, a \in F_{nk}, \, a \neq 0.$$

we now distinguish two cases:

Received August 29, 1961.

- Case 1. Suppose $x \neq 0$. Then, by (1.2), the right-side of (1.1) reduces to $\{x(1 + yx^{p^{k-2}})\} \times 0 = x + yx^{p^{k-1}} = x + y$, since $((x^{p^{k-1}}))^2 = (1)^2 = 0$; $\alpha \times 0 = \alpha$. This proves (1.1).
- Case 2. Suppose x=0. Then, x = 1 + x = 1. Hence, the right side of (1.1) reduces to $0 \times \{y((0)^2\} = y = 0 + y = x + y, \text{ since } ((x^{p^k-1})^2)^2 = (0)^2 = 1; 0 \times a = a$. Again, (1.1) is verified. Hence, $(F_{p^k}, \times, +)$ is equationally definable in terms of its N-logic. Next, we show that $(F_pk, \times, +)$ is fixed by its N-logic. Suppose then that there exists another ring $(F_pk, \times, +')$, with the same class of elements F_pk and the same "\times" as $(F_pk, \times, +)$ and which has the same logic as $(F_pk, \times, +)$. To prove that +' = +. Again, we distinguish two cases.
- Case 1. Suppose $x \neq 0$. Then, using (1.2), we have $x + y = x(1 + yx^{p^{k-2}}) = x(yx^{p^{k-2}})^{\hat{}} = x(1 + yx^{p^{k-2}}) = x + y$, since, by hypothesis, $x^{\hat{}} = 1 + x = 1 + x$.
- Case 2. Suppose x = 0. Then, x + 'y = 0 + 'y = y = 0 + y = x + y. Therefore, +' = +, and the theorem is proved.

COROLLARY. $(F_p, \times, +)$, the ring (field) of residues (mod p), p prime, is a ring-logic (mod N) the + being given by setting k = 1 in (1.1):

$$(1.3) x + y = \{(x(yx^{p-2})^{\hat{}})\} \times \{y((x^{p-1})^{\hat{}})^2\}.$$

2. The general case. In attempting to extend Theorem 2 to any finite commutative ring with zero radical, the following concept of independence, introduced by Foster [3], is needed.

DEFINITION. Let $\overline{A}=\{A_1,A_2,\cdots,A_n\}$ be a finite set of algebras of the same species Sp. We say that the algebras A_1,A_2,\cdots,A_n satisfy the *Chinese residue condition*, or are *independent*, if, corresponding to each set $\{\varphi_i\}$ of expressions of species Sp $(i=1,\cdots,n)$, there exists at least on expression Ψ such that $\Psi=\varphi_i \pmod{A_i}$ $(i=1,\cdots,n)$. By an expression we mean some composition of one or more indeterminate-symbols ξ,\cdots , in terms of the primitive operations of A_1,A_2,\cdots,A_n ; $\Psi=\varphi\pmod{A}$, also written $\Psi=\varphi(A)$, means that this is an identity of the Algebra A.

We shall now extend the concept of ring-logic to the direct sum of certain ring-logics. We shall denote the direct sum of the rings A_1 and A_2 by $A_1 \oplus A_2$. The direct power A^m will denote $A \oplus A \oplus \cdots \oplus A$ (m summands).

THEOREM 3. Let $(A_1, \times, +), \dots, (A_t, \times, +)$ be a finite set of ringlogics (mod N), and let the N-logics $(A_1, \times, ^{\hat{}}, \check{}), \dots, (A_t, \times, ^{\hat{}}, \check{})$ be independent. Then $A = A_1^{m_1} \oplus \cdots \oplus A_t^{m_t}$ is also a ring-logic (mod N).

Proof. Since A_i is a ring-logic (mod N), there exist an N-logical expression φ_i such that, for every $x_i, y_i \in A_i \ (i = 1, \dots, t)$,

$$x_i + y_i = \varphi_i = \varphi_i(x_i, y_i; \times, ^,)$$
.

Since the N-logics are independent, there exists an expression X such that

$$X = egin{cases} arphi_1 (\operatorname{mod} A_1) \ dots \ \ dots \ \ dots \ dots \ dots \ dots \ dots \ dots \ \ dots \ dots \ \ dots \ \ \$$

Therefore, for every $x_i, y_i \in A_i (i = 1, \dots, t)$,

$$x_i + y_i = \varphi_i = X = X(x_i, y_i; \times, \hat{,})$$
.

