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FAMILIES OF INDUCED REPRESENTATIONS

JAMES GLIMM

In [11], Mackey constructed certain representations (the induced
representations) of a group G. If the group is acting on a measure
space X then the construction also gives a projection valued measure P
on X which is a system of imprimitivity for the representation UoίG.
(P(σE) — U{σ)P(E)U{σ~1).) In this paper we determine the topology
in the set of equivalence classes of induced pairs U, P whose joint action
is irreducible, provided certain restrictions are imposed on G and X.
This set of pairs is (homeomorphic to) a space W/G of orbits, where
W consists of fibers over X as a base space and G acts on W. The
fiber over x is Gx, the space of equivalence classes of irreducible repre-
sentations of Gx = {7: jx = x). The principal restriction on G and X is
equivalent to assuming that Gx is a continuous function of x. (See the
Appendix.) One might hope that in interesting cases X could be ex-
pressed as a finite disjoint union of subsets upon which our assumptions
are satisfied.

One of the motivations for this paper was the hope of introducing
in certain cases a differentiate or real analytic structure into W/G. If
if is a manifold (except perhaps for a set of singular points), if G is
an analytic group and if G acts smoothly on W then W\G is a manifold,
except perhaps for a set of singular points, if W\G is countably sepa-
rated (if there are Borel sets Wlf W2, in W which are G invariant
and which separate points of WIG). This is a simple consequence of
[14, Theorem 8, page 19] and [6, Theorem 1] and does not depend upon
the special nature of W. In particular it applies equally well to a closed
subset K of W which is a manifold and upon which G acts smoothly.
As might be expected, K\G being countably separated is equivalent to
all representations of a certain C*-algebra being of type I. The as-
sumption that W is a manifold except for singular points is unsatis-
factory. One would like to assume that X is a manifold and that G
acts on X smoothly and conclude that W is a manifold (except perhaps
for singular points) if all the Gx are type I groups. Whether this is
true is not known even when X is a point. The results of this paper
presumably have implications for the representations of analytic groups
which have closed normal subgroups.

The group G and the topological space X considered in the paper
will be assumed to satisfy the second axiom of countability. This is
not used until § 2 and in view of [10, 1], it would not be surprising
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if Theorem 2.1 were true without this assumption. That φ is a repre-
sentation of a group (resp. * algebra ££) means that the representation
space ξ>(φ) is a Hubert space and that φ is a unitary representation
(resp. * representation and φ{β)§(φ) is dense in £>(<£>)). For any locally
compact space Y, C0(Y) denotes the set of complex valued continuous
functions on Y with compact support.

1. Group algebras. In this section we study *-algebras which are
fields of group algebras and which are associated with a locally compact
group G acting as a topological transformation group on a locally com-
pact T2 space X. That G is a topological transformation group means
that there is a jointly continuous map (7, x) —• yx from G x X into X
such that {β~xy)x = β~\^x) and ex — x. Suppose a left invariant Haar
measure d(x, σ) — dσ can be chosen on the isotropy subgroups Gx "con-
tinuously," that is so that for each/in C0(G), the function x—>l f(σ)dσ

defined on X is continuous. Let Y = {(a?, σ): x e X and σ e Gx). Then
F is a closed subspace of I x G and so is locally compact.

The continuity requirement of the Haar measures could also be
expressed by saying that x —> d{x, σ) is a w*-continuous map from X to
regular Borel measures on G.

LEMMA 1.1. Let x —• dμ(x9 σ) be a w*-continuous map from X to

the regular Borel measures on G. For each compact subset K of X x G

there is a constant M = M{K) such that \\f{x, σ)dμ(x, σ) ^MWfW*

for all f in C0(K) and x in X.
There are compact subsets Kλ and K2 of X and G respectively such

that Kc. Kx x K2. If g e C0(G) and g = 1 on K2, let M be the supremum

of ί| g(σ) I dμ(x, σ) as x varies in Kλ. life CQ(K) then \f(x, σ)dμ{x, σ)
j 1 J

is dominated by \\f\\oo\\g{σ)\dμ{x,σ) ^ ||/||<Jfcf if xeK± and is equal to

zero if x 0 JBLΊ.

It follows from Lemma 1.1 that \ f(x, σ)dσ is a jointly continuous
Jβx

function of / in C0(K) and x in X.
Let Jα be the modular function for Gx, d{x, στ) = ώ(#, α )Λ(^) F o r

a suitably chosen / in C0(G),

f(σ)dσ
x

and so as a function on Y, Ax{τ) is continuous. If f,geCQ{Y) define

= ( f(x, p)g(x, p-χσ
JGx
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Then /*# and / * e CQ(Y) and C0(Y) is a *-algebra. It is also an algebra
of vector fields defined on Xand having values in the CO(GX) If fe C0(Y),

let 11 /1 |i = supx€X I \f(x,σ)\ dσ and let 11 /11 be the supremum of 11 <p(f) 11,
Jθx

for φ a representation of C0(Y) which is continuous in the inductive
limit topology on C0(Y) (the topology which is the inductive limit of
the uniform topologies on the C0(K) for K compact). The next lemma
shows that | | / | | < °°. It then follows that the completion ί£ of C0(Y)
in || || is a C*-algebra.

LEMMA 1.1 A1. || II = II * Ili If φ is an irreducible representation
of $t then there is a unique x in X and a unique representation φx

of Gx such that

and x is determined uniquely by the kernel of φ. Furthermore & is
closed under multiplication by bounded continuous functions on X.

Let φ be a continuous irreducible representation of C0(Y) on a
Hubert space ξ>. Let XQ = {x: x e X and for some neighborhood Nx of
x, kernel φ contains all/in C0(Y) which vanish off Nx (or more precisely,
off (Nx x G) n Y)}. Then Xo Φ X. If x and y are distinct elements
of X ~ XQ then there are disjoint neighborhoods Nx and Ny of x and y
respectively and elements fx and fy of Co( Y) ~ kernel φ which vanish
off Nx and Nυ respectively. Then φ(C0(Y))φ(fβ)§ and φ(C0(7)M/,)§
are orthogonal nonzero invariant subspaces of ξ>. This contradicts the
irreducibility of ψ and so XQ = X ~ {x} for some x. It is now evident
from the definition of Xo that if f{x, •) = 0 then / e kernel φ. Hence
there is a representation φx of CO(GX) for which <p(f) = φx{f{x, •))> a n ( i
one can check that φx is continuous. Thus φx comes from a represen-
tation, also called φx, of Gx and this implies | | φ ( / ) | | ^ \θx\f(%90)\dσ.

The first two statements of the lemma follow immediately. If A, is a
bounded continuous function on X then || φ(hf) || = | h(x) | || φ(f) || ^
||AΊ|oo||/||, and so multiplication by h is an operator on C0(Y) which is
continuous in 11 11. It thus has a unique continuous extension to all of
S. If we regard ffi as functions from X to the C* -group algebras of
the Gx then this extension of multiplication by h is still multiplication
by h.

If fe C0(Gy-lχ) then the functional

defines a left invariant integral on Gy-lχ. Thus there exists a unique
positive number c(x, 7) for which

1 This is based in part upon a lemma supplied by R. Blattner.
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(1.1) c(x,y)[ f(y1σy)dσ = [ f(σ)dσ .

If we choose / to be a nonnegative element of C0(G) which is positive
at e then (1.1) implies that c(x, y) is jointly continuous in x and 7. It
is easy to see that the identities

c(x, βy) = c(x, βWβ^x, y)

c(x, τ) - Δx(τ) c(%, e) = 1

are true for β,yeG,τeGx. Also ^ ^ ( 7 ^ 7 ) = Δx{τ) since if / is a
suitable element of C0(Gy-lχ) then

f(y~1σy)dσ

X

= ( /(σy-'τ-^dσ/l f(σ)dσ
JOy~lX I JGy-lX

= Δy_lχ{y~ιτy) .

PROPOSITION 1.2. // / G C O (Γ) then yκ(f) e C0(Y), where

, σ) = f(y~ιx> y~xσy)c(x, 7) .

