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1. Introduction* In 1931, 0. H. Keller [2] proved that the Hubert
cube Q is homogeneous. V. L. Klee, Jr., proved [3] in 1955 that Q is
homogeneous with respect to finite sets, and in 1957 strengthened this
result [4] by showing that Q is homogeneous with respect to countable
closed sets. Our Theorem 1 extends this latter result to spaces which
are the product of a countably infinite number of manifolds with boundary.
Our method of proof exploits the notion of category for the space of
self-homeomorphisms of the product space, and differs considerably from
the methods of Keller and Klee, who made use of convexity properties
of linear spaces.

In Theorem 2 we prove that if P is the product of a countably
infinite number of manifolds with boundary and U and V are countable
dense subsets of P, then there is a homeomorphism h of P onto itself
such that h\ U] = V. This theorem is analogous to a well known theorem
about Euclidean spaces (see [1"|, p. 44). In a corollary to our Theorem 2,
we show that if U is a countable subset of the Hubert cube Q, then
there is a contraction ht, 0 ^ t ^ 1, on Q such that if 0 < t < 1, then
ht is a homeomorphism and ht[Q] Π U — φ.

2. Notation and lemmas. For each positive integer n, we let Mn

be a compact manifold with boundary, and we let Bn be the boundary
of Mn. We let P be the cartesian product space Mx x M2 x M3 x
The projection mapping of P into Mn is denoted by 7ΓW. If x e P, we
denote πn(x) by xn. An admissible metric dn for Mn is chosen so that
Mn has diameter less than 2~w, and we then define an admissible metric
d for P by letting

d(x, y) = Σ dn(xn9 yn) .

If / and g are mappings on a compact metric space X into a metric
space Y, we let p(f, g) denote the least upper bound of the distances
between f(x) and g(x) for x in X.

The set of all homeomorphisms of P onto P is denoted by H.
Although the metric space (iJ, p) is not complete, it is topologically
complete (i.e. homeomorphic to a complete metric space) and hence is
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a second category space.
The following two lemmas can be proved using standard techniques,

and the proofs are merely outlined.

LEMMA 1. If M is a manifold with boundary B, a is an arc
lying in B, u and v are the end points of α, and W is an open subset
of M which contains a, then there is a homeomorphism ψ of M onto
M such that ψ(u) — v and ψ(x) = x for x e M — W.

Proof. Let S be the set of all points t of a for which there exists
a homeomorphism f o i l onto M such that ψ(u) = t and ψ(x) = x for
xe M — W. It is easy to see that S is both open and closed relative to a.

LEMMA 2. If M is a manifold with boundary B, the dimension
of M is at least 2, C is a countable and compact subset of M — B> and
φ is a homeomorphism on C into M — B, then φ can be extended to a
homeomorphism Φ on M onto M.

Proof. For each positive integer n, we can obtain compact sets
Jn and Kn such that:

( i ) C is contained in the interior of Jn and φ[C] is contained in
the interior of Kn;

(ii) each component of Jn and of Kn has diameter less than \\n and
is homeomorphic to a spherical ball of dimension equal to that of M;

(iii) for each component D of Jn, φ[D Π C] is contained in a single
component of Kn; and

(iv) Jn 3 Jn+1 and Kn Z) Kn+1.

Using the sets Jn and Kn, it is possible to construct homeomorphisms
Φn of M onto M such that:

(i) if D is a component of Jn and Έ is a component of Kn, then
Φn[D] c E if and only if φ]D Π C] c E; and

(ii) Φn+1(x) = Φn(x) for all xeM- Jn.
The sequence Φl9 Φ2, ΦB, converges to the desired homeomorphism.

LEMMA 3. // peP, there is a residual subset R of H such that
if heR, then h(p)n e Mn — Bn for each n.

Proof. Let Kn = {h\heH and h(p)ne Bn}. It is obvious that each
Kn is closed. We want to prove that Kn if nowhere dense. Thus,
suppose he Kn for some n and that ε > 0. We seek ge H — Kn such
that ρ{g, h) < ε.