Hence, the N-logical expression X represents the + of each A_i . Since "+" and " \times " are component-wise in A, therefore, for all $x, y \in A$,

$$x + y = X(x, y; \times, ^{\wedge}, ^{\vee}).$$

Hence, A is equationally definable in terms of its N-logic. Next, we show that A is fixed by its N-logic. Suppose there exists a+' such that $(A, \times, +')$ is a ring, with the same class of elements A and the same " \times " as the ring $(A, \times, +)$, and which has the same logic $(A, \times, ^{\hat{}}, ^{\check{}})$ as the ring $(A, \times, +)$. To prove that +' = +.

Now, let $a = (a_{11}, \dots, a_{1m_1}, a_{21}, \dots, a_{2m_2}, \dots, a_{t1}, \dots, a_{tm_t}) \in A$. A new +' in A defines and is defined by new +'_i in $A_1, +'_2$, in $A_2, \dots, +'_t$ in A_t , such that $(A_i, \times, +'_i)$ is a ring $(i = 1, \dots, t)$; i.e., for $a, b \in A$,

$$(2.1) a +' b = (a_{11}, \dots, a_{21}, \dots, a_{t1}, \dots) +' (b_{11}, \dots, b_{21}, \dots, b_{t1}, \dots)$$

$$= (a_{11} +'_1 b_{11}, \dots, a_{21} +'_2 b_{21}, \dots, a_{t1} +'_t b_{t1}, \dots).$$

Furthermore, the assumption that $(A, \times, +')$ has the same logic as $(A, \times, +)$ is equivalent to the assumption that $(A_1, \times, +'_1)$ has the same logic as $(A_1, \times, +)$, and similarly for $(A_i, \times, +'_i)$ and $(A_i, \times, +)$ $(i = 2, \dots, t)$. Since $(A_1, \times, +)$ is a ring-logic, and hence with its + fixed, it follows that $+'_1 = +$; similarly $+'_2 = +, \dots, +'_t = +$. Hence, using (2.1), +' = +, and the proof is complete.

A careful examination of the proof of Theorem 3 shows that the independence of the logics was *not* used in the "fixed" part of the proof. Hence, we have the following

COROLLARY. Let $(A_1, \times, +), \cdots, (A_t, \times, +)$ be a finite set of ring-

logics (mod N). Then, $A_1^{m_1} \oplus \cdots \oplus A_t^{m_t}$ is fixed by its N-logic.

We now examine the independence of the logics $(F_{p_i}^{m_i}k_i, \times, +)$ $(i = 1, \dots, t)$.

THEOREM 4. Let p_1, \dots, p_t be distinct primes, and let $F_{p_i^*}^{m_i}k_i$ be the m_i direct power of the Galois field $F_{p_i}k_i$ $(i=1,\dots,t)$. Then the logics $(F_{p_i^*}^{m_i}k_i, \times, \hat{\ }, \check{\ })$ $(i=1,\dots,t)$ are independent.

Proof. Let $n_i = p_i^{k_i}$, and let $P(i) = \prod_{j=1}^t n_j, j \neq i$. Let $F_i = F_{p_i} k_i$ $(i = 1, \dots, t)$. Clearly, P(i) and n_i are relatively prime. Hence, there exist integers $r_i > 0$, $s_i > 0$ such that $r_i P(i) - s_i n_i = 1$. Define $\varepsilon(x)$ and $\delta(x)$ as follows:

$$\varepsilon(x) = x^{(n_1-1)(n_2-1)\cdots(n_t-1)}; \, \delta(x) = \varepsilon(x) \times ((\varepsilon(x))^{\check{}})^2.$$

It is easily seen that $\delta(x) = 1$, $x \in F_i^{m_i}$ $(i = 1, \dots, t)$. Let $x^{\hat{}} = (\dots ((x^{\hat{}})^{\hat{}})^{\hat{}} \dots)^{\hat{}}$, k iterations. Then one easily verifies that for $i \neq j$,

$$w_i = w_i(x) = (\delta(x))^{\hat{}_{s_in_i}} = egin{cases} 1 \pmod{F_i^{m_i}} \ 0 \pmod{F_i^{m_j}} \end{cases}.$$

Now, to prove the independence of the logics $(F_i^{m_i}, \times, \hat{\ }, \check{\ })$ $(i=1, \cdots, t)$, let $\{\delta_i'\}$ be any set of t expressions of species $\times, \hat{\ }, \check{\ };$ i.e., a primitive composition of indeterminate-symbols in terms of the operations $\times, \hat{\ }, \check{\ }.$ Let $X = \delta_1' w_1 \times \hat{\ } \delta_2' w_2 \times \hat{\ } \cdots \times \hat{\ } \delta_i' w_t$. Then it is easily seen that $X = \delta_i' \pmod{F_i^{m_i}}$ $(i=1, \cdots, t)$, since $a \times \hat{\ } 0 = a = 0 \times \hat{\ } a$, and the theorem is proved.

