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FURTHER RESULTS ON ̂ -AUTOMORPHIC ^-GROUPS

J. BόEN, 0 . ROTHAUS, AND J. THOMPSON

Graham Hίgman [3] has shown that a finite p-group, p an odd prime,
with an automorphism permuting the subgroups of order p cyclically is
abelian. In [1] a p-group was defined to be p-automorphic if its auto-
morphism group is transitive on the elements of order p. It was con-
jectured that a p-automorphic p-group (p Φ 2) is abelian and proved that
a counterexample must be generated by at least four elements. In this
present paper we prove that a counterexample generated by n elements
must be such that n > 5 and, if n Φ 6, then p < w3** (Theorem 3). We
also show that the existence of a counterexample implies the existence
of a certain algebraic configuration (Theorem 1). All groups considered
are finite.

Notation. Φ(P) is the Frattini subgroup of the p-group P and Pr

is its commutator subgroup. £?;(P) is the subgroup generated by the
elements of P whose orders do not exceed p\ Z(P) is the center of P.
F(mf n, p) denotes the set of p-automorphίc p-groups P which enjoy the
additional properties:

1. P' — f?i(P) is elementary abelian of order pn.
2. Φ(P) = Z(P) = Ωm(P) is the direct product of n cyclic groups

of order pm.
3. | P : 0 ( P ) | = J> .
In [1] it was shown that a counterexample generated by n elements

has a quotient group in F(m, n, p). Hence, in arguing by contradiction,
we may assume that a counterexample P is in F(mf n, p).

Let A = A(P) = Aut P and let Ao = ker(Aut P-> Aut PjΦ{P)). Thus
AIA0 = B is faithfully represented as linear transformations of V— PJΦ(P),
considered as a vector space over GF(p).

Since p is odd and d(P) = 2, the mapping rj:x—>xpm is an endo-
morphism of P which commutes with each σ of Aut P. Since Ωm{P) —
Φ(P), ker η = Φ(P), so rj induces an isomorphism of V into W = Pr.
Since dim V = dim W, Ύ] is onto.

The commutator function induces a skew-symmetric bilinear map of
V x V onto W, (onto since P is p-automorphic) and since Φ(P) = ̂ (P),
(,) is nondegenerate. Associated with (,) is a nonassociative product
o, defined as follows: Ifa,βe V, say a = xΦ{P), β — yΦ(P), then [x, y]
is an element of W which depends only on a, β, and so [x, y] = zpm where
the coset y = zΦ(P) depends only on a, β. We write aoβ = y. An
immediate consequence of this condition is the statement that a —• aoβ
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is a linear map φβ of V into F. Thus, o induces a map Θ of V into
End F, the ring of linear transformations of V to F.

If σ is the inner automorphism of End V induced by σ e B, then the
diagram

V-?-+ End V

l
F — End V

commutes, that is φβσ = σ^φβO. Since P is p-automorphic, if α, /3 are
nonzero elements of F, then a = /3σ for suitable σ e B, so that ^Λ = σ~V

THEOREM 1. J/ α e F, ίfeβw ^ is nίlpotent.

Proof. We can suppose a =£ 0. Since tfoα: = 0, φΛ is singular. Let
f(x) = xn + c1^

n"1 + caίc
n""a + be the characteristic equation of φa.

f(x) is independent of the nonzero element a of F, and cn — 0 since
0α> is singular.

Let ffi, * , α n be a basis for F, and identify ^ with the matrix
which is associated with φΛ and the basis alf , an. Then c< is the sum
of all i by i principal minors of φa, so if a — X^ + + \nocnj Cι is a
homogeneous polynomial of degree ΐ(ίg w — 1) in the w variables λx, ,
λn. By a Theorem of Chevalley [2], there are values λ1? , λΛ of GF(p)
which are not all zero, such that c{ = 0. Since c* is independent of the
non-zero tuple (\19

 β ,λn), it follows that c< = 0 so ^Λ is nilpotent.
Theorem 1 states that θ( V) is a linear variety of End (F) consisting

only of nilpotent matrices such that any two nonzero x, yeθ(V) are
similar. If one could show that the algebra generated by Θ(V) were
nilpotent, an easy argument would show that all p-automorphic p-groups
(p odd) are abelian.