7^ fcαs α unique extension to an automorphism yκ of & and 7 —> yκ is
a strongly continuous representation of G on $.

There is no difficulty in seeing that yκ(f)eC0(Y). If f,geC0(Y)
then

, σ) = \ f(y"% PMy'1^, p~~ιy~λσy)c(xf y)dρ
jGy-lx

, yfdp

σ) = /*(τ"1», y^y)c(xf 7)

, 7)

(», σ)

and yκ is an automorphism of C0(Y). yκ is continuous in the inductive
limit topology and so φoyκ is a continuous representation of C0(Y) if
ψ is. yκ is thus continuous in || ||. Hence it has a unique continuous
extension to ®, and the extension is an automorphism. Also

so 7—*yκ is a representation. If fe C0(Y) and 7-*70 then yκ{f)—>yQK{f)
uniformly with support contained in a fixed compact set and so in the
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norm || ||. It follows that yκ is strongly continuous.

G acts on the dual I of ffi as a topological transformation group,
in fact more generally we have the following lemma; we do not claim
that this result is original.

LEMMA 1.3. Let SI be a C*-algebra with dual SI and let there be

a strongly continuous representation of a topological group G as auto-

morphisms of 21. Then the map (7, φ)—^yφ — φoy-1 from G x 21 into

21 makes G into a topological transformation group acting on 21.

21 is the set of equivalence classes of irreducible representations of
21 with the hull kernel topology, which is the topology which has as a
subbasis for closed sets the sets of the form {φ: kernel φ ZD $} where
3 is an ideal (closed two sided) in 21. It is evident that (β~λy)φ —
β'^yφ) and that y{φ: kernel φ Ί) $} = {φ y'1: kernel φ 3 $} = {φ
7~1(kernel φ) z) $} = {φ: kernel φ D 7$} so each 7 in G acts by homeo-
morphisms of 31. Thus we have only to show the joint continuity of
the map (7, φ) —>Ίψ at 7 = e. A subbasic neighborhood of φ is given
by N = {ψ: kernel f J S 1 where $5 is an ideal which is not contained
in kernel φ. There is a positive A in $ which is not in kernel φ, by
Lemma 2.3 of [16]. Let M = {ψ: \\ f(A) \\ > || <p(A) ||/2}. Let / be a
continuous function which is zero on [0, || φ(A) ||/2] and positive elsewhere.
M is open since M = {ψ: ψ(f{A)) Φ 0}. For all 7 sufficiently near β,
II Ί~\A) - A II < II φ(A) H/2 and for such 7 and for ψ in M, \\ψ- 7~1(A) || >
0 so jψ 6 N and the proof is complete.

If Z is the structure space of SI (the set of kernels of irreducible
representations of 21) with the hull kernel topology then the map (7, z) —*
72 = {y(A): Aez} form G x Z into Z makes G into a topological trans-
formation group on Z. This follows from Lemma 1.3 and from the facts
that 7 kernel φ — kernel yφ and that φ —> kernel φ is an open continuous
map of 31 onto Z.

Let Z be the structure space of £ϊ, let φ be a representation of G.
By a system of imprimitivity for φ based on X (resp. Z) we mean a
regular countably additive projection valued measure P defined on the
Borel subsets of X (resp. Z) with values acting on φ(<p) such that P(X)
(resp. P(Z)) = I and ^(7)P(£r)^)(7"1) = P(yE) for all 7 in G and all
Borel sets E in X (resp. Z), cf. [11]. We shall call the pair (<p9 P) a
representation of G, X (resp. G, Z). Here the Borel sets are the elements
of the smallest σ-ring containing the open sets and regular means that
for open U, P(U) = V {P(C): C is a compact Borel set contained in £/}.

There is a *-algebra associated with representations of G, X. It is
Ihe set C0(X x G) with multiplication and involution defined by
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(1.2) f*g(x, 7) = ( fix, β)g(β-% β~~λΊ)dβ
JG

(1.3) f*(χ, 7) = f(r-% 7-1)

for f,ge C0(X x G), dβ a left invariant Haar measure and Δ the modular
function (dβj = Δ(j)dβ) of G. This definition is essentially that of [2,
p. 310]. There is also a multiplication between elements / of C0(Y}
(resp. C0(X), C0(G)) and elements gr of C0(X x G) given by

(1.4) /*flf(a?, 7) = ί /(», (J)flf(a?, α-1

(1.5) fg(χ,Ύ)=f(χ)g(χ,Ύ)

(1.6) /*flf(a;, 7) =

and there is a norm on C0(X x G) given by

(1.7) IΓf/lli=

THEOREM 1.4. C0(X x G) is a normed *-algebra with multiplication,,
involution and norm given by (1.2), (1.3) and (1.7) respectively and
addition and scalar multiplication defined pointwise; involution is
isometric. It is also an algebra over the ring C0(Y) (resp. G0(X), C0(G))
with scalar multiplication given by (1.4) (resp. 1.5), 1.6)).

THEOREM 1.5. There is a one-to-one correspondence between bounded
(in || 111) representations φ0 of C0(X x G) and representations (φ, P) of
G, X. The representation φ0 which corresponds to φ, P is given by

(1.8) φo(f) = ( ί f(x,

The images of φ0 and of the corresponding (φ, P) generate the same
von Neumann algebra. φ0 is norm decreasing (||<po(/)ll ^ ll/lli) A
unitary operator implements an equivalence between representations ψ,
P and φ', Pf of G, X if and only if it implements an equivalence
between the corresponding φ0 and ψ[.

THEOREM 1.6. There is a "canonical procedure" for extending
representations (φ, P) of G, X to representations (φ, R) of G, Z.

If ze Z, let φ be an irreducible representation of $ with kernel z.
Let x = π(z) be the x determined by Lemma 1.1A. If E is a closed
subset of X then π~\E) = {z:f& c z if f{E) = 0, / e C0(X)} and is closed.
Thus π is continuous and π~\E) is a Borel set if E is. That R extends
P means that R(π-\E)) = P(E) for all Borel subsets E of X.
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Proof of Theorem 1.4. Let / and g be in C0{X x G). Then

and

(f*g)*(χ,Ύ) =

= \ g(β-*χ, β-Yάiβ-1)/^, Ί'1β)-Δ{Ί-
1β)d

JG

= \ g*(x, β)f*(β-% β~ΎΊ)dβ = (flf* */*)(&, 7)

and (1.3) defines an involution. Suppose that x —• d/̂ (x, 7) is a function
from X to the finite measures on G which is w*-continuous and is such
that \JxEχ support dμ(%, 7) is contained a compact set. If fe CQ(X x G),
define μ*f by the formula

μ*f(x, 7) - , β) .

Then /1*/ has compact support, and by Lemma 1.1, μ*feC0{X x G).
Furthermore

(μ*(f*9))(x, 7) = xf a)

^x, β-^dβdμix, a)

= ((μ*f)*g)(χ, 7)

In particular if d/i(x, 7) = &(#, 7)^7, fe 6 C0(X x G) then this proves that
multiplication is associative. If fex and fe2 are in C0(Y), then the case
dμ(xf σ) = }φ}9 σ)[Ax{σ)IΔ(σ)Yl2d(x, σ) proves that h1^(f*g) = (fei*/)*flr.
Let'ω(x, σ) = [Jx(σ)/J(σ)]1/2. The formula ht*{h2*g) = (h1*h2)*g follows
from the associative law in the measure algebra of G and the fact that
ω(fe!*fe2) == {ωh^)*{ωh^. The remaining algebraic assertions of Theorem
1.4 are easy to verify.