We are now in a position to prove the following theorem (see introduction).

THEOREM 5. Any finite commutative ring R with zero radical is a ring-logic (mod N).

Proof. First, if R consists of one element, then $R = \{0\}$. Clearly, R is a ring-logic (mod N) in this case, since $a + b = a \times b$, for example. Hence, assume that R has more than one element. It is well known (see [5]) that any finite commutative ring R with zero radical and with more than one element is isomorphic to the complete direct sum of a finite number of finite fields $F_{p_1}k_1, \dots, F_{p_l}k_l$: i.e., $R \cong F_{p_l}k_1 \oplus \dots \oplus F_{p_l}k_l$. Now, by Theorem 2, each $(F_{p_l}k_i, \times, +)$ is a ring-logic (mod N). Hence, by the corollary to Theorem 3, $F_{p_l}k_l \oplus \dots \oplus F_{p_l}k_l$ is fixed by its N-logic. Therefore, by the above isomorphism, R, too, is fixed by its N-logic, and there only remains to show that the + of R is equationally definable in terms of its N-logic. To this end, we distinguish two cases.

- Case 1. Suppose p_1, \dots, p_t are all distinct. By Theorem 2, $(F_{p_t}k_i, \times, +)$ is a ring-logic (mod N) $(i=1, \dots, t)$. By Theorem 4 (with $m_1 = \dots = m_t = 1$), the N-logics $(F_{p_t}k_i, \times, ^{\wedge}, ^{\vee})$ are independent $(i=1, \dots, t)$. Therefore, by Theorem 3 (with $m_1 = \dots = m_t = 1$), the direct sum $F_{p_t}k_1 \oplus \dots \oplus F_{p_t}k_t$ (and hence R, by the above isomorphism) is a ring-logic (mod N). Hence, in particular, the + of R is equationally definable in terms of its N-logic.
- Case 2. Suppose p_1, \dots, p_t are not all distinct. Let q_1, \dots, q_r be the distinct primes in $\{p_1, \dots, p_t\}$. Since the Galois fields $F_n k_i$ and $F_p k_j$ are both subfields of $F_p k_i k_j$, it is easily seen that $F_p k_i \oplus \dots \oplus F_p k_t$ is a subring of a direct sum of direct powers of $F_{q_i} k_i$ $(i = 1, \dots, r)$; i.e., $F_{p_i} k_1 \oplus \dots \oplus F_{p_i} k_t$ is a subring of $F_{q_1}^{m_1} k_1 \oplus \dots \oplus F_{q_r}^{m_r} k_r$, for some positive integers $h_1, \dots, h_r, m_1, \dots, m_r$. Now, the rest of the proof is similar to that of Case 1. Thus, by Theorem 2, $(F_{q_i} k_i, \times, +)$ is a ring-logic (mod N) $(i = 1, \dots, r)$. By Theorem 4, the N-logics $(F_{q_i} k_i, \times, ^{\wedge}, ^{\wedge})$ are idependent $(i = 1, \dots, r)$. Hence, by Theorem 3, $F_{q_1}^{m_1} k_1 \oplus \dots \oplus F_{q_r}^{m_r} k_r$ is a ring-logic (mod N). Therefore, in particular, the + of $F_{q_1}^{m_1} k_1 \oplus \dots \oplus F_{q_r}^{m_r} k_r$ is equationally definable in terms of its N-logic. Hence, afortiori, the + of the subring $F_{p_1} k_1 \oplus \dots \oplus F_{p_t} k_t$ (and therefore the + of R, by the above isomorphism) is equationally definable in terms of the N-logic of R. Therefore, R is a ring-logic (mod N), and the theorem is proved.
- 3. p-rings and p^k -rings. We shall now make an attempt to generalize Theorem 3, and apply this generalization to p-rings and p^k -rings. We first observe that the proof of Theorem 3 does not depend on the cardinality of the powers m_i . Furthermore, the proof still remains valid if one considers a subdirect sum of subdirect powers of A_i instead of the complete direct sum of direct powers of A_i $(i = 1, \dots, t)$. In view of this, Theorem 3 can now be cast in the following more general form.
- THEOREM 3'. Let $(A_1, \times, +), \dots, (A_t, \times, +)$ be a finite set of ringlogics (mod N), and let the N-logics $(A_1, \times, ^{\hat{}}, ^{\hat{}}), \dots, (A_t, \times, ^{\hat{}}, ^{\hat{}})$ be independent. Let A be any subdirect sum with identity of (not necessarily finite) subdirect powers of A_i $(i = 1, \dots, t)$. Then A is a ring-logic (mod N).

