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PAUL CIVIN

l Introduction* Let © denote an infinite locally compact abelian
group, and let L(@) be its group algebra. The second conjugate space
L**(©) of the group algebra can also be considered as an algebra by
the use of Arens multiplication [1] [2]. Civin and Yood [3, p. 857] have
shown that L**(@) is an algebra which is not commutative and has a
nonzero radical 9ΐ**. They have also shown [3, p. 856] that if © is not
discrete, then the algebra L**((S) has a nonzero right annihilator.

The object of the present note is the study of the nature of the
left and right annihilators of the maximal modular left ideals in L**(@).
It is shown that such annihilators are either nilpotent two-sided or right
ideals, respectively, or else the maximal modular left ideal in question
must have the form {Fe L**(®)\F(μ) = 0} where μ is some multiplica-
tive linear functional on L((S). If © is compact it is seen that all maximal
modular left ideals of the latter form have a nonzero left annihilator and
a right annihilator which properly contains the right annihilator of L* *(($).

It should be noted that the choice of the maximal modular left ideals
as the subject of investigation is not simply for definiteness. At the
present stage of available information concerning L**((S), the maximal
modular left ideals are more tractable than the corresponding right ideals.

2 Notation* Throughout the note we shall use the notation in-
troduced above as well as other notation introduced by Civin and Yood
[3], In particular 9ΐ** will denote the radical of L**(@) and 2) will denote
the closed subspace of L*(@) generated by the multiplicative linear func-
tionals on L(©). We shall write 2(7) (3ΐ(/)) for the left (right) annihilators
in the algebra L**(@) of the subset /of L* *(($). We also use the nota-
tion / x ( / τ ) for the linear space annihilator in B*(B) of the linear manifold
I in the Banach space B (the conjugate space £*). Throughout π will
be used for the natural embedding of a Banach space B into its second
conjugate space I?**. It should be recalled [1] that when B is a Banach
algebra, π is an algebra homomorphism, and if B is commutative then
[3, p. 855] πB is in the center of B**.

3. Left annihilators* Throughout this section we let Ϊ5R denote a
maximal modular left ideal in L**(@) for which S(2K) Φ (0).

LEMMA 3.1. 3JΪ and 8(5Ui) are 2-sided ideals in L**(@) and

Received November 22, 1961. This research was supported by the National Science
Foundation grant NSF-G-14111.

855



856 PAUL CIVIN

= 9JΪ.

Proof. Since 2JΪ is a left ideal, 8(50Ϊ) is a 2-sided ideal. Thus 3ft8(50ϊ)
is a 2-sided ideal containing 50Ϊ. However, the algebra L**(@) contains
[3, p. 855] a right identity Ey so £(50Ϊ) Φ (0) implies 3ϊ£(2Jί) is proper, hence
318(501) = 50Ϊ, and 9JΪ is a 2-sided ideal.

In the next several lemmas we consider the consequences of the
assumption 8(501) qL m.

LEMMA 3.2. If S(2Jί) <£ 2Ji, then S(5Dl) = (L**(©))A, wiίft A = A2.

Proo/. It follows from £(SJί) £ 501 that £**(©) = S(50Ϊ) + 9Ji. Thus
the right identity E satisfies E = A + Λf with A € 2(50i) and Λf e 5K.
Left multiplication by F G S(50Ϊ) yields .F = F2? = FA, so in particular
A = A2 and 8(50ϊ)c(L**(©))A. The reverse set inequality is immediate
since £(50Ϊ) is a left ideal.

We adopt as fixed notation E = A + M, with A G S ( T O ) and M G 9 K ,

throughout the section in which we are discussing 8(2Jί) φ 501.

LEMMA 3.3. For αiί Fe L**(®), A F = AFA.

Proof. As above £7 = A + ikf. Left multiplication by AF gives
= AFA since A e S(3)ΐ) and FMe 501.