The function sup {| g(x, 7) I : x e X} is a lower semicontinuous function
of 7 and so is measurable. It is bounded and has compact support and
so is integrable. If /, g e C0(X x (?)

dy\\f*g Hi = ( sup I ( /(α?, β)g(β-% β'ιΊ)dβ
JG xβX I JG«

g f ( sup|/(» f β) I sup I g(β-% β-'-r) I dβdj =
jGJG xex xex
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LEMMA 1.7.2 Let 2ί be a normed *-algebra, let 33 be a *-algebrcir
and let θ be a representation of 33 as bounded operators on 21 such that
a*(θ(b)a2) = (θ(b*)aύ*a2 for al9 a2 in 21 and b in 33. Let φ be a con-
tinuous representation of 21. Then there is a unique representation
ψ of S3 such that

(1.9) f(b)φ(a) = φ{θ{b)a)

for a in % and b in S3. Moreover \\ψ{b)\\ S 11 #(&*&) ||1/2 and f(33) is
contained in the weak closure of

There is at most one representation ψ satisfying (1.9). If A! com-
mutes with φ(2X) then A'ψ(b)φ(a) = ψ(b)φ(a)A' = ψ{b)Arφ{a) and A! com-
mutes with i/r(33). By the double commutant theorem, ψ(^&) is in the
weak closure of ^(21).

To prove the existence of ψ(b) it is sufficient to consider the case
where the representation space ξ> of φ has a vector x which is cyclic
with respect to ^(2ί). Let a be in 21, b be in S3. Then

|| φ(θ(b)a)x || = {φ{{θ{b)aYΘ{b)a)x, x)^

= (φ(α*#(δ*&)α)x, x)112

= {φ{θ{b*b)a)x, φ(a)x)112

^ \\φ(θ(b*b)a)x\\ll2\\φ(a)x\\112 .

Iterating this inequality, we have

II φ{θ(b)a)x || ^ || ^(&*6)an-1α)a? ||2"w || ^(α)a? H1"2""

^ II φ \Γn II ^ * & ) ll1/2 II a \\2'n \\ x \Γn \\ φ{a)χ \r2~n,

and taking limits, \\φ{θ{b)a)x\\ ̂  || θ(b*b) | | 1 / 2 1| φ(a)x ||. Thus (1.9) is an
unambiguous definition of ^(6) on φ($ί)x, ψ(b) is bounded and has a
unique bounded extension, ^(6), defined on all of ξ).

Formula (1.9) shows that ψ is linear and multiplicative. ψ(b)* —

is dense in ξ) since #(33)21 is dense in 2ί, since φ is bounded and
since ^(2I)ξ> is dense in φ. Thus ψ is a representation and the proof
is complete.

Proof of Theorem 1.5. The integral I fix, i)dP(x) is the ordinary
Jx

uniformly convergent spectral integral; it is by definition the uniform
limit of approximating sums Σ?=i P(^ί)f(χn 7), where X is a disjoint
union of the Borel sets E19 •• ,£ r

w and Xi^E^ Since / is continuous
2 We are indebted to R. Blattner for this lemma and its proof. This replaced consider-

ably more complicated arguments, some of which were in the spirit of [13, §5 and 6] and
appeared to be limited to separable situations.
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and has compact support, the integral I f(x, j)dP(x) exists and is a
JX

continuous function (in the operator norm) of 7 with compact support.
Thus φo(f) exists; \\φo(f)\\ ^ II/Hi follows from the fact that

f(x,-y)dP(x)

To show that φ0 is a representation, let / and g be in C0(X x G)
and let p and q be in lQ(φ). Then

(<Po(f*9)p, q) = \ (\ \ /(«, β)g(β~1xf β'1y)dβdP(x)φ('y)pf q)dj
JG\JXJG

= \ lim t
jGf [E1,'",En] ΐ=l

= ( f lim Σ (PiEdfixt, β)g(β-1χi, β~xΊ)φ{Ί)p, g)dydβ
JG JG {Elt ,En} i = l

= ί ί lim Σ (P(E{)f(x(, β)φ(β) Σ P(β-1Ei)giβ-1xi, j)φ(j)p, q)djdβ
JG JG {E1,'",En} i=l 3=1

= \\(\ f(x,β)dP(x)φ(β)\ g(x,y)dP(x)φ(y)p,q)dydβ
JGJGKJX JX

= ((Po(f)(Po(9)Pf Q)

and

(Φo(f*)P, Q) = SXSX^(7"^^ ^"^(T^dPίίcMTjp, ^)dτ

= 5β(Jχ/(^» ^-cίP^MT-1)^, q)dy

= \ (p,φ(i)\ f(ΎX,l)dP(x)p)dy
JG\ JX I

= \ (p,\ f(%, Ύ)dP(x)φ(y)q)dy = (p, φo(f)q)
JG\ JX /

since φ(y) \ h(fyx)dP(x)φ(y~1) = \ h(x)dP(x) for any h in C0(X), as is
jx t t Jx

seen by considering approximating sums to the spectral integrals. Let
h be in C0(G) with support K, and let hn be a net in C0(X) which eventu-
ally has the value one on each compact subset of X, and suppose 0 ^
hn ^ 1. Then 1 hn(x)dP(x) converges strongly to / and so

ί hn(x)dP(x)φ(Ύ)p
Jx

converges to φ(y)p uniformly for all 7 in K. Thus

I (<Po(Kh)p - φ(h)p, q) I
= I \j\x

h
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(If II f
^ s u p I h(y) I s u p hn(x)dP(x)φ(y)p - φ(y)p\\ \\q\\\ dyyeκ

and so φo(hnh)p—>φ(h)p strongly. This proves that the set φQ(C0(XxG))&(φ)
is dense in $(<p) and since φ0 is linear, it is a representation. Since the
integrals with respect to dP and dy are weak limits of approximating
sums, φo(Co(X x G)) lies in the von Neumann algebra generated by the
images of φ and P. We have also proved that φ(C0(G)) (and so φ{G))
lies in the weak closure of φQ(C0(X x G)).

Suppose we are given a representation ψ0 of C0(X x G) which is
continuous in || Ili ϊ n Lemma 1.7 let S3 be the algebra C0(X) (resp.
C0(G)) and let θ be the multiplication defined by (1.5) (resp. 1.6)). If
e,fe C0(X xG),ge C0(X) and h e C0(G) then

e**(gf){x,i) =

and e* *(&*/) = (&**β)**/. To prove the latter formula one could either
compute the integrals in question or, as is easier, observe that the
formula is true for h in C0(X x G) and then approximate h in C0(G) by
elements of C0(X x G). Moreover | | 0 | | ^ 1 in both cases. By Lemma
1.7 there are representations ψ of CQ(G) and ^ x of CQ(X) such that
Ψi(Q)ψo(f) = ΨoiQf), Ψ(h)fo(f) = φo(h*f). Since ψ is continuous it comes
from a representation ψ of G, and f(l)f(h) = ^(fe(7"le))- I f w e l e t h

run through an approximate identity and use the formula h(y~1 )*f{x9a) =
h^f(y-ιxfy-1a)J we conclude that ^(7)^0(/) = Ψo(/(7"1 , Ύ'1 •))•
implies Ψ(y)f1(g)ψo(f) = t i ^ T " 1 ))toί/ίT"1 , 7"1 •)) = ^i(ί7(7"
and ^(7)^1(^)n/r(7~1) = Th(0(7~le))« By standard methods (compare [9, p.
93, Theorem], [7, p. 239, Theorem D], or Theorem 1.9), ψx can be ex-
tended uniquely to a regular countably additive projection valued measure
P on X. Let KE be the characteristic function of a Borel set E. Since
KAr1 •) = ^ ( 0 , t(y)P(E)f (y-1) = P(7-Er) and (α/r, P) is a representation
of (G, X). It follows from Lemma 1.7 that ψ(C0(X)) is contained in
the weak closure of ψo(CQ(X x G)) and by monotone limits, this is also
true for the range of P.

Let <p0 be defined by (1.8) (with ψ replaced by φ), let feC0(X),
g e C0(G), h e C0(X x G). Then fg e C0(X x G) and the finite linear com-
binations of such elements of C0(X x G) are dense in C0(X x G). If
q,re φo(Co(X x G)Mf0) then

(<Po(fg)1ro(h)q, r) = f^^f(x)g(y)dP(x)f(y)dyf0{h)q, r)
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= ί (Ψi(f)θ(y)ψ(Ύ)Ψo(h)q9 r)dy
JG

, r)

= (Ψo(fg)fo(h)q, r)

and so φo~ ψ0. Thus the correspondence defined by (1. 8) is onto from
representations of G, X to representations of CQ(X x (?); one can also
check that it is one-to-one. The statement concerning unitary equivalence
is verified by a direct computation.

