Pacific Journal of Mathematics

ON p-AUTOMORPHIC p-GROUPS

JAMES ROBERT BOEN

Vol. 12, No. 3 March 1962

ON p-AUTOMORPHIC p-GROUPS

J. R. Boen

In a paper to appear, G. Higman has "classified" the finite 2-groups whose involutions are permuted cyclically by their automorphism groups [1]. He found that such a group is either generalized quaternion, abelian of type $(2^n, \dots, 2^n)$, or of exponent four and class two. He also proved that a finite p-group with an automorphism permuting its subgroups of order p cyclically is abelian if p is odd. We say that a group is π -automorphic if it has the property that any two of its elements of order k are conjugate under an automorphism where π is a set of positive integers and $k \in \pi$. In this paper we conjucture that a finite p-automorphic p-group is abelian for odd p, and prove that a counterexample cannot be generated by fewer than four elements.

We use the following notation. Let p^{n+1} be the exponent of the p-group G; $H_k(G)$ denotes the set of elements of G whose orders do not exceed p^k ; G' is the commutator subgroup of G; $(x, y) = x^{-1}y^{-1}xy$; Z(G) is the center of G and $Z_2(G)$ is the preimage of Z(G/Z) in the cannonical homomorphism of G onto G/Z; $\Phi(H)$ is the Frattini subgroup of the group H; |H| is the order of H; |x| is the order of the element x. GL(3, p) is the full linear group of degree three over the prime Galois field GF(p).

Henceforth let G denote a finite p-automorphic non-abelian p-group for odd p. Note that $H_1(G) = H_1 \subseteq Z = Z(G)$, so H_1 is a subgroup.

LEMMA 1. G/H_1 is p-automorphic.

Proof. Clearly there exists $x \in Z_2(G)$ such that $|x| = p^2$ because G cannot be of exponent p. Consider $y \in G$ where $|y| = p^2$. By the definition of G there exists $\alpha \in \operatorname{Aut}(G)$ such that $(y^p)^\alpha = x^p$. Let $y^\alpha = wx$. Thus $(y^\alpha)^p = (wx)^p = w^px^p(x,w)^{\binom{p}{2}}$ by the choice of x. If Z has an element of order p^2 , choose x to be it. Then (x,w)=1. If $Z=H_1$, then $(x,w)\in H_1$ and $(x,w)^{\binom{p}{2}}=1$. In either case $(y^\alpha)^p=(y^p)^\alpha=x^p=w^px^p$ so $w\in H_1$ and $(yH_1)^\alpha=xH_1$. Q.E.D.

LEMMA 2. If
$$G' = H_1$$
, then $H_n(G) = \Phi(G) = Z$.

Received March 31, 1961, and in revised form August 31, 1961. This paper was sponsored in part by NSF Grant G-9504.

J. R. BOEN

onto G/G'=K, $H_n(G)=H_n$ is the preimage of $H_{n-1}(K)=\mathcal{O}(K)$. $(H_n$ is a subgroup because G is regular; K is abelian and has equal invariants). If there exists $x \in Z$ such that $|x|=p^{n+1}$ then for any $y \in G$ where $|y|=p^{n+1}$ we have $(y^{p^n})^{\alpha}=x^{p^n}$ for some $\alpha \in \operatorname{Aut}(G)$. By the same reasoning used in Lemma 1 it follows that $y^{\alpha}=wx$ where $w \in H_n$. Hence $y^{\alpha} \in Z$ so $y \in Z$ and G is abelian, a contradiction. Q.E.D.

LEMMA 3. If $G' = H_1$, then $\varphi: x \to x^{p^n}$ is an isomorphism of G/Z onto G'.

Proof. Since G is of class two, $(xy)^m = x^m y^m (y, x)^{\binom{m}{2}}$ where $m = p^n$. But $\binom{m}{2}$ is a multiple of p so $(y, x)^{\binom{m}{2}} = 1$ and φ is an endomorphism of G. Clearly $H_n = Z$ is the kernel of φ . At least one nonidentity element of G' is an mth power, hence every one is and thus $G/Z \cong G'$. Q.E.D.

THEOREM. A finite non-abelian p-automorphic p-group G cannot be generated by fewer than four elements.