LEMMA 3.4. // £(9Ji) ς£ 501, ίfee^ A80K) is ίfee seί o/ complex multi-
ples of A.

Proof. Let L Φ 0 be an element of AS(9Ji). Then by Lemma 3.3,
L = AL = ALA. Since L Φ 0 and A 6 8(501), it follows that LA 0 501 and
L $ 50ί Consequently (L**(@))LA is a left ideal not contained in "SI. Hence
L**(@) = 3Jί + (L**(©))LA, and E = N + CLA, with iNΓe 9JΪ. Left multi-
plication by A, and appropriate use of the right identity yields A =
ACLA = ACFLA = AC(A + M)LA = ACALA = (ACA)(ALA). Thus the
normed algebra Aδ(3Ji) has A as an identity and each nonzero element
has a left inverse. This implies that Aδ(3ϊί) is a complex normed divi-
sion algebra and the lemma then follows from the Gelfand-Mazur theorem.

LEMMA 3.5. If 8(9Ji) ς£ 50i, then there exist a multiplicative linear
functional ψ on L**(@) such that 3Ji = {Fe L**(®)\φ(F) = 0}.

Proof. In view of Lemma 3.4 and the fact that AS(9Ji) is a right
ideal, we may define the complex number φ(F) for Fe L**(@) by AF=
φ(F)A. Clearly φ is additive and by the use of Lemma 3.3 we see that
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φ(FG)A = AFG = AFAG = φ(F)φ(G)A, so ψ is multiplicative. It follows
from Lemmas 3.1 and 3.2 that φ(F) = 0 if and only if FeVJl.

THEOREM 3.6. Let 2JΪ be a maximal modular left ideal in L**(@)
with 8(50Ϊ) Φ (0). Then m is a 2-sided ideal and either (S(3Jϊ))2 =
(^(SJl))2 = (0) or there exist a multiplicative linear functional μ on L(©)
such that 2Jί = {Fe L**(®)\F(μ) = 0}. In the latter case S(50i) is a one-
dimensional 2-sided ideal in L**(©) and 5R(2Jί) = 3ΐ(L**(©))0S(3K).

Proof. If (0) Φ 8(2») c 501, then 30Ϊ = 9ΐS(23ϊ) 3 St(2K), so (8(501))" =
(3ΐ(2Jί))2 = (0). If 8(3Jί)£9Jί, let <pe £***(©) be the multiplicative linear
function on L**(@) whose existence is guaranteed by Lemma 3.5. Since
π is a homomorphism, the functional μ = φoπ is a multiplicative linear
functional on L(©). The null space of μ is then either L(@) or a modular
ideal 9JΪ* in L(@). If the first possibility prevails, ττL(©) c 3Jί, and thus
0 = A{πx) = (7rα)A for all a? e L(@). The w*-density of τrL(©) together
with the w*-continuity of left multiplication [2] in L**(©) implies that
FA = 0 for all Fe L**(@). This contradicts A = A2 Φ 0. We thus con-
clude that there is a maximal modular ideal SUί* in L(@) such that
π(jΰl^(z(ίSl. Now [3, p. 865] the w*-closure of πSJΪ* is a maximal modular
left ideal 3Jί0 in L**(©). Let F G 2 « 0 , then F = w*-\imπxa,xΛe'>ΰl*.
Thus 0 = A(πxa) = (τrajΛ)A for all α, so FA = 0, i.e. A e R(Wl0). There-
fore by Lemma 3.5, <p(F)φ(A) = φ(FA) = 0. However, since A $ 2JΪ,
φ(A)=£0 and consequently φ(F) = 0, so .Pe9Ji. Therefore 3Jίoc5Dΐ and
SDΐ = 2fl0. In particular A e 3ft(2K). Also if F G 9JΪ, ί 7 = w * - lim πxa,
xΛ 6 SJî  and thus F(μ) = lim πxa(μ) = lim /£(»,») = lim φ(πxa) = 0. Since
the set of jFeL**(@) such that -FXμ) = 0 is a maximal modular ideal
containing 2W, we see that 501 has the appropriate form.