THEOREM 1.8. // φ, P is a representation of G, X then the formula

where fe C0(Y), g e C0(X x G) and φ0 is defined by Theorem 1.5, defines
a representation φ1 of ffi. The image of φλ lies in the von Neumann
algebra generated by the images of φ and P.

Let the Sί (resp. S3) in Lemma 1.7 be C0(X x G) (resp. C0(Y)) and
let θ be the multiplication defined by (1.4). Let e, g be in C0(X x G)
and let / be in C0(Y). Then

β**(/*flr)(α?,7)

\ c(x1β)e(β-%β-l

• gφ^x, β-1σ-1Ί)[Δx{σ)Δ{σ-1)]1^dσdβ

ί ( c(x, β)e(β-1x, β-'
JGJGx

ί ( efβ-% σβ-'YΔiβ-^fφ-'x, σ)

• g(β-% β-17)[Δβ_lχ(σ-')J(

( t Piβ-'x, σ-ψeiβ-'x, σβ-1)-Δψ-1)g{β-1x,

β~lx



896 JAMES GLIMM

( f ( , )
JG

= (f**e)**g(x,y) ,

ll/*ff Ik ^ ( sup [ \f(x, σ)g(x, σ^)[Δx{σ)Δ{σ-')}^ \ dσdi

and

= sup ( ( \f(x, σ)g(x, σ-17)[z/,(σ)//(σ-1)]1'21 dσdy
x JOJQX

r
since the function 7—> \ \f{x,σ)g(x,σ~1y)\dσ is continuous and has

JθX

compact support for each x in X. We apply Fubini's theorem, substitute
Ύ—>σy, and conclude that

(l.ii) \\f*g\\i £ | | / ( x , ^ ) M » 4 O ] 1 / 2 H i l k l l i .

Lemma 1.7 shows that (1.10) defines a representation of C0(Y) and Lemma
1.1, the bound in 1.11) and Lemma 1.7 show that φx is continuous in
the inductive limit topology on C0(Y). By the definition of || |l><Pi is
continuous in || || and defines a representation of $.

Let S be the completion of CQ(X x G) in the norm | | / | | = sup {||<£>(/)!|:
φ is a representation of C0(X x G) which is continuous in || HJ. Then
8 is a C*-algebra. It follows from Theorem 1.8 that the multiplication
defined by (1.4) extends to a multiplication between & and 8.

THEOREM 1.9. Let ψ be a representation of a C*-algebra & and
let Z be the structure space of S. If U is an open Borel subset of Zt

let R(U) be the projection onto the closed span of

Then R can be extended uniquely to a countably additive projection
valued measure on the Borel subsets of Z. The image of R is contained
in the center of the weak closure of

Let Sf be the set of proper differences of open sets and let & be
the set of finite disjoint unions of elements of 3f. By [7, §5, exercise
(2) and (3)], & is a ring and by [7, §6, Theorem B] & is the smallest
class of sets containing <% and closed under sequential monotone limits.
Thus R has at most one extension to a projection valued Borel measure
on Z. & is the class of Borel sets.

We extend R to Sf. Let Όλ = Eλ~ Fλ and D2 = E2 - F2 be in 3f
where E{ and Ft are open and Ei Z) Ft and suppose D1'D D2. We assert
that R{Eλ) - R(F,) ^ R(E2) - R(F2). If z e Z and / e St9 let f(z) be the
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element / + z in the C*-algebra S£/s. Then fef){z:zeZ~ U} if and
only if f(z) = 0 for all z not in U, and in this case we say that /
vanishes off U and we let $( U) denote the set of all / in fi which
vanish off U. Let p be in Range R{Fλ) and let g be in Range R(E2) —
R(F2). If fe& and / vanishes off F2 then f(/)g - 0 and q (resp. p)
can be approximated by vectors of the form ψ{g)q (resp. ψ(h)p) where
g (resp. h) vanishes off E2 (resp. FJ. Then (p, q) can be approximated
by (p, ψ(h*g)q) which is zero since h*g = 0 off E2 (Ί F1d F2. Thus
R{Fλ) _L J?(#2) - R(F2). QίCEί) + $(F 2) is an ideal contained in ^(E, U F2)
and its closure $ is equal to $(£Ί U F2) since otherwise $(2?i U F2) has
an irreducible representation φ which annihilates $, <p can be extended
to an irreducible representation ψ1 of S which annihilates $5 but not
S(£Ί U F2) and z = kernel φ1 G EX U Ή but ^ 0 J57X and z $ F2. Since
A U F2Z) E2y 3 = 3(#i U F2) z> 3ί(£72). Thus g can be approximated by
elements fλ + / 2 of ί£, with /x in $(£Ί) and /2 in ^(i^), and q can be
approximated by ψif^q + ψ(f2)q = ψ(fi)Q. This proves that <? 6 Range
ΛCEy, Λ ί ^ ) ^ R(E2) - R(F2) and Λ(,Ei) - RiFJ ^ i ? ^ ) - R(F2). If
A = A then R{Eλ) - R(Fλ) = R(E2) - R{F2), and R{D) is defined unam-
biguously by the formula R(D) = ^ ( A ) - R{FX).

Let Dλ = Eτ~ Fλ and D2 = E2 ~ F2 be in ^ , where ^ =) ̂  and
Ei and ^ are open and suppose Dx Π D2 = <ρ. Let p be in Range i?(A)
and let q be in Range R(D2). Then p (resp. g) can be approximated
by ψ{f)p (resp. ψ(g)q) where /(resp #) vanishes off Eλ (resp. i?2). flf*/
vanishes off Eλ C\ E2ci Fx{j F2 and so g*f can be approximated by ele-
ments hλ + h2 of S with /̂^ vanishing off i^. Thus (p, q) can be ap-
proximated by (ψ(g*f)p, q) and by (ψih^p + ψ(h2)p, q), which is zero.
This proves that E(A) 1 # ( A ) .

We prove that ϋ is countably additive on £&. Let D and Dif

i = 1, , 00, be in ^ , let £> = Ϊ7 - î 7 and A = E, - ^ where Ϊ7 z> F,
A D i^ and E, F, E{ and F{ are open and suppose D = \J?=1 A and
suppose the A ' s are disjoint. Then R(D) ^ i2(A) and i2(ΰ) ^ ΣΓ=i Λ(A).
To prove R(D) = ΣΓ=i -B(A) w e assume the contrary and we suppose
without loss of generality that A = 0 = A , Ex = E = F± and
E2 — F — F2. Let λx, λ2 and λ3 be real continuous functions such
that 0 g λ< ^ 1, \i(0) = 0, λ<(l) = 1, λxλ2 = λ2, λ2λ3 = λ3, and
Xi(x) > 0 if xe[l/2, 1]. If ge®, if 0 ^ ^ ^ / , if peξ>(f) and if
II t(ff)3> - V II ^ II V11/3 then f ( λ 3 ( # ^ 0. In fact if f(X3(g)P = 0 and
if P is the spectral projection for ψ(g) associated with the interval [1/2,
1] then Pp = 0 and ||ψ(g)p|| ^ \\p||/2 and | | f (^)p-p\\ ^ | |p| |/2. There is
by assumption a nonzero p in Range R(D) — ̂ H i ^ ( A ) . We can choose
a g in ίϊ which vanishes off Ex so that ^ = ψ(λ3(g))p Φ 0. Let hλ =
\(g), let gx = \(g). Let w be a positive integer and suppose inductively
that we have chosen
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(a) gn in ffi

(b) nonzero vectors pu •••, pn in Range R(D) —

(c) Λy in ^(Fj) whenever p3 e Range

in such a manner that iί j ^ k ^ n then

( i ) P j f JL Range R{E0) =φ p* J- Range

(ii) p, 6 Range R{F3) =>pke Range i 2 ( ^ ) and ψ(h3)pk = pΛ

(iii) p y G Range #(2^), p* G Range R{Fk), and i < k 4> fe^ = feΛ

(iv) 0 ^ h j ̂  I; 0 ^ gn^ I,

and if i is the largest index for which p{ e Range R(Fi) and if i ^ k ^ n
then

(v) h,gn = gn and f(gn)pk = pk.