Proof. It is easily seen that $H_1 \subseteq \emptyset$. By repeated application of Lemma 1 we arrive at a G_1 such that $G'_1 = H_1(G_1)$ where G_1 has the same number of generators as G. Since we argue by contradiction we may assume without loss of generality that $G' = H_1$.

Clearly G cannot be cyclic. If G can be generated by two elements, the fact that G is of class two implies that G' is cyclic; this contradicts Lemma 3. Hence we assume G to be a three-generator group, say $G = \{u_1, u_2, u_3\}$. Lemma 2 implies the following identities.

(i)
$$(u_1^{x_1}u_2^{x_2}u_3^{x_3}h, u_1^{y_1}u_2^{y_2}u_3^{y_3}h') = \prod_{i < j} s_{i,j}^{x_i y_j - x_j y_i}$$
 where $h, h' \in Z$ and $s_{i,j} = (u_i, u_j)$.

(ii)
$$(u_1^{x_1}u_2^{x_2}u_3^{x_3}h)^{p^n} = \prod t_i^{v_i} \text{ where } t_i = u_i^{p^n}.$$

Now every element of G' is a commutator. Thus there exist relations $t_i=s_{12}^{\alpha_{i1}}s_{13}^{\alpha_{i2}}s_{23}^{\alpha_{i3}},\ i=1,2,3,$ where $|A|=|(a_{ij})|\neq 0$. Let α be an automorphism of G, say $u_i^\alpha=u_1^{\alpha_{i1}}u_2^{\alpha_{i2}}u_3^{\alpha_{i3}}h_i,\ i=1,2,3,$ where $h_i\in Z$ and $x_{ij}\in GF(p)$. (i) implies that $s_{ij}^\alpha=\prod_{k< l}s_k^{\alpha_{ik}}$ where $\overline{x}_{kl}=x_{ik}x_{jl}-x_{jk}x_{il}$. Hence

$$t_i^* = (s_{12}^{a_{i1}} s_{13}^{a_{i2}} s_{23}^{a_{i3}})^{\alpha} = (s_{12}^{a_{i1}})^{\alpha} (s_{13}^{a_{i2}})^{\alpha} (s_{23}^{a_{i3}})^{\alpha} = s_{12}^{\Sigma a_{ij} \bar{x}_{j1}} s_{13}^{\Sigma a_{ij} \bar{x}_{j2}} s_{23}^{\Sigma a_{ij} \bar{x}_{j3}}.$$

But (ii) implies that

$$t_i^a = \prod t_i^{x_{ij}} = s_{12}^{\sum x_{ij}a_{j1}} s_{13}^{\sum x_{ij}a_{j2}} s_{23}^{\sum x_{ij}a_{j3}}$$
 .

Equating these two representations of t_i^a and noting that s_{12} , s_{13} , and s_{23} are independent, we have

(iii)
$$A\overline{X} = XA$$

where $A=(a_{ij})$, $X=(x_{ij})$, and $\overline{X}=(\overline{x}_{ij})$ are nonsingular 3-square matrices over GF(p). It is clear that $\overline{X}=|X|B^{-1}X^{-T}B$ where X^{-T} is the transpose of X^{-1} and $B=(b_{ij})$ has the entries $b_{13}=b_{31}=-b_{22}=1$ and the remaining $b_{ij}=0$. Thus, substituting for \overline{X} in (iii), we equate the determinants of the two sides of (iii) and find that |X|=1. (iii) then takes the form:

(iv)
$$CX^{-T}C^{-1} = X \text{ where } C = AB^{-1}.$$

It follows that (iv) holds for all X in some transitive (on the non-zero vectors of the 3-space V) subgroup T of GL(3, p). Thus |T| is divisible by p^3-1 . $|GL(3, p)|=p^3(p-1)(p^2-1)(p^3-1)$. Let q be a prime divisor of p^2+p+1 where q>3. It is easily shown that such a q exists and that q is relatively prime to p-1 and p+1. Thus a Sylow q-subgroup of T is a Sylow q-subgroup GL(3, p). GL(3, p) contains a cyclic transitive subgroup of order p^3-1 , the multiplicative group of the right-regular representation of $GF(p^3)$ considered as a vector space over GF(p). Hence a Sylow q-subgroup of GL(3, p) is cyclic, so an $X \in T$ of order q is conjugate to

$$Y = egin{pmatrix} \omega & & & \ & \omega^p & & \ & \omega^{p^2} \end{pmatrix} ext{ where } \omega^q = 1$$

in $GL(3, p^3)$. But Y is certainly not conjugate to Y^{-r} in $GL(3, p^3)$ from which it follows that X will not satisfy (iv), a contradiction. Q.E.D.