THEOREM 2. Let r be the rank of φΛ. Ifn>3, then 2 < r < n — 1.

Proof. We assume n > 3 because n 5g 3 was treated in [1], Clearly
r Φ 0 because P is non-abelian and r Φ n by Theorem 1.

Case /. r Φ n — 1. Suppose r = n — 1. Then, for a: =£ 0, βoa =
βφa — 0 implies that β e {a} where {a} is the subspace of F spanned by
a. If yφl = (7φa)φa = 0, then T^^ e {α}, say γ^,, = to. But 7^* + <̂ v̂ =
0 by the skew-symmetry of o, so aφy = —to. By Theorem 1, fe = 0 and
thus je{a}. Hence rank φl = rank 0Λ, a contradiction to Theorem 1.

Case II. r Φ 1. Choose a basis of F, say α l f •••,«., and suppose
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that φa = {da) with respect to this basis; End (F) has the obvious matrix
representation with φae θ(V)a End(F). Recall that Θ(V) becomes an
w-space of n by n nilpotent matrices over GF(p) in which any two
nonzero matrices are similar. If r = 1, then we may assume without
loss of generality that φΛ has a 1 in the (1, 2) position and zeros else-
where.

If every (xiS) = Xeθ(V) satisfies xi3 = 0 for i > 1, then we are done
because the nilpotency of Ximplies that xn = 0 for every J e Θ(V), which
implies that dim#(F) < n. If, on the other hand, there exists Xeθ(V)
with a nonzero entry below the first row, then we may use the fact
that every 2 by 2 subdeterminant of every element of θ( V) vanishes to
show that every X has its nonzero elements in the second column only.
But the nilpotency of X implies that x22 = 0. Hence dim θ( V) < n, a
contradiction.

Case III. r Φ 2. // r = 2, we may assume without loss of gener-
ality that

(a) φa has Γs in the (1, 2), (2, 3) positions and zeros elsewhere or
else

(b) φa has Γs in the (1, 2), (3, 4) positions and zeros elsewhere.
First consider (a).

If every (xiS) = Xe 0(F) satisfies xi5 = 0 for i > 2, then Z{P) £ Φ(P),
a contradiction. If every Xeθ(V) satisfies xiS = 0 for j Φ 2, 3, then
ίc32 = o because X + kφa is nilpotant for every k e GF(p) and p > 2. But
then dim#(F) < n, a contradiction. Hence we need consider only the
subcase of (a) in which some Xeθ(V) has a nonzero entry below the
third row and a nonzero entry that is not in columns two or three. Con-
sider such an X Unless xiS = 0 when i Ψ 1, 2 and j φ 2, 3, it is easy
to see that there exists a nonzero 3 by 3 determinant in X + kφa for
some k. It is also easy to see that any two rows of X below the second
row are dependent, and that any two columns other than the second
and third are dependent. Using the fact that every 3 by 3 subdeter-
minant of every element of Θ(V) is zero, it is straightforward to show
that there exist nonsingular matrices R and S such that RXS has Γs
in the (1, 4), (3, 2) posititions and zeroes elsewhere and RφaS has Γs in
the (1, 3), (2, 2) positions and zeroes elsewhere.

Set X' = -RXS, φf

a = RφooS. It is now straightforward to show that
that if Y=(yij)eBΘ(V)S is linearly independent from {X',φ'a}f then
yiά = 0 for i Φ 1 and j φ 2. This implies that dim Rθ{ V)S < n, a con-
tradiction, since dim Rθ( V)S = dim θ( V) = n.

Subcase (b), in which φ\ — 0, is handled in a similar fashion except
that we exclude the case in which every Xeθ(V) satisfies xi5 = Q, j Φ 2,4,
by noting the following: In such a case (X + kφaf = 0 for every k implies
that x22 = 0, which in turn implies that dim#(F) < n.
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COROLLARY. F(m, n, p) is empty for all m and odd p unless n > 5.