It now follows from Lemma 3.4 that £**(©) = 3JΪ0A8(2Jί) with the
second summand one-dimensional. Since A e 3ΐ(9Jί), it then follows from
Lemmas 3.2 and 3.3 that 8(501) = A2(W) and so is a one-dimensional 2-
sided ideal. Since Ae9ί(3K) we have SR(L**(©))©8(aJl)c9ί(3Dΐ). Also
if .Fe3i(3JΪ), then F = Aζ + a A, with ik^e 3Ji and α complex. Since
Ae3l(50*)ΓlS(50i), it is immediate that M^fRiL*^®)) which completes
the proof.

4* Right annihilators* Again we let 9JΪ denote a maximal modular
left ideal. If © is not discrete [3, p. 856] then (0) Φ 9ΐ(L**(©)) c gft(2»).
On the other hand we saw in Theorem 3.6 that if (0) Φ (8(9K))2 then
3t(2R) = 3ΐ(L**(@))φS(aJi). Our object in this section is to investigate
relationships between 9Ji and 9ϊ(3Jί) with no hypothesis on 8(501). As
indicated in the introduction, we use Sft** for the radical of L**(@).

4.1 LEMMA. Either 3t(5Oί) c 3R** or ίΛere eajisίs an F e 3t(50ϊ)
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is not left quasi-regular.

Proof. Suppose that the right ideal 5R(9Ji) is left quasi-regular. Let
Fe3ΐ(3Ji). Since FD is left quasi-regular for all Z)eL**(@), we see [5,
p. 17] that (L**(©))JFϊis a left quasi-regular left ideal, and so is a quasi-
regular left ideal and is included in 3ΐ**. Thus EFeW*. However,

9t**, so

4.2 LEMMA. // 3ΐ(aJi) ςz! 3ΐ**, there exists an AG3ΐ(3Jί) such that

Proof. By Lemma 4.1 there is an Fe 3R(3Ji) which is not left quasi-
regular. The left ideal {BF — i?|i?eL**((S)} is then a proper modular
left ideal, so is contained in a maximal modular left ideal 9̂ . It follows
from BF=0 for JBe9Ji that 9ίί = Sΰl. Consequently F'-FeWl and
therefore F2 = F* = F\ Thus A = F2e Sft(gM), and A =£ 0 since other-
wise F would be left quasi-regular.

We fix the notation in the remainder of this section so that A has
the properties asserted in the lemma.

4.3 LEMMA. // 91(30?) £ 9Ϊ**, then
( i ) E= N+ A, Ne2Rf

(ii) £**(©) = 50Ϊ©(L**(@))A, and
(iii) (L**(®))A is a minimal left ideal of L**(®).

Proof. Since A has the properties asserted in Lemma 4.2, A 0 Λί
and therefore L**(@) - 2Jl©(L**(@))A with the sum clearly a direct
sum. Let E = ΛΓ+ -BA with NeWl. Right multiplication by A yields
£Ά = BA. Thus BA - A = EA - A e SR(L**(©)) c 2Jί. Another right
multiplication by A yields J?A = A, so E — N + A.

Suppose that (0) Φ % is a left ideal in (L**(®))A. Then L**(@) =
Afφ3f. Let jBeL**(@). Then £A = Mx + I, with ik^ 6 3Ji and ^eQf.
Right multiplication by A shows that BA — Iλ so (L**(®))A is a minimal
left ideal.