Now, it is well known (see [2;4]) that every p-ring (p prime) is isomorphic to a subdirect power of F_p , and every p^k -ring (p prime) is isomorphic to a subdirect power of F_{p^k} . Hence, by letting t=1 and $A_1=F_p$ (respectively, F_{p^k}) in Theorem 3', we obtain the following corollary (compare with [1;2]).

COROLLARY. Any p-ring with identity, as well as any p^k -ring with identity, is a ring-logic (mod N).

In conclusion, I wish to express my gratitude to the referee for his valuable suggestions.

REFERENCES

- 1. A. L. Foster, p-rings and ring-logics, University California Publ., 1 (1951), 385-396.
- 2. _____, pk-rings and ring-logics, Ann. Scu. Norm. Pisa, 5 (1951), 279-300.
- 3. ———, Unique subdirect factorization within certain classes of universal algebras, Math. Z., **62** (1955), 171-188.
- 4. N. H. McCoy and D. Montgomery, A representation of generalized Boolean riugs, Duke Math. J., 3 (1937), 455-459.
- 5. N. H. McCoy, Rings and Ideals, Carus Math Monog., 8 (1947).
- 6. M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Math. Soc., 40 (1936), 37-111.
- 7. A. Yaqub, On the theory of ring-logics, Can. J. Math., 8 (1956), 323-328.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

M. G. Arsove University of Washington Seattle 5, Washington A. L. WHITEMAN

University of Southern California Los Angeles 7, California

LOWELL J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH T. M. CHERRY D. DERRY M. OHTSUKA H. L. ROYDEN E. SPANIER E. G. STRAUS F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 12, No. 2

February, 1962

operator determined by a general class of boundary conditions	395
William Browder and Edwin Spanier, <i>H-spaces and duality</i>	411
Stewart S. Cairns, On permutations induced by linear value functions	415
Frank Sydney Cater, On Hilbert space operators and operator roots of	
polynomials	429
Stephen Urban Chase, <i>Torsion-free modules over</i> $K[x, y]$	437
Heron S. Collins, <i>Remarks on affine semigroups</i>	449
Peter Crawley, Direct decompositions with finite dimensional factors	457
Richard Brian Darst, A continuity property for vector valued measurable	
functions	469
R. P. Dilworth, Abstract commutative ideal theory	481
P. H. Doyle, III and John Gilbert Hocking, <i>Continuously invertible spaces</i>	499
Shaul Foguel, Markov processes with stationary measure	505
Andrew Mattei Gleason, The abstract theorem of Cauchy-Weil	511
Allan Brasted Gray, Jr., Normal subgroups of monomial groups	527
Melvin Henriksen and John Rolfe Isbell, Lattice-ordered rings and function	
rings	533
Amnon Jakimovski, Tauberian constants for the $[J, f(x)]$ transformations	567
Hubert Collings Kennedy, Group membership in semigroups	577
Eleanor Killam, The spectrum and the radical in locally m-convex algebras	581
Arthur H. Kruse, Completion of mathematical systems	589
Magnus Lindberg, On two Tauberian remainder theorems	607
Lionello A. Lombardi, A general solution of Tonelli's problem of the calculus of	
variations	617
Marvin David Marcus and Morris Newman, <i>The sum of the elements of the powers</i>	
of a matrix	627
Michael Bahir Maschler, Derivatives of the harmonic measures in	
multiply-connected domains	637
Deane Montgomery and Hans Samelson, <i>On the action of</i> SO(3) <i>on S</i> ⁿ	649
J. Barros-Neto, Analytic composition kernels on Lie groups	661
Mario Petrich, Semicharacters of the Cartesian product of two semigroups	679
John Sydney Pym, Idempotent measures on semigroups	685
K. Rogers and Ernst Gabor Straus, <i>A special class of matrices</i> .	699
U. Shukla, On the projective cover of a module and related results.	709
Don Harrell Tucker, An existence theorem for a Goursat problem.	719
George Gustave Weill, Reproducing kernels and orthogonal kernels for analytic	700
differentials on Riemann surfaces	729
George Gustave Weill, Capacity differentials on open Riemann surfaces	769
G. K. White, Iterations of generalized Euler functions	777
Adil Mohamed Yaqub, On certain finite rings and ring-logics	785