Proof. Theorem 2 implies that n > 4 and that if n = 5, then rank
φa = 3. Let Sn denote the projective (n — l)-space whose points are
the 1-subspaces of 7. If n = 5 and rank φa = 3, then it follows that
Sδ is partitioned into lines according to the rule that {α}, {β} (0 Φ a,
βe V) lie on the same line if and only if aoβ = 0. But S5 has
P4 + Pz + p2 + P + 1 points and cannot be partitioned into disjoint subsets
of p + 1 points each.

THEOREM 3. If p^ nSn2 and n Φ 6, then F{m, n, p) is empty for
all positive inteqers m.

Proof. If GL (n, p) denotes the invertible elements of End V, then

I GL(n, p) I = pn{n-1)/2-k(n, p), where k(n, p) - (p* - I X P * " 1 - 1) (p - 1).

If we consider GF{pn) as a vector space over GF{p), the right-regular
representation shows that GL(n, p) contains a cyclic group of order pn — 1.

Let Φd(x) be the monic polynomial whose complex roots are the primi-
tive dth roots of unity. Then pn — 1 — ϊ[d\nΦd(p). By an elementary
number-theoretic theorem [4], Φn(p) and k(n, p)jΦn(p) are relatively prime,
or their greatest common divisor is q where q is the largest prime divisor
of n, in which case Φn(p)lq is relatively prime to k(n, p)l<Pn(p) Thus,
we determine ε — 0 or 1 so that Φn(p)/qε is relatively prime to k(p9n)/Φn(p).

Let peF(m,n, p). Since P is p-automorphic, \B\ is divisible by
pn — 1 and in particular is divisible by Φn(p)/qs. Let r" be the largest
power of the prime r which divides Φn(p)lQ2, a ^ 1> and let Sr be a Sylow
r-subgroup of B. By Sylow's theorem and the preceding paragraph, Sr

is cyclic with generator σr.

Since P belongs to the exponent n modulo r, it follows that λ, Xp,
• , λ2^"1 are the characteristic roots of σr, λ being a primitive r*th root
of unity in GF(pn).

Since η commutes with σr, λ is also a characteristic root of σr on
W. Since (α, β)σ — {μσ, βσ), the characteristic roots of σr on W are to
be found among the χpi+pj

9 0^i<j^n — 1, as can be seen by diago-
nalizing σr over V(&GF{pn). Hence, λ = χpi+pj for suitable i,j and so

(1) p* + pj - 1 = 0 (mod rΛ) .

Since r was any prime divisor of Φn(p)lq2, we have

(2) Π (P* + P'" - 1) = 0 (mod Φn{pW)

The polynomials Φn(x), n Φ 6, and α* + x j - 1 are relatively prime, a fact
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which can be seen geometrically, as pointed out by G. Higman. Name-
ly, if ε, e' are complex numbers of absolute value one, and ε + ε' = 1,
then the points 0,1, ε are the vertices of an equilateral triangle, so that
ε is a primitive sixth root of unity. Since n Φ 6, we can therefore find
integral polynomials fix), g{x), such that

(3) f(x)Φn(x) + 9(x) Π (*' + x* - 1) = INI ,

where

(4) N

is the resultant of Φn{x) and Πfa* + xj — 1).
From (4) we see that N ^ sφ{n)n2, since there are at most φ(n)n2 triples

(?, i,j). Now (2) and (3), the fact that Φn(p)/qζ divides | JV|, imply that

(5) ΦAVW ^ &{n)n2 .

One sees geometrically that ΦJj>) ̂  (p — l)φ{n), so with (5) and qs ^ n
we find

(6) p ^ 1 + nllφM3n2 < n3n2 .

REMARK. Theorem 3 of [3] provides a certain motivation for the
detailed examination of Φn(p) in the preceding theorem.
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