Choose an integer m Φ n such that Mm has diameter less than ε.
We define M = Mn x Mm. M is also a manifold with boundary, and the
boundary B of M is the set (Mn x Bm) U (Bn x Mm). Since heKn, the
point (h(p)n, h(p)m) is a member of Bn x Mm. Let g be a point of Bm
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such that qΦ h(p)m. There is an arc β in Bn x Mm which joins (h(p)n, h(p)m)
to (h(p)n, q) and has diameter less than ε (since Mm has diameter less
than ε). We may now choose a point re Mn — Bn and an arc 7 joining
(r, q) to {h(p)n, q) such that β U 7 is an arc and has diameter less than
ε. We let a = β U 7.

We now use Lemma 1 to obtain a homeomorphism ψ of M onto M
such that ψ maps the point (h(p)n, h(p)m) onto (r, q) and the distance
from x to ψ(x) is less than ε for all x e M.

Now, we define g e H by letting g{y\ — h(y)k if n Φ k Φ m, and
letting

Since #(p)w = r and r$Bn, ge H — Kn. It is easy to see that ρ{g> h) < ε,
and hence we have proved that Kn is nowhere dense. We define R =
H — \Jn=i Kn. R is a residual set and if h e R, then h(p)n $ Bn for all n.

LEMMA 4. 7/ p and q are points of P> then there is a residual
subset R of H such that if he R, then h(p)n Φ h(q)n for all n.

Proof. We define Jn = {h\heH and h(p)n = h(q)n}. Each Jn is
closed. We want to prove that Jn is nowhere dense. Suppose hejn

and ε > 0. We seek geH — Jn such that ρ{g, h) < ε.
It follows from Lemma 3, and the fact that residual subsets of H

are dense in iJ, that there exists feH such that p(f, h) < ε/2 and for
all k, f(p)kφBk and f{q\$Bk. If f(p)nΦf(q)n we can let g = /.
Otherwise, we choose mΦn so that f(p)mφf(q)m and define M= Mn x Λfw.
Since (f(p)n,f(v)J and (f(q)n,f(q)m) are not equal and neither is on the
boundary of M", there is a homeomorphis φ of M onto M" such that the
distance from x to 9?(a?) is less than ε/2 for all a? e M and such that the
points φ((f(p)n, f{p)J) and φ((f(q)n, f(q)m)) have different first coordinates.
We now define geH hj letting g(y)k — f(y)k if n Φ k Φ m, and
(g(y)n,f(y)J = <P((f(y)n,f(y)m)) It is easy to see that ^(gr,/) < ε/2 and
hence ρ(g, h) < ε. Moreover, g(p)n Φ g(q)n and hence ge H — Jn.

We obtain the desired residual set R by letting R = if — UΓ=i «/"*-

THEOREM 1. If A is a closed and countable subset of P and f is a
homeomorphism on A into P, then f can be extended to a homeomorphism
F on P onto P.

Proof. There is no loss in generality in assuming that each Mn

has dimension at least 2, for otherwise we could define Sn — M2n-i x M2n

and represent P as S± x S2 x S3 x .
It follows from Lemma 3 and Lemma 4 that there is a homeomorphism
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he H such that for each n, the projection mapping πn maps both h[A]
and hf[A] in a one-to-one manner into Mn — Bn. The mapping φn =
πjifh^π'1 is one-to-one on πnh[A] onto πnhf[A] and can be extended by-
Lemma 2 to a homeomorphism Φn on Mn onto Mn. We obtain 0 e H
by letting 0(#)n = @n(%n)- The desired extension F of / is obtained by
defining i*7 = A " 1 ^ .

Let h be a homeomorphism on a compact space X into a compact
space Γ, and let n be a positive integer. We define

?(Λ, n) = 2~n ίnf {d(h(x), h(y)) \ x, y e X and cZ(α, ») ^ 1/n} .

LEMMA 5. If hly h2, h3, is α sequence of homeomorphisms on X
onto Y such that p(hn, hn+1) < f]{hn, n), then the sequence converges
uniformly to a homeomorphism h on X into Y.

Proof. It is clear that the sequence converges uniformly to a
continuous function h on Xinto Y. We must prove that h is one-to-one.