If (J - R(En+1))pn ψ 0, let pn+1 = (J - R(En+1))pn and let flrn+1 = </π.
For each C in ^ , Range R(C) is invariant under φ(®), and since ^(ίϊ)
is closed under the taking of adjoints, R(C) commutes with ψ(!&). R(C)
is also a weak limit point of φ(&) and so R(C) is in the center of f(!&)~,
the weak closure of ψ(!&). Using this, it is easy to see that the inductive
assumptions are satisfied for n + 1. If (I — R(En+1))pn = 0 then 0 Φ
R(Fn+1)pn = f(gn)R(Fn+1)pn. Thus there is a g in ® which vanishes off
i^n+1 such that p w + 1 = ψ(MQn99n))R(Fn+1)pn Φ 0. Let Λn+1 = \(gnggn) and
let 0Λ+1 = X2(gn99n). Since Xk(gnggn) is a limit of polynomials in 0n0flrn,
fcifen+i = fen+1, and the remaining inductive assumptions are easy to verify.

Let 3)ϊ be the linear subspace of & + XI generated by / and hά if
Pi e Range R{F3) and ( ^ ( ^ ) if ps ± Range iϊ(£?y), j = 1, 2, . . Let ft
be the linear functional on 2Dΐ defined by po(I) = 1, ρQ(h3) = 1 if p3- e Range
R(Fj) and po(3(Ed)) = 0 if p, _L Range i 2 ( ^ ). This definition is consistant
and p0 is a state ( = positive linear functional normalized by po(I) = 1)
of 2W, since ρQ = (limn ω^o i/r/|| pw ||2) | 3ft, where ωVn is the linear functional
A —* (ApΛ, pw) defined on operators on φ(^). ft is an extreme point of
the set of states of 3ft. In fact let pQ = aτx + (1 — α)r2, with a e (0,1]
and τx and τ2 states. Since ^s(Ej) is generated by its positive elements
[16, Lemma 2.3], τffiiEj)) = 0 if p, _L Range R(E3). If p, G Range R{F3)
then Tiίfe. ) ^ 1 and 1 = aτ^hj) + (1 - ^)τ2(fey) ^a + l - a = l. Thus
there is equality throughout and τ^hj) = 1, τx = ft, and ft is an extreme
point, ft can be extended to a state p of ® + λ l by a Hahn-Banach
type argument and applying the Krein Milman Theorem to the set of
such extensions, it is possible to choose p to be a pure state (extreme
point of the set of states) of B + λJ. The procedure of [15] yields an
irreducible representation φ of S for which z = kernel φ is the set
{/: fe ίϊ, ρ(g*fh) = 0 for all g, h in β}. If p y e Range R(F3) then 9>(Λ, ) Φ
0 and so zeί7,-. If p3- 1 Range i 2 ( ^ ) then φ(^(Ej)) = 0 and so zφE5.
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In particular ze F1 = E and z$E2 = F. We have proved ze D but z0Zλ,
for any j . This is a contradiction and so R(D) = ΣΠ=i R{D3).

Let ί7 = UΓ=i A = U?=i #< be in ^ , where A and E, are in 2? and
Did Dj = φ = EiΓ\ Es \ί iΦ j. Then A f l ^ e ^ and

Σ Λ(A) = Σ Λ(A Π E3) = Σ Λ(£?ί)
ΐ=i i,i=i i=i

Thus J? can be extended to & by the definition Jβ(F) = ΣΓ=i#(A),
and the same reasoning shows that ϋ! is countably additive on &. For
each p and g in lQ(φ), the function E —* (R(E)p, q) is a measure on ^?
and can be extended to a measure μpq on ,̂ f. If B is a Borel set then
there is a unique operator R(B) such that (R(B)pf q) = μM(2?) for all
p, g. i2(ΰ) is a projection and B-+ R(B) is a projection valued measure.
If Ee^f then we have already observed that R{E) is in the center
of the weak closure of f(B). By finite sums and monotone limits this
is true if E is a Borel set

If S is separable and type I and if &(f) is separable then Theorem
1.9 is essentially known and in this case presumably the range of R is
all projections in the center of the weak closure of ^($). If St is not
type I the range of R might not be this large, and in fact might be
{0,1} even when the weak closure of ψ(&) is not a factor and is of
type J.

R is regular in the sense that for any open U, R(U) is the supremum
of the R{K), as K ranges over the compact Borel sets in U. To see
this, let p be in ξ) and let / = /* be in & and vanish off U. Then
ψ(f)p can be approximated by ψ{g)p, where g = g* and g vanishes off
U9 - {z: \\f(z) || > ε} g {z: \\f(z) || ^ ε} = K2. U2 is open [8, Lemma 4.2]
and ψ(f)p can be approximated by R{Uz)p and so by R(Ks)p. Ks is
compact [8, Lemma 4.3] and is a Borel set since Kz = Πo<δ<ε ϋi-

Proo/ of Theorem 1.6. Let φ, P be given as in the statement of
1.6, let φ0 and ψλ be defined by Theorem 1.5 and 1.8 respectively, and
let R be defined by Theorem 1.9 in the case ψ = φx. If yeG, fe C0(Y),
g e C0(X x G) and p e $(φ) then

since

/ ( ( , 7

-% σ)g(x,= ί
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and since φ(j)φo(g) = φQ{g{Ί~λ', T"1-))- (See the proof of Theorem 1.5.)
Let Ry be the projection valued measure defined on Z by Theorem 1.9
in the case ψ = φ1ojκ. If U is an open subset of Z then

Me Π
xez~u

)e Π λ~ = {<Pi{fM<P):fz Π
xez~u J I xez~u

{ Π

and

Both E —> φ(j)R(E)φ(j~1) and E—> R(ΊE) are projection valued measures
which we have just shown to agree with Ry on open sets. By the
uniqueness part of Theorem 1.9, they both are equal to Ry and thus to
each other. This proves that φ, R is a representation of G, Z.

To show that R extends P, it is enough to show this for closed
subsets Έ of X. The range of J — P(E) is the closure of the set of

vectors \ f(x)dP(x)p where pe$(φ), feC0(X) and f(E) = 0. This

closure is also the closure of the vectors φ±{fA)p where A e S and/and
p as before. To see this, use formula (1.10) and choose a suitable ap-
proximate identity for S in C0(Y). The element fA of ̂  has the prop-
erty (fA)(z) = 0 for z in π~\E). Let B be a self adjoint element of
ί? and suppose £>(2) = 0 for z in π~\E). Let ε be a positive number.
Then the set K = {z:\\ B(z) || ^ ε} is a compact subset of Z — π~\E) and
τr(i£) is a compact subset of X disjoint from E. If g is a function
which is one on π(K) and zero on E then \\gB — B\\ < ε provided 0 ^
g ^ 1. Thus the range of I — P(E) is the closure of the vectors φ1{B)p
where pe £>(<£>), 5 e S and B(z) = 0 for 2 in n~\E). This is the range
of I - R(π-\E)) so ^ ( T Γ - 1 ^ ) ) = P(#) and i2 extends P.

