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l Introduction. Let σr(N) denote as usual the sum of the rth
powers of the divisors of N. Let d be a divisor of N with 1 ^ d <£ λ/N
and df its conjugate, so that ddf = N. By a component of σr(N) we
mean the quantity dr + drr or dr according as 1 ^ d < τ/JV or cί = τ/JV.
Components corresponding to distinct divisors d :g "l/iV are distinct and
σr(N) is their sum.

If every component of σr(N) is congruent to the integer α, modulo
K, we say that σr(N) is componently congruent to a (mod if) and indi-
cate this by writing

σr(N)=a (mod K) .

This does not necessarily imply that also σr(N) = a (mod if). For example
0*4(8) = 2 (mod 3) but <74(8) = 1 (mod 3). Similarly ordinary congruence does
not imply component congruence, as the same example shows.

2. THEOREM 1. If r, if, L are fixed positive integers with K Ξ> 3
and (L, if) — 1, and if a is a nonnegative integer, then a necessary
and sufficient condition that

(1) σr(nK + L) = a (mod if) for all integral values of n^ 0

is that

(2) L is a quadratic nonresidue of K

(3) 1 + Lr = a (mod K)

(4) (wr - l)(wr + 1 - α) = 0 (mod K) for all w such that (w, K) = 1

We first show necessity. Assume that σr(nK + L)=a (mod K) and
L is a quadratic residue of i£. Then there exists q such that q2 = L (mod iί)
and consequently nx such that ^i f + L = q2. Consider q2 and n2K +
L = {nλK + nλ + L)K + L — (K + l)tf2, both occurring in the sequence
nK + L. Since σr(q2) = a (mod iί) we have with d = q that gr Ξ a (mod if)
and since σr([K + Ϊ\q2) = a (mod K) we have with d = q and df = (K + l)q
that qr + (if + l)rqr = α(mod iΓ). Thus qr + (K+l)rqr = q\ or, 2 = l(modiΓ).
This is a contradiction and (2) is necessary. Assume next (1) holds.
Then in particular for n = 0 we have σr(L) = a (mod K). By condition
(2) just proved L Φ 1 and the component with d = 1 and df = L gives
1 + Lr=a (mod if) which is (3).
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Next to show (4). Given any w such that {w, K) — 1, there exists
an x ί W (mod K) such that wx = L (mod K). Let this x be denoted by

Then

ww1 Ξ L (mod K)

and by our assumption σr(nK + L) = a (mod K) applied to ww1 it follows
that

1 + wrw{ = a (mod K)

wr + w\ = a (mod K) .

Eliminating w\ gives 1 + wr(a — wr) = α (mod iΓ). Rewriting this gives
(4) and shows (4) is necessary.

To show sufficiency, we need to show for any divisor d of N =
nK + L with 1 ^ d ^ i/iNΓ and conjugate divisor d' thatcίr + dtr =
a (mod if) or dr = a (mod ίΓ) according as 1 ^ cί < VNOY d = VN provided
(2), (3) and (4) hold. But (2) insures that N cannot be a square, so
the second alternative cannot occur. Now

dr(dr + d») = d2r + (ddj

= (1 + adr — a) + Lr

by (4) and the fact that ddf = L (mod iΓ). Then using (3),

dr(dr + d'r) = (1 + adr - α) + a - 1 Ξ αώr (mod K).

Since (cZ, K) = 1 it follows that

for each d as specified. But this shows (1) holds and completes the proof.

3* Examples and some special cases. It is not difficult to show that
when K = p is an odd prime, all component congruences are obtained
with r = (p — l)/2 and a = 0 or r = (p — 1) and a = 2. Thus for example:

σe(lSn + L) = 0 (mod 13), L = 2, 5, 6, 7, 8,11

<712(13π + L) = 2 (mod 13), L = 2, 5, 6, 7, 8,11 .

When K is composite we have σφ{κ){nK + L)==2(mod iΓ) for any non-
quadratic residue L of K.

In the special case r = 1 we show

THEOREM 2. For αίZ integral n^O, σ^nK + L)=α(modiί)
/or suitable L and a if and only if K is one of 3, 4, 6, 8,12 and 24.

The equation in condition (4) becomes
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( 5 ) w2 — aw + a -1 =0(modK)

The congruence (5) is equivalent to

Ax2 — Aax + a2 = (2x — a)2 = (a — 2)2 (mod 4K) .

With y — 2x — a we have

(6) y2 = (a-2)2(modAK)

subject to y= —a (mod 2). But this last condition is no restriction so
that the number of solutions of (5) is the same as that of (6). Let
S(AK) be the number of solutions of (6) and let AK = pζ+βlp? p)' where
px — 2, p2 = 3, are distinct primes. Then

S(AK) = S(pl+ei)S(pl*2) S(py) and S(pl+e^) ^ 2 for eλ = 0

+βl) ^ 4 for e > 0; S(p?) ^ 2 for ^ > 2 .
Since (5) is to hold for all w such that (w, K) = 1, we must have

or

4 ^ = 2, βi > 0 .

2 Pι>2

(7) P'rKPi - i) = Φ(PΪ) <

But the only values of p\ι satisfying these are 1, 2, 4, 8 and 1, 3. Since
K ^ 3 these give K = 3, 4, 6, 8,12, 24. The converse can be proved by
enumeration. The results are listed:

K 3 4 6 8 8 12 12 24 24

L 2 3 5 3 7 5 11 11 23

α 0 0 0 4 0 6 0 12 0

4» Relation between component congruence and congruence • We
have

THEOREM 3. If σr(nK + L) = α(mod K) for all integral n ^ 0, then
σr(nK+ L) = a (mod K) for all integral n Ξ> 0 if and only if a = 0 (moάK).

If α = 0 (mod K) then each component is congruent to zero and the
sum of the components—that is, σr(nK + L)—is congruent to zero. Con-
versely, if σr(nK + L) = a (mod K) as well as σr(nK + L)=α(modIΓ),
then, τ(n) standing for the number of divisors of n, we have

[τ(nK + L)l2]a = a (mod K)

since there are τ(nK + L)/2 components each congruent to a (mod K).
By Dirichlet's theorem, w and ^ in the proof of Theorem 1 may be
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taken as primes p and px. Then for nK + L = pply τ(nK + L) = 4. We
must have 2α = α or α = 0 (mod K).

In the particular case a = 0, conditions (2), (3) and (4) reduce to
conditions which Gupta [1] and Ramanathan [2] found to be necessary and
sufficient in order that σr(nK + L) = 0 (mod K) for r, n, K and L as
above. Thus we have the remarkable result:

THEOREM 4. Let r, K and L be positive integers with (K, L) = 1
and K ^ 3. TΛew σr(nK + L) = 0 (mod iΓ) /or αZZ w ^ 0 if and only
if σr(nK + L) = 0 (mod ίΓ) /or αM n ^ 0.
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