LEMMA 4.4. 1/ 3ΐ(3Dΐ)ς£ 31**, then there exists a <?eL***(@) such
that for each XeL**(@), (AX)2 =

Proo/. Since (L**(®))A is a minimal left ideal, A(L**(®))A is a
division algebra and so by the Gelfand-Mazur theorem consists of the
scalar multiples of A. For XeL**(®), define φ(X) by AXA = φ{X)A.
As defined φ is clearly linear. Moreover, \φ(X)\\\A\\ = \\φ(X)A\\ =
| |AXA||g| |A| | 2 | |X| |, so \φ(X)\ £ \\A\\ \\X\\ and φ e L***(®). The
remaining assertion is now immediate.
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4.5 LEMMA. Let <m* = {xe L(@) |πx e 2JΪ}. If 3ΐ(9K) φ 91**, then 2fl*
is a maximal modular ideal of L(@).

Proof. Note first that 2(A) is a left ideal containing 3JΪ, and A $ 2(A).
Therefore 2(A) — Sΰl. It is an immediate consequence of the definition
of φ given in the proof of Lemma 4.4 that φ is multiplicative on the
center of L**(@). Since ττL(@) is central it follows that φoπ is a multipli-
cative linear functional on L(@), and so has a null space which is either
all of L(@) or is a maximal modular ideal of L(@). Now (πx)A = A(πx)A=
φ(πx)A, so φ(πx) = 0 if and only if πx e 2(A) = 2JΪ or if and only if
x e 2Ji*. If 2ft* were all of L(@), then the w*-continuity of left multiplica-
tion in L**(©) together with the w*-density of πL(®) would imply that
A2 = 0 which is not the case. Thus 9JΪ* is a maximal modular ideal of
!/(©) as asserted.

We will use in the sequel two lemmas which are valid in the algebra
5** of the second conjugate space of a Banach algebra B. The nota-
tion is that of [3].

4.6 LEMMA. A w*-closed subspace $ of U** is a left (right) ideal
of 5** if and only if </, x> e 3 T for all f e $τ and x e B ([F,f] e 8 T

for all / e $ τ and Fe B**).

Proof. The argument will be given only for left ideals. Suppose
8 is a left ideal and let / e $ τ and x e B. Then for any Fe g, (πx)Fe 3f,
so 0 = (πx)F(f) = F(ζf, α?». Consequently </, # > e $ τ . Suppose next
that fe $ τ and a? e JB implies </, x> e $ τ . Then for .F7 e $ and ίDGΰ,
0 = F(ζf, a?» = (πx)F(f), so (TΓCC)FG ̂ T J - = $. The ^;*-density of τr#
in S** together with the w*-continuity of left multiplication and the
^*-closure of $ give HFe % for all He$ for all HeB**, so % is a
left ideal in 5**.

4.7 LEMMA. If $ is a left ideal in JS**, then so is $ τ l .

Proof. The subspace $ l τ is w*-closed. If / e $ τ and xeB, then
for any Fe%, (πx)Fe$ so 0 = (πx)F(f) = F«J, xy) and </, xye$Ύ.
Since $5T = $ τ l τ , Lemma 4.6 yields the desired conclusion.

4.8 LEMMA. If Wl is a maximal modular left ideal of L**((S) with
!3t**, then 2JΪ is w*-closed.

Proof. In view of Lemma 4.7, if 3JΪ were not w*-closed, L**(©) =
and then (0) = 3ftTJ-τ = 3Jiτ. If A has the same meaning as in the

earlier lemmas, A2 Φ 0, so there is an /oeL*(@) such that [A.,/o] ^ 0.
However, since Ae5R(9Jί), [A,/0]6 5Dΐτ. Thus 50i is w*-closed.
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4.9 THEOREM. Let 9Ji be a maximal modular left ideal in L**(©).
Then either ffiiW))2 = 0 or there exists a multiplicative linear functional
μ on L(@) such that 20Ϊ = {F e L**(β)\F(μ) = 0}.