Suppose u and v are distinct points of X. We choose n > 1 so that
d(u, v) > 1/n. Then, for k ^ n,

d(hk+1(u), hk+1(v)) ^ d(hk(u), hk(v)) - d(hk(u), hk+1(u)) - d(hk(v), hk+1(v))

^ rf(Λfc(u), hk(v)) - 2η{hk, k)

^ d(hk(u)f hk(v)) - 2 2-H(hh{v), h(v))

Thus,

d(h(u)f h(v)) = lim d(hk(u), hk(v))

) ( )

^ d(hn(u), hn(v))l4: , (since n > 1) .

This proves that h is one-to-one and hence a homeomorphism.

THEOREM 2. / / U and V are countable dense subsets of P, then
there is a homeomorphism h of P onto P such that h[ U] = V.

Proof. As we have remarked in the proof of Theorem 1, there is
no loss in generality in assuming that each Mn has dimension at least
2. In view of Lemma 3 and Lemma 4, we may also assume that U and
V are so situated in P that each πn maps both U and V in a one-to-one
manner into Mn — Bn.

We are going to arrange the points of U and V into sequences
uu u2, u3, and vlf v2, v3, and choose homeomorphisms h{j for all
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positive integers i and j . This is done by a fairly complicated inductive
process, the first four steps of which are given below. We let Z7X = Z7,
V1 = V, and as soon as ulf , un and vu * ,vn are defined, we let
Un+1 = Un- {uu •-,%»}, F w + 1 = Vw - K , vn}. We assume that U
and F are well ordered so as to have the order type of the positive
integers. We let Hn be the set of homeomorphisms of Mn onto itself.

Step 1. ux \& chosen to be the first point of U and vx is chosen to
be the first point of V. hn e Hx is chosen so that hlλπx{u^ = πx(v^.
hu e Hj is the identity for j > 1.

Step 2. v2 is the first point of V2. u2e U2 is chosen near enough
to v2 for us to obtain h21e Hλ so that: p(h21, hn) < τj(hll91) and h^π^Uj) —
π^Vj) for j = 1, 2. h22 e H2 is chosen so that h22π2{uό) = τra0>i) for i = 1, 2.
h2j e Hά is the identity for j > 2.

Step 3. w3 is the first point of U3. v3 e F 3 is chosen near enough to

3 for us to obtain h3i e Hi so that: p(h3i, h2i) < η(h2i, 2) and h^π^ui) =
^ ) for i = 1, 2 and i = 1, 2, 3. h33eH3 is chosen so that h33π3{u5) =

for i = 1, 2, 3. Λ3i e Hs is the identity for j > 3.

u

4. v4 is the first point of F4. ^4G ?74 is chosen near enough
to v4 for us to obtain hu e H{ so that: p(hu, h3i) < η(h9i9 3) and h^π^Uj) —
π^Vj) for i = 1, 2, 3 and j = 1, , 4. Λ44 e iϊ4 is chosen so that h^π4{u3) =
π4(vj) for j = 1, , 4. A4i e Hά is the identity for j > 4.

We continue this process. By Lemma 5, the homeomorphisms
hjl9 hj2f fix, converge uniformly to a homeomorphism gό e Hj. It is
easy to see that gfij(Ui) = π^v^ for all i and i . There is determined
uniquely a homeomorphism h e H for which TΓ^ = ^TΓ^ for all j . Since
Λ(^) = vt for all i, and U= {uu u2f •}, V= {vlf v2, •}, h is the desired
homeomorphism.

COROLLARY. If C is a countable subset of the Hilbert cube Q, then
there is a contraction ht, 0 ^ t ^ 1, defined on Q such that:

( i ) hλ is the identity,
(ii) h0 is a constant mapping, and
(iii) if 0 < t < 1, Λ* is a homeomorphism of Q into Q and

ht[Q] ΠC = φ.

Proof. We let Mn be the closed interval [—5"~w, 5~w], The resulting
space P may then be thought of as the Hilbert cube Q. (This represen-
tation is used since Mn was assumed to have diameter less than 2~n.)
We let D be the set of all points x in P such that π^x) is rational for
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all i, and π^x) = 5"~* for all but a finite number of values of i:
Both C U D and D are countable and dense in P, so by Theorem 2

there is a homeomorphism G of P onto P such that G[C U D] = D.
We define #t(#) = ί# for 0 ^ t ^ 1 and xe P. Finally, we let fet =
G^QtG. It is easy to see that the desired contraction is ht, 0 ^ t ^ 1.
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