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A CHARACTERIZATION OF C{X)

KENNETH HOFFMAN AND JOHN WERMER

It is a classical fact that there exist harmonic functions u in the
unit disk with conjugate harmonic function v such that u has continu-
ous boundary values on the unit circumference, while v does not. Let
us restate this fact as follows:

Denote by Ao the algebra of functions analytic in | z | < 1 with
continuous boundary values on | z | = 1 and write Re Ao for the space of
all real parts of functions in Ao. Then we may say: there exists a
harmonic function u in | z | < 1 with continuous boundary values such
that u does not lie in ReA0. On the other hand, u is certainly a uni-
form limit of functions in ReA0 on \z\ •= 1, for all finite real trigono-
metric polynomials on \z\ — 1 are in ReAQ. Thus we see: ReA0 is not
closed under uniform convergence on | z \ = 1. In this paper, we shall
show that this phenomenon is a special case of a very general property
of algebras of functions.

Let X be a compact Hausdorff space and C(X) the algebra of all
continuous complex-valued functions on X. Let A be a complex linear
subalgebra of C(X) such that

(1) A is closed under uniform convergence;
(2) A contains the constant functions;
(3) A separates the points of X.

We write Re A for the set of functions Ref with / in A, that is, for
the set of real parts of the functions in A. Clearly Re A is a (real)
vector space of real-valued continuous functions on X. The purpose of
this paper is to prove the following.

THEOREM. / / Re A is closed under uniform convergence, then
A = C(X).

COROLLARY 1. If Re A contains every real-valued continuous func-
tion on X, then A = C(X).

COROLLARY 2. (Stone- Weierstrass) If A is closed under complex
conjugation, then A = C{X).

Corollary 1 is an evident consequence of the theorem, and Corollary
2 follows upon observing that, if A is closed under complex conjuga-
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tion, Re A is simply the collection of real-valued functions which are
contained in A. The proof of the theorem proceeds by reducing it to
the case when A is anti-symmetric, i.e., every real-valued function in
A is constant. Let us first settle this case.

LEMMA. If Re A is closed and A is anti-symmetric, then the space
X contains not more than one point.

Proof. Suppose that X contains at least two points. Fix a point
x0 in X, and let (ReA)0 be the class of all u in Re A with u(x0) — 0.

Suppose u is in (Re A)o. Let / be a function in A such that u =
Ref. Since the constants are in A, we may assume that v = Imf
vanishes at xQ. Since v = Re{—if), we then have ve(ReA)0. Now
given u, the function v in (Re A)o such that (u + iv) is in A is uniquely
determined. For, if vr is another such function, (v — vf) is a real-valued
function in A. Since A is anti-symmetric v — vr is constant, and the
condition v(x0) = v'(x0) = 0 tells us that v = v\ Put v = Γw.

Then Γ is a linear transformation of (/2eA)0 into itself. Since we
are assuming that Re A is closed under uniform convergence, (ReA)0 is
a Banach space with the norm

11 u 11 = sup I u I .

We claim that T is a bounded operator on this Banach space. To prove
this, it will suffice to show that the graph of T is closed. Suppose we
have a sequence of elements un in (Re A)o such that un —• u and Tun —»v
uniformly. Then the functions (un + iΓ%n) lie in A and converge uni-
formly to (u + iv). Thus (u + iv) is in A, and since it is apparent
that v(xQ) = 0, we have v = Tu. We conclude that Γ is bounded.

Since X contains at least two points, we may choose a nonconstant
function g = s + it in A such that #(#0) — 0. Let R denote the rectan-
gle in the complex plane defined by

Then g(X) is a compact subset of R. Since g is nonconstant, we cannot
have β = 0 or t — 0. In particular, there is a point xx Φ x0 in X such
that I ίfo) I = || ί ||. Let z0 = ^(^), so that ^0 is a boundary point of R.

Fix any integer N> 0. There exists a conformal map φ of the
interior of R onto the interior of the rectangle RN\

such that ^(0) = 0 and θ(z0) = iN. Since R and RN are rectangles, the
conformal map φ extends to a homeomorphism of the boundaries of R
and RN. In particular, φ is a uniform limit of polynomials on R. There-
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fore, the function h = φ(g) is in the algebra A, and h(x0) = 0(0) = 0.
If h = u + iv we have

IMI = N.

Since JV was arbitrary and v = Tw, we have contradicted the fact that
T is bounded. Thus X cannot contain more than one point.

Proof of theorem. A theorem of Bishop [1] states the following.
If A is a subalgebra of C(X) satisfying (1), (2), (3), there exists a parti-
tion P of the space X into nonempty disjoint closed sets, such that

( i) for each S in P the algebra As, obtained by restricting A to
S, is anti-symmetric;

(ii) As is a uniformly closed subalgebra of C(S);
(iii) the algebra A consists of all continuous functions / on the

space X such that the restriction of / to S is in As for each S in the
partition P.

Glicksberg [2] proved that we may also arrange that
(iv) if S is a fixed element of P and T is a closed subset of X

disjoint from S, there exists a function g in A such that

Hffll ^ 1 , g = 1 on S, \g\< 1 on T.

Actually, (ii) is a consequence of (iv). What we shall show now is
that (iv), together with the assumption that Re A is closed, implies that
ReAs is uniformly closed for each set S in the partition P. This will
prove the theorem. For As is an anti-symmetric closed algebra on the
space S, and the above lemma shows that S consists of one point. By
{iii) we then have A — C(X).

Fix S in P. We show that ReAs is closed. We first assert the
following. If / 6 A and ε > 0, we can find F e A such that

(4) suv\ReF\ ^ sup|Λβ/| + 2ε , and ReF= Ref on S .
X S

Let Ω be the region in the w-plane (w — u + iv) defined by

w I < 1 , — ε < ^ < ε .

Let τ be a conformal map of \z\ < 1 on Ω with τ(0) = 0 and r(l) = 1.
Choose δ > 0 such that τ maps | z \ < δ into | w \ < ε. Choose a neigh-
borhood U of S in X with

I Λ β / | ^ sup I jβe/ | + ε , on U.
s

By (iv) above there is a g e A such that || g \\ ^ 1, g = 1 on S, | # | < 1
on X — ί7. Choose a positive integer n large enough that | gn | < δ on
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X- U. Put h = τ{gn). Then h e A, h = 1 on S, and \Imh\^ε on all
of X. Also I Reh| < ε on X — U and \Reh\<Ll on all of X. Now
define F = /A. Then F e A and

ReF = RefReh- Imflmh .

Therefore

( 5 ) ReF= Ref on S

(6) iΛeJFΊ ^ (sup|Λe/| + ε) + ε, on U
s

(7) | / ί e F | ^ ε + ε, on X- U.

In particular, F satisfies (4). (For (6) and (7) we have used | | / | | ^ 1.)
We finish the proof with a standard closure argument. Let R&

denote the subspace of Re A consisting of all functions in Re A which
vanish on S. With norm given by maximum modulus over X, Re A i&
a Banach space, and Rs is a closed subspace. The quotient space Q —
ReA/Rs is therefore complete in the norm

\\Ref+ Rs\\ = mΐ\\ReF\\ , ReF=Ref on S.
F

But by (4)

sup]iίe/ | = inf \\ReF\\ , ReF= Ref on S .

We conclude that ReAs, which is clearly isomorphic to Q, is complete
in the maximum norm on S. We are done.

The theorem of this paper was proved independently by H. Rossi
and H. Bear.
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