Proof. If 3ΐ(3Dΐ)c9ϊ**, then 9ΐ(9Dΐ)c2ϊϊ and (9ΐ(3Dΐ))2 = 0. Suppose
that $R(3Jϊ) ςί 2JΪ. Let μ be the multiplicative linear functional on L(©)
corresponding to the maximal modular ideal 2R* of Lemma 4.5. By
Lemma 4.2 there is an A e 3t(3W), 0 =£ A = A2. Let $ be the closed span
of {[A,/]|/eL*(®)}. Since A e S R ( 5 I K ) , ί ϊ c ^ ^ s o ^ i ^ a R . Also if ^ e ^
and α? e L(©), then # = lim[A, gn] and <#, #> = lim<[A, gn], x) = lim[A,
<Λ, »>], so <g, x)e Jϊ. Thus by Lemma 4.6, 5S1 is a left ideal in L**(©).
Since S 1 => 2ft, either K 1 = 2ft or ̂  = L**(@). The latter is impossible since
A2 Φ 0, and thus S 1 = 2JΪ. Now if xeWl* then TΓO; G 2JI, so xe®τ. Thus
$ τ c SDΐ̂  and S c S T i c 9Jϊi. However since the latter set consists of the
scalar multiples of μ, so also must $. Thus 2Ji has the indicated form.

5. Existence* The question of the existence of maximal modular
left ideals in L**(@) with SR(aW) £ 3ΐ** or with £(3Ji) £ 3ΐ** is easily
resolved if © is compact. For © not compact, necessary and sufficient
conditions are given for the existence of ideals with the indicated prop-
erties, but no conclusion is reached as to whether or not the given con-
dition is automatically satisfied.

5.1 THEOREM. Let © be an infinite compact abelian group, and let
μ be a multiplicative linear functional on L(@). Let 9Ji = {F e L**(©)|
F(μ) = 0}. Then 3ΐ(90ΐ) £ 3ΐ** and 2(Wΐ) <£ 3ΐ**.

Proof. Since © is compact, its character group is discrete. The
regularity of the Banach algebra L(@) then implies that there is an
e e L(©) such that μ(e) = 1 and v(e) = 0 for every multiplicative linear
functional v on L(©) with v Φ μ. The semi-simplicity of L(©) then
implies e ~ e2 Φ 0. Since πe is an idempotent in L**(©) and thus πe $ 9ΐ**,
it suffices to show that πe e 8(501) Ω 9ϊ(9Ji). Also since πe is central it
sufficies to show πe e 3ί(3Dΐ). Now for πx e 9Jί, v{xe) = 0 for all multiplica-
tive linear functional v on L(@) so xe = 0 and (π#)(7re) = 0. However,
3Jί is [3, p. 865] the ^^-closure of {πx \ πx e 9Jί}, so the w*-continuity of
left multiplication shows that πe e 9ϊ(9Ji) as desired.

5.2 LEMMA. Let μ be a nonzero multiplicative linear functional
on L(@). Then there exists ΰeL**(@) such that D(μ) = 1, while if v
is a multiplicative linear functional on L(©) and v Φ μ, then D(μ) = 0.

Proof. We use the notation for multiplicative linear functionals on
L(©) corresponding to the interpretation of the functional as a member
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of the character group ©. Let M donote the almost periodic mean. Then
for any multiplicative linear functionals μζ on L(®), μi Φ μ and for any
complex numbers ai9 i = 1, , n,

M(l - ta.μ-'βΛl =1

where the norm is that of L*(@). Thus the distance from μ to the span
of the other multiplicative functions is at least one. The desired func-
tional De L**(@) then exists as a consequence of the Hahn-Banach theo-
rem. The author is indebted to a referee for the suggestion of the above
proof for Lemma 5.2.

5.3 THEOREM. Let 2) be the closed subspace of L*(®) generated by
the multiplicative linear functionals on L(@). Let Q be the closed span
of {[F,f]\Feψ and /eL*(©)}.

( i ) A necessary and sufficient condition that there exist a maximal
modular left ideal TO in L**(@) with 8(TO) <£ 31** is that 2) qL Q.

(ii) A necessary and sufficient condition that there exist a maximal
modular left ideal TO in L**(@) with 3t(2W) £ 3ΐ** is that there
exist Btβi}1 such [B,f] e 2) for all f e £,*(©).