The author is indebted to G. Higman and G. E. Wall for their suggestions, and to the referee for correcting an error.

REFERENCE

1. G. Higman, Suzuki 2-groups, to appear.

University of Chicago

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

M. G. Arsove University of Washington Seattle 5, Washington A. L. WHITEMAN

University of Southern California Los Angeles 7, California

LOWELL J. PAIGE
University of California
Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH T. M. CHERRY D. DERRY M. OHTSUKA H. L. ROYDEN E. SPANIER E. G. STRAUS F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 12, No. 3

March, 1962

Alfred Aeppli, Some exact sequences in cohomology theory for K manifolds	ähler	791
Paul Richard Beesack, On the Green's function of an N-point bou		
problem		801
James Robert Boen, On p-automorphic p-groups		813
James Robert Boen, Oscar S. Rothaus and John Griggs Thompso on p-automorphic p-groups		817
James Henry Bramble and Lawrence Edward Payne, <i>Bounds in the problem for second order uniformly elliptic operators</i>		823
Chen Chung Chang and H. Jerome (Howard) Keisler, Application of pairs of cardinals to the theory of models	is of ultraproducts	835
Stephen Urban Chase, On direct sums and products of modules		847
Paul Civin, Annihilators in the second conjugate algebra of a gro		855
J. H. Curtiss, <i>Polynomial interpolation in points equidistributed o</i>	on the unit	
circle		863
Marion K. Fort, Jr., Homogeneity of infinite products of manifolds boundary		879
James G. Glimm, Families of induced representations		885
Daniel E. Gorenstein, Reuben Sandler and William H. Mills, On	almost-commuting	
permutations		913
Vincent C. Harris and M. V. Subba Rao, Congruence properties of	of $\sigma_r(N)$	925
Harry Hochstadt, Fourier series with linearly dependent coefficient	nts	929
Kenneth Myron Hoffman and John Wermer, A characterization of	fC(X)	941
Robert Weldon Hunt, The behavior of solutions of ordinary, self-		
equations of arbitrary even order		945
Edward Takashi Kobayashi, A remark on the Nijenhuis tensor		963
David London, On the zeros of the solutions of $w''(z) + p(z)w(z)$	$=0\ldots\ldots$	979
Gerald R. Mac Lane and Frank Beall Ryan, <i>On the radial limits of products</i>	of Blaschke	993
T. M. MacRobert, Evaluation of an E-function when three of its	upper parameters	
differ by integral values		999
Robert W. McKelvey, The spectra of minimal self-adjoint extens		1002
operator		1003
Adegoke Olubummo, Operators of finite rank in a reflexive Bana		1023
David Alexander Pope, On the approximation of function spaces variations	in the calculus of	1029
Bernard W. Roos and Ward C. Sangren, Three spectral theorems	for a pair of	
singular first-order differential equations		1047
Arthur Argyle Sagle, Simple Malcev algebras over fields of chard	icteristic zero	1057
Leo Sario, Meromorphic functions and conformal metrics on Rie	mann surfaces	1079
Richard Gordon Swan, Factorization of polynomials over finite f	elds	1099
S. C. Tang, Some theorems on the ratio of empirical distribution distribution	to the theoretical	1107
Robert Charles Thompson, <i>Normal matrices and the normal bas</i>	s in abelian	
number fields		1115
Howard Gregory Tucker, Absolute continuity of infinitely divisib	e distributions	1125
Elliot Carl Weinberg, Completely distributed lattice-ordered group		
James Howard Wells, A note on the primes in a Banach algebra		
Horace C Wiser Decomposition and homogeneity of continua of		