2 Induced representations. It follows from Mackey's work [11]
that certain representations of G, X can be constructed in an explicit
fashion from the action of G on X; these representations are called
induced representations. In this section we determine the topological
structure of the space of all irreducible induced representations. This

space is homeomorphic to the orbit space $/G. Thus there is a corre-
spondence between properties of Sί/G and properties of the induced repre-
sentations; a simple example of this is Theorem 2.2.
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Each φ in U determines a z in Z, namely z = k e r n e l φ e Z and this
z determines an x = π(z) in X. π(^) is the unique element of X such
that all / in C0(Y) which vanish on {x} x Gxcz Y are in z. For any /
in C0(Y), φ(f) thus depends only on values of / at {x} x Gx and ψ
defines an irreducible representation φ1 of Lλ(Gx) and so of Gx. lί ψ is
an irreducible representation of LX{GX) for some x in X, then /—•>
'ίK/IM x GJ, / in C0(y), defines an irreducible representation ψ oΐ &,
π(kernel ψ) = cc and ψ ~ ψ1. The map φ -+ φ1 preserves unitary equi-
valence and so Jΐ is in one-to-one correspondence with the pairs x in X
and φ1 in Gx. The point x determines a correspondence between G/Gx,
the right G* cosets, and the orbit Gx; Gxy corresponds to Ί~λx. This
correspondence is a Borel isomorphism since the map GXΊ —* T"1^ is one-
to-one and continuous and since the restriction of this map to a compact
set is a homeomorphism. The induced representation Uφ\ Pφl, which
is a representation of G and G/Gx (G is transformation group acting on
GIGX), defines by means of the correspondence Gxy«— j~xx a represen-
tation Uφ, Pφ of G, X. By means of Theorem 1.5, Uφ, Pφ define a
representation which we shall call Φ of C0(X x G) and so of S. If φ1

is irreducible, so is the joint action of Uφ, Pφ [11, §6] and so is Φ by
Theorem 1.5. The map φ1 —* Uφ, Pφ preserves unitary equivalence [11,
Theorem 2] as does the map Uφ, Pφ —> Φ (Theorem 1.5). Thus the map

Ψ —• Φ is a well defined map of & into 8. We recall that G acts on ί£
by the map (7, cp) -^ cp T^1.

THEOREM 2.1. / / ^ and ψ are in S £/kβ̂  Φ = ¥ if and only if φ
and ψ lie in the same orbit under G, that is if and only if there is
a 7 in G such that ψ — φoyκ. The map φ—>Φ is continuous and the
induced map of the orbit space StjG is a homeomorphism with its image.

Proof. A. ψ — φ°yκ. Let φeSt and let x = τr(kernelφ). The
Hubert space ξ>( Uφ) is the set of measurable functions / from G to £>(<p)
such that f{σβ) — φ\o)f{β) for σ in Gx and β in G and such that the

integral \ 11/(7) \\2dμ(Gxi) is finite, where μ is some finite measure on
JθlGx

G\GX which is quasi invariant. If ψ — φ°Ίκ then an / in C0(Y) is in
kernel ψ if Ίκ{f) vanishes on {x} x Gx, which occurs if / vanishes on
{j^x} x Gy~ix. Thus π(kernel ψ) = Ί~λx. Let v be the measure defined
on G\GΊ-\X by means of the formula

where h e C0(G/Gγ-ix). This makes sense since Ί~λGxβ = Gy-i^β is a
O7-ix coset, and one can see that v is quasi invariant.

If fe &(Uφ), let (Uf)(β) = /(7/5). Then C/jΓ is a measurable function
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from G to $(φ) = &(ψ). If σeGy-ix then yσj~1eGx and (Uf)(σβ) =
ffrσβ) = ^(ytrr1)/^) = ^(Ύσr-^Ufyβ) = f\σ){Uf)ψ). The last equ-
ality follows from the fact that for gr in C0(F) and ?> in

, σ"1 ))ί> = ψ{c{

If f1e$(Uφ) also then

(2.1) ί ((ϊ7/)08)>(^/1)(/9))dy(Gϊ-i.iS)=( (f(β),Mβ)dμ(Gx

and since the right member of (2.1) is the inner product in ξ)(Uφ) and
the left member is the inner product in £>(t/^), Ufe&iU*) and U is a
unitary transformation of &(Uφ) onto §(C7^).

Let £7 be a Borel subset of X. Then P ^ ) (resp. P ^ ) ) is multi-
plication by the characteristic function of {β: β~λx e E) (resp. {β:
β-'y-'x e E}) and

- U(P*(E)f)(β) ,

where χE is the characteristic function of E. Let a be in G. The
definition of Uφ(a)f = Uφ(ά)f is

1'*U*(a)f(β) = f(βa)(X(Gxβ, a))

where λ( , a) is a Radon Nikodym derivative of the measure E—>μ(Ea)
with respect to μ. Then λ(τ , tf) is a Radon Nikodym derivative of the
measure E —> v(Ea) with respect to v and

= /(7/3α)(λ(G,7/3, α))1/2 = (Uϋ%a)f)(β) .

Thus ϊ/*, P^ is equivalent to Z7̂ , P^ and so Φ is equivalent to Ψ.

B. Φ = Ψ. Let <£> and f be in S and suppose that Φ is unitarily
equivalent to Ψ. Let # = π(kernelφ) and let y — 7r(kernel ψ). Pφ(Gx)
is multiplication by the characteristic function of {β: β~λx e Gx} and so
Pφ(Gx) = I and likewise Pf(Gy) = I. (Gx is a Borel set since it is a
countable union of compact sets.) Since Pφ and P^ are equivalent,
P*(Gy) = I, Pφ(Gx Π Gy) = I,Gx Π Gy Φ φ and Gx = G?/. Suppose y =
7x,yeG, and let ω = ψo^fκ. Then £? is equivalent to ?F by A, and so
is equivalent to (P. Thus Uφ\ Pφl is equivalent to Uω\ Pωl and by [11,
Theorem 2], ω1 is equivalent to φ1 and so ω is equivalent to >̂. Thus
φ and n/r have the same orbits under G.

C. The continuity of φ—>Φ. The unitary equivalence class of the
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induced representation is independent of the choice of the quasi-invariant
measure μ on G/Gx. We make the choice μ = μx1 where μx is defined
by the formula

(2.2) \ f(y)c(x, y^dy = \ \ f{σy)Ax{σ-')dσdμx{Gxy) ,
Jσ JG/GXJGX

and fe C0(G). That (2.2) defines such a μx follows from Lemma 1.5 of
[12] and its proof, and it is also shown there that Δ(y)c( "1x9 T)" 1 is a
Radon Nikodym derivative of the translated measure E —> μx(Ey) with
respect to μx.

LEMMA. Let M be a compact symmetric subset of G and let s be
a nonnegative element of CQ(G) which is positive on M. Then the

function t(x, 7) = s(y)[c(x, y)\ s(σ7)JJσ~1)dσ]-1 is defined and continuous

on the subset {(x, 7): Ί~λx e Mx} of X x G. If xeX and g is a bounded
Borel function on G/Gx and if support g c GXM then

(2.3) ί g{Ί-λx)dμx{Gxy) = \ t(x, y)g(j-1x)dj .
JθlQx JG

It is easy to see that t is defined and continuous. If g is continuous
then formula (2.3) follows from (2.2). The general case in which g is
a bounded Borel function follows by taking monotone limits.

Let φm be a net of irreducible representations of β converging to
an irreducible representation ψ. Let xm = π(kernel φm), let y—π(keτne\ ψ).
If U is a neighborhood of y and if h is a function in C0(X) which is
zero outside U and is one at y and if xm $ U then hSt c kernel φm. The
set {φ: h& ς£ kernel φ) is a neighborhood of ψ and so for large m,

h$t ςt kernel φm and xm e U. Thus xm —> y. The topology of ϋ can be
described in terms of w* convergence of linear functionals, and in par-
ticular there are vectors vm in &(φm) and a w in tg(φ) such that || vm \\ =
1 = \\w\\ and such that the linear functionals (φm( )vmf vm) converge in
the w* topology to (ψ( )w,w).