Proof. Suppose first that there exists a maximal modular left ideal
TO in L**(@) with «(TO)<Z$R**. Then by Theorem 3.6 there exists a
multiplicative linear functional μ on L(®) such that Wl = {Fe L**(®)\F(μ) =
0}. By Lemma 3.2, 8(TO) = (L**(®))A and A2 = A Φ 0, so A 0 TO. It
follows that A(μ) = 1. Suppose that 2 ) c 3 , so that μ e g . Thus

iM = Km S [<?,,„/..*]
n i=l

with G,,4 e V)1. Now 2)-1- c SDΪ and A e 80K) so A e S^-1-). Thus

1 = A(μ) = l im"ΣAG..^/. . , ) = 0 .

Consequently 2) ζί 3
Suppose that 2) ζί ,3 Then there exist some multiplicative linear

functional μ on L(@) such that μφ $. Thus there exists J e L**(®) such
that J e 3 1 and J(/^) = 1. Let jDeL**(@) have the property asserted
in Lemma 5.2. Let TO = {F e L**(@) | F(μ) = 0}. Clearly TO is a maximal
modular left ideal of L**(®). Let i ϊ = JD. Then H(β) = J(μ)D(μ) = l,
so if 0 2H and therefore Jϊ 0 91**. Let P e TO, and let / e L*(®). Then
HP(f) = JDP(f) = J([DP,f]). Now if v is any multiplicative linear
functional on L((8), (DP)(v) = i)(v)P(i;) = 0, since Lemma 5.2 J9(v) = 0
if v ψ μf while P(v) = 0 if v = μ since P e l . Thus DP e 2)\ and thus
[DP,f] e 3. However J e 3 \ so i ίP(/) = 0. Since / was arbitrary in
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L*(@) and P arbitrary in 2R, we see that H e 8(2K) and Hφ #** which
completes the proof of the first half of the theorem.

Next, we suppose that there exist a maximal modular left ideal Sΰl
in L**(@) with ίR(W)ςt 3ΐ**. By Theorem 4.9, there is a multiplicative
linear functional μ on L(®) such that Tt = { F G L * ^ © ) ! ^ / * ) = 0}. Also
by Lemma 4.2, there exists A e ?H(W) such that A — A2 Φ 0. In particular.
A 0 9Ji, so A 0 2H as 2)̂  c 2JΪ. Let / e L*(@). Then A e 3t(2») so
A G S R ( ^ ) . Thus for any Te?μ, 0=ΓA(/)=Γ([A,/]), and [A,/] G?)T J- =

2). Thus A has the required properties.
Finally, we suppose that there exist B $ 2)1 such that [B,f] e2) for

each / G L*((?). Since S 0 2)1, there exist a multiplicative linear func-
tional μ such that B(μ) Φ 0. Let Wl = {F e L**(®)\F(μ) = 0}, so that
9Ji is a maximal modular left ideal in L**(@). By Lemma 5.2, there
exist A G L**(©) such that A(μ) = 1 and A{v) = 0 if ^ is a multiplicative
linear functional on L(@) different from μ. Now AB(/J*) = A(μ)B(μ) Φ 0,
so AS 0 $R**. Let P G 9DΪ, then for / G L*(@), [5, /] e 2), so

where each ^ w i is a multiplicative linear functional on 8((S) and each
cn>ί is a complex number. We choose the notation so that μn>1 = μ. Hence
by the stated properties of A and the fact that [A, v\ — A(v)v for any
multiplicative linear functional μ on L(®) we see that

[AB,f] = [A, [B,f]] - linΓj?cnΛA(μ%ti)μnΛ = \imcnΛμ .

Thus PAB(f) = P([AB,f]) = 0, and since / was arbitrary in L*(®) and
P arbitrary in 3Jί we have ASG3Ϊ(9K). This completes the proof of
Theorem 5.3.
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