If fe C0(X x G), let f\i)(x9 σ) = f(x, σ~^). Then /°(τ) e C0(Γ) and
7—•/°(7) is continuous in the norm || ||i and so in the norm || ||. Let
φm' be the representation of GXm determined by φm. By [12, Lemma
3.1], if

= φm(f°(Ύ))vm = \ f(xm, σ-1i)ψ

then F w €ξ)(Z7Oand likewise W = (7 -> f (f°(y))w) is in φ(!7*). We
suppose that W ^ 0. This is the case for example if / is nonnegative
and has its support near X x e. If β and 7 are in G then

{{U«m{Ί)Vm){β), Vm(β)) - (V.,097), V . O S J M T M / S " 1 * , . , 7)-1])-1]1"
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= (<Pm(Γ(β)* *f°(βv))vm, vm)[Δ{y)c{β-'xm, 7)-1]1'2

(2.4) - ( t ( / W *Γ(Pr)υ>, w)[Δ{Ί)c{β-ιy, y)~ψ2

= (W(βy), W{β))[Δ{Ί)c{β-ιy,Ί)~xT = {(U+(i)Wyβ), W<β))

and the convergence in (2.4) is uniform for β and γ in compact sets.
Let g be in C0(X x G), let M be a compact symmetric subset of G

such that support f a X x M and let t(x, y) be chosen by the lemma.
If βφGXm M then Vm(β) = 0 and we have

(Φm(g)Vm, Vn) =

= \ \ (sr(/5-X,7X[7*m(7)FJ(/3), Vm(β))dμXm(GxJ)dy
JG jQ}Qχm

= \ \ t(xm,β)(g(β->xm,y)(U*m(y)Vm)(β), Vm{β))dβdy

t(y, βKgiβ-'y, y)(m(y)W)(β), W{β))dβdy

), W(β))dμy(Gυβ)dyJGlGy

= (Ψ(g)W,W).

This implies that Φm —> Ψ and proves C.

D. The induced map is a homeomorphism. It follows from what

we have proved that the map from Sϊ/G into 8 induced by the map
φ —>Φ is one-to-one and continuous. Let if be a closed G-invariant

subset of & and let L = {Φ; φ e K}. To complete the proof we must

show that L is relatively closed in the image of 5?.

Let f be in I , let Ψ be the corresponding element of 8, let
^kernel^) = y, let g be in C0(Y), let h be in CQ(X x G) and let V and
Wbe in §(U+). Then

(W(g*h)W, V)

), V(β))dμy(Gyβ)dy

= \\ \ g(β-1y,σ)h(β-ιy,σ^y)((UHy)W)(β),V(β))
JG JGlGy JGβ-ly

. [Jβ-ly(σ)IA(σ)γi2dσdμy(Gyβ)d7 .

The above integral is absolutely convergent and so we can interchange
orders of integration, placing the integration with respect to 7 first.
If we substitute σy for 7, place the 7 integration last again, and then
use the substitution σ-^β~ισβ as in (1.1), we obtain

(Ψ(g*h)W, V)

G JGlGy
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= t t
Jθ J

(
G/Gy JGy

=\\ \
JG JGlGyJG

\ \
JGlGyJGy

dσdμy(Gyβ)dΎ

= \ \
JG j

), ψ o βκ(g*) V(β))dμy(Gyβ)dy .

Since the function β->φ<>βκ(g*)V(β) is in Φ(Ϊ7*),

(Ψ(g*h)W,V)=\ ((Ψ(h)W)(β), ψoβκ{g*)V(β))dμy(Gyβ)
JGlGy

(ψoβκ(g)(Ψ(h)W)(β), V(β))dμυ(Gvβ) ,

and by limits converging in the norm in β, this is true for g in S.
Let $ = {g; g e β and ^(g) = 0 for all 9> in #}. If ?F 6 L then

SΓC3;*8) = 0 by the above calculations. Now suppose Ψ is a limit point
of L. Then ξΓ(^*S) = 0 also. Since Ψ(2) contains a norm bounded
sequence converging strongly to 7, if g e $ and F e §( t/^) then
^ ° βΛΰ) V(β) = 0 for a.e./5. If we choose V continuous then β—>
rf°βκ{Q)y{β) is continuous also; this can be seen directly if geC0(Y)
and by taking uniform limits otherwise. For such V, ψ°βκ(9)V(β) = 0
for all β. By [12, Lemma 3.2], this implies that ψ°βκ{g) = 0 and in
particular that i/r(S) — 0. By the definition of the hull-kernel topology,
ψ e K~ = K,Ψ eL and L is relatively closed. This completes the proof
of Theorem 2.1.

If x G X let <£>* be the one-dimensional representation / —> I /(a?, σ)dσ,

/GCoίF). Then φx can be extended to $, 9>β6ffi, kernel <px e Z and
a? —> kernel ^ is a homeomorphism of X with its image in Z. This
image is invariant under G and so X/G is countably separated (there
are G invariant Borel sets E19 E2, in X which separate points of X/G)
if Z/G is. However one might be interested only in representations

induced from a subset K of fi or of Z, and it is possible that K/G is
countably separated when X is not.

THEOREM 2.2. Let K be a closed G-ίnvariant subset of $£ and let

L be the closure of its image in 8. Let $(i£)(resp. $(£)) be the set of
g in $(resp. 8) for which ψ(g) = 0 if ψe if (resp. L). Then the fol-
lowing statements are equivalent:

(1) 8/3(L) is type I
( 2) K\G is countably separated
(3) &I$(K) is type I and every factor representation of 8 which
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annihilates $(L) is induced.

For a C*-algebra to be type I means that the weak closure of the
image of each representation is type / in the sense of Murray and von
Neumann.

Suppose (3) is true and let Φf be a factor representation of 8/^(L).
Then the corresponding representation Φ of 8 is induced from a repre-
sentation ψ of $. By Theorem 1.5 the commutant 0(8)' of 0(8) is the
intersection of the commutants of Pφ and Uφ and by [13, Theorem 6.6],
this is isomorphic to <p(^)' Since &ffi(K) is type I, φ(&)' is type / and
so is Φ'W(L))r. Thus Φf is type I and so is 8/3 (L), and (3) =φ (1).

Suppose (1) is true. By [5, Theorem 2], L is countably separated and
by Theorem 2.1, KjG is homeomorphic to a subspace of L. Thus K\G is
countably separated, and (1) => (2).

Suppose (2) is true. If xeX, let K(x) be the set of φ in K such
that π(kernelφ) = x. If jeG and ψ and φ°Ίκ are both in K(x) then
jeGx and φ is equivalent to φ°Ύκ. Thus the restriction to K(x) of
the quotient map K-+K\G is one-to-one. Let JEΊ, E2, be G invariant
Borel subsets of K which separate the points in K\G and let Ul9 U2,
be open subsets of X which separate points of X. Then ^(U^^CU^,—
separate points of K (x) from points of K(y) for xΦy and El9 E2y —
separate points of K(x). Thus K is countably separated and by [5,,
Theorem 2], RI3(K) is type /.

Let φQ be an irreducible representation of 8 which annihilates 3(L),
let φ and P be the corresponding representations of G and X and let
R be the projection valued measure on Z which extends X and is given
by Theorem 1.6. We assert that R(Z ~ K) — 0. Let ψx be the repre-
sentation of S defined by Theorem 1.8. In view of the definition of R,
we must show that ^^(K)) = 0. Suppose first that φ0 = Ψ is induced
from an irreducible representation ψ of ££ which annihilates 3( iO and
let # be in $(K) and T7 in ξ>(0>). As in the proof of Theorem 2.1,
A (ti(ff) W)(β) = f o βκ(g) W{β) for a.e. β, and so ψ^g) = 0 and ψ^iK)) =
0. If we no longer assume that <p0 is induced, φ0 is in any case a limit
of such induced representations Ψ. Thus if W and Feξ>(<p0) and
Λ, e C0(X x G) the representative function

g-+(Ψi(g)<Po{h)W, V) = (φo(g*h)W, V)

defined on Co( Y) is a limit of uniformly bounded representative functions
defined on 5Ϊ and vanishing on $(K). This implies that t i (3( ίQ) = 0
and R(Z ~ K) = 0.

Since the images of <p and i? are not simultaneously reducible and
since K/G is countably separated, R must be concentrated in an orbit
([11]). Thus P is also concentrated in an orbit and by [11] φ and so>
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ψ0 are induced. This means that the map of K\G —* L is onto, that L
is countably separated and by [5 Theorem 2] that 2ffi(L) is type I.
We have proved that any irreducible representation of 8 which annihilates
$(L) is induced and thus this is also true for factor representations.
We have proved (2) =Φ> (3), and this completes the proof of Theorem 2.2.

Some of the results of this section extend results of [3], and this
paper is in part addressed to the problems considered in [3] (cf. The
final paragraph of [3]).

We conclude with a proof of the result mentioned in the introduction
concerning a manifold structure in orbit spaces. We are indebted to
R. Palais for discussions concerning this theorem.

THEOREM 2.3. Let Kbe a C°° or real analytic separable n-dimension-
al manifold and let G be an analytic group acting smoothly on K. If
the orbit space K\G is countably separated and if the orbits all have
dimension m then there is an open dense G invariant subset U of K
and a unique C°° or real analytic n-m dimensional manifold structure
on UjG such that a function f defined on UjG is differentiate ( = C°°
or real analytic) near Gx if and only if the corresponding function
x-+f(Gx) defined on U is differentiate near x.

If K\G is countably separated then Theorem 1 of [6] implies that
there is a dense open G invariant subset Uλ of K such that UJG is T2;
we can suppose K = Ux. If x e K, let θx(j) — yx, for 7 in G. If Γ e g,
the Lie algebra of G, let Θ+(Γ) be the vector field defined by Θ+(Γ)X =
dθx(Γ). Then Θ+(Q) is an m-dimensional involutive differential system
UJΪ on K, by [14, page 35, Theorem 2]. Necessary and sufficient conditions
for coordinate functions xlf •••,£„ to be flat with respect to SQΐ(we use
the terminology of [14]) is that Xj(yy) = Xj(y) for y near e, y in the
domain of the xk and j = m + 1, , n. Suppose this is the case, suppose
that the coordinate system is cubical of breadth 2a and domain Wa and
let S = S(cm+1, , cn) denote the slice {x; xά{x) = cjf j = m + 1, , n}
of Wa. Let x be in S. Since dθx maps g onto 9JΪX, θx maps each neighbor-
hood of e onto a neighborhood of x in S. Let T be the leaf containing S.
Since each y in T is in some such S, T Π Gx is an open subset of T in the
manifold topology for T as a submanifold of K. Since K\G is Γ2, Gx is
closed and T Π Gx is a relatively closed subset of T with the relative
topology and so is a closed subset of T in the manifold topology. Since
T is connected in the manifold topology, TaGx. For some neighborhood
N of e, Nx c S, and then {7; Ύ% e T} can be shown to be an open and
closed subset of G and thus all of G. Thus the leaves are the orbits.

Let W be a G invariant open subset of K. We show that W con-
tains a G invariant open subset consisting of regular leaves. This will
complete the proof since the union U of all open G invariant subsets
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of K which consist of regular leaves will then be dense, and [14, Theo-
rem 8, page 19] defines the required manifold on U/G. Let Wz =
{x: \Xi(x) I < ε}. There is an ε in (0, a) and a neighborhood N of e such
that

N(S(cm+1, , cn) Π Wζ) c S(cm+1, . . . , c , )

for all cm+u •••,<?». By Theorem 1 of [6] there is a nonempty open
subset UQ of Wz such that for each m in UQ, Nm Π Uo = Gm Π Z70 If
S(cm+1, . . . , c . ) Π tfo=£0 then

(GS(cm+u , cn)) nuo = (G(S(cm+1,..., o n u0)) n u0

= (N(S(cm+1,..., cn) n I7O)) n c/o = S(cm+1, , o n t/Ό
and so each orbit that meets Uo meets it in a set of the form
S(cm+U , cn) Π UQ. It follows that each orbit through Uo is a regular
leaf and that GU0 is the required open subset of W.

D. Mumford has constructed an algebraic quotient using related
hypotheses (Conversation with A. Mattuck).

APPENDIX

J. M. G. Fell has proved the equivalence stated on the first page of
this paper. What follows is his proof.

Let G be a locally compact group with unit e and let £f be the
family of all closed subgroups of G. Let us give to & the topology
having as a basis for its open sets the family of all

: K n C = φ,K Π AΦ φ for each A in

(where C runs over the compact subsets of G and ^ runs over the
finite families of nonvoid open subsets of G). This topology makes S^
a compact Hausdorff space [4, Theorem 1], Let us fix a nonnegative
function f0 in C0(G) such that fo(e) > 0 and for each K in £f let μ κ be
the left Haar measure on K for which

*) = l .

THEOREM. .Fbr βαc/̂  / in C0(G), the function

is continuous on £f.

First, we observe that to each compact subset C of G there is a
positive number a = a(C) such that

( 1) μΣ(C f] K) ^a
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for all K in S^ In fact if fo(z) > ε > 0 for all z in a neighborhood U
of e and if x e C then choose a neighborhood £7̂  of # such that J7ίB~

1Z7a.c C/.
A finite number of these, £7̂ , , UXn, cover C. Let a = w/ε, let J =
{i; UXJ Π K Φ φ) and if j" e J, let y3- be chosen in C/̂  Π if. Then

/^(C fl if) ̂  ε~3

The essential technique is that of generalized limits. Let Kn be a
net in & converging to if and let Kn be directed by a set N. A
generalized limit is a positive linear functional Γ defined on the space
B of all bounded real valued functions on N such that if s e B and
limTC_>oo sn exists then Γ(s) = limΛ_oo sn. If s e B and Γ(s) is the same for
all possible generalized limits, then lim^βo sn must exist and equal Γ(s).

Now let Γ be any generalized limit and let / be in C0(G). By (1),

the function \ f(k)dμκ (k) defined on N is bounded. Let

f{k)dμEβc)
n

Φ is a positive linear functional on C0(G). If / = 0 on if, choose f5 in
C0(G) converging to / uniformly and such that the support of /δ is
contained in {x: \f(x)\ ^ δ}. Then ^(suppt /δ, φ) is a neighborhood of
if and if Kn is in this neighborhood then I fs(k)dμKn(k) = 0 and so

φ(fs) = o and Φ(f) = 0. Also every g in C0(if) extends to a n / i n C0(G),
so the definition

φ(f\K) = Φ(f), feC0(G)

gives a positive linear functional ψ on C0(K).
If koe K and if ε > 0 then by (1) we can choose an open neighbor-

hood U of kQ such that

r

< ε

for all kx in U and i ϊ in &. For large %, iΓTC e <&($, U) and so there
is a &„ in Kn Π Z7. Hence

^ lim supΓ f{Kk)dμKn{k) - f{kk)dμKn(k)

+ lim sup

^ ε | | Γ | | + lim supΓ(\ f(k)dμKn(k))-φ(f\k)
\j κn /

= e | | Γ | | ,
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so φ is left invariant on K and thus is a left Haar measure. Since

φ(f01 K) =

we must have

Φ{f) = ( f(k)dμκ(k)

for all / in C0(G). The right member of the previous equation is inde-
pendent of the choice of Γ and hence so is the left member. Thus

lim ί f(k)dμKn(k) = ( f(k)dμκ(k) ,
n Jκn JK

and the theorem is proved.
If Gx is a continuous function of x and if μx = μGx is chosen as

above then x —> μ% is a continuous choice of the Haar measures. Con-
versely suppose we are given a continuous choice x —> μx of Haar measures
on the Gx and suppose that {xn:neN} is a net in X converging to y
and that ^/{K, &~) is a neighborhood of Gy. If GXw Π K is not eventu-
ally empty then for all n in a coίinal subset of AT, there is a σn in
G^ Π if, and if we pass to a suitable subnet, σn—»σ. However σ e K ΠGy

which contradicts the fact that %/(K, ̂ ~) is a neighborhood of Gy. Let
Ve Jt~ and let / be a nonnegative nonzero element of C0(G) with support
in V. Then ί f(σ)dy(σ) > 0 and so ί f(σ)dx (σ) is eventually greater

that zero. Hence GXγι Π F is eventually not empty, GXfl is eventually
in %s(K, ̂ ~), and Gx is a continuous function of cc.
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