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ON THE RADIAL LIMITS OF BLASCHKE PRODUCTS

G. R. MACLANE AND F. B. RYAN

1. Introduction, As is well known, a Blaschke product f(z) in
{\z\ < 1} has radial limits f(eίθ) of modulus one almost everywhere on
{\z\ = 1}. The object of the present paper is to give a partial answer
to the question: how many times does f(z) assume a given radial limit?
We shall prove the following theorem.

THEOREM A. Let E be a given closed set on {\w\ = 1} and let Er

be the complement of E relative to {\w\ = 1}. Then there exists a
Blaschke product f(z), all of whose radial limits are of modulus one,
and such that the set

has the power of the continuum for eiβ e E and is countable for eίβ e E\

Theorem A is a condensed statement of what we shall actually prove;
Theorems 1, 2, and 3 contain somewhat more information on f(z). The
method of proof is to construct a suitable regularly-branched covering
W" of {\w\ < 1}, corresponding to an automorphic function w — f(z), and
then use the geometry of <W~ to obtain our results.

The question naturally arises as to whether one could prove Theorem
A directly. That is: could one produce an/(2) with the desired properties
by exhibiting its zeros instead of defining/(#) by means of a surface
The answer to this question does not seem to be obvious.

2, The surface ^ ~ . Let E be a given nonvoid closed subset of
{|w| = 1} and let {αw}Γ be an infinite sequence of points in {\w\ < 1}
whose derived set is E. Clearly, we may assume that an Φ 0 and

(1) arg am Φ arg an (m Φ n) .

Let W~ be the simply-connected unbordered covering of {\w\ < 1} which
is regularly-branched over the points {an} with all branch points of
multiplicity 2. It is well known [2, 3, 6] that such a covering, with any
specified multiplicity or signature for each an, exists and is unique.
Instead of appealing to the general theory of regularly-branched coverings,
we shall construct the surface 'W directly, since the details of the
construction play a role in the proof of Theorem A.

Received September 29, 1961. The research of the first author was supported by the
United States Air Force through the Air Force Office of Scientific Research of the Air
Research and Development Command, under Contract No. AF 49 (638)-205.

993



994 G. R. MACLANE AND F. B. RYAN

Let Cn be the radial segment arg w = argαw, \an\ ^ \w\ < 1. The
CΛ are disjoint because of (1). We make cuts in {\w\ < 1} along each
Cn and so obtain a alit disc W9 copies of which are joined together,
according to the following specifications, to form the surface.

0th level. The surface W"ϋ consists of just one slit disc W. Note
that "W^ is simply-connected.

1st level. The surface 5^Ί is obtained by adjoining an infinite
sequence of distinct copies of W, namely W{1), W{2), , to "W^ W{n^)
is joined to ^ ~ 0 along Cni so as to form a first-order branch-point over
αΛ l. The surface ^ " Ί = ^ 0 U \Jn W(n) is simply-connected; for by
adjoining the W{n) one at a time we obtain an increasing sequence of
simply-connected surfaces which exhaust 'Wi We denote by χ(n^) the
curve in "WΊ along which W(n^ and W"Q are identified.

2nd level. Along each free slit on the boundary of W"ι we adjoin
a copy of W. More precisely, the sheet W(nl9 n2) is adjoined to W{n^)
along the cut C%2 in W(n^. The added sheets correspond one-to-one
with all pairs (nl9 n2) of positive integers such that nx Φ n2. Again we
see that the surface <W2 = W"i U U W(nlf n2) is simply-connected. The
curve over Cn2 along which W(n^ and W(nlftn2) are joined is denoted
by χ{nλn2).

kth level. Continuing the construction, the surface W^u consists of
Vi and copies of W denoted by W(nl9 n2, , nk), nt Φ ni+l9 which

are joined to W^k-i) W(nl9 * , nk) is adjoined to W(nί9 , nk-ύ along
the cut Cnjc in W(nl9 , nk^. Denote the curve along which those two
sheets are joined by χ(nl9n29 •• ,n Λ ) . Clearly W^u is simply-connected.

We take the surface <W~ to be lim <W*k as k —> co it is clear that
W is simply-connected as Wk ΐ ^ " . With the natural projection map
onto {\w\ < 1} it is clear that "W is a regularly-branched, unbordered,
covering of {|w| < 1}. All points of ^ over the an are branch-points of
multiplicity 2, and W" has no other branch-points.

3 The function/(z). Since ^ is a covering of {|w| < 1} it is
hyperbolic. Let w = f(z) be the holomorphic function which maps {\z\ < 1}
onto 5^\ with /(0) = Oe <W, and /'(0) > 0. Clearly \f(z)\ < 1. The
radial limits of f(z) are all of modulus one, since if this were not the
case a boundary point of {\z\ < 1} would correspond to an interior point
of <%r which is unbordered. Thus/(z) is of class U [5, p. 32]. Applying
Frostman's theorem [5, p. 33] we see that f(z) is a Blaschke product.

Also, f(z) is an automorphic function with respect to a Fuschian
group F, since the decktransformations of W" correspond to linear
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transformations preserving {|z| < 1}. It is easily shown that if E =
{\w\ = 1} then Fis of the first kind: the limit points of F fill {\z\ = 1}.
If E Φ \\w\ = 1} then F is of the second kind: the set of limit points
of F is a perfect nowhere dense subset of {\z\ = 1}.

The sheets W(nl9 n29 , nk) of ^ " correspond to a set of fundamental
regions R(nl9 , nk) of i^. These are the fundamental regions which
play a role in the proof; since these are defined via the function / it
is not clear that they are the same as the fundamental regions obtained
by any of the usual constructions in terms of F. Hence we must derive
some properties of these regions.

4. Properties of the fundamental regions. For convenience we
reduce the notations W(nlf •••,%), R(nl9 -- ,nk), and χ(nlf " ,nk) to
W, R, and χ respectively. To each curve χ in CW" there corresponds a
simple arc X in {\z\ < 1}. It is evident that the fundamental regions
R are bounded by the X's and points of {|z| = 1}. We proceed with
an investigation of the X's.

First, each X ends at two distinct points of {\z\ = 1}. The two

linear pieces of χ correspond to two simple arcs X' and X", and f(z)
tends to a limit as |«|—>1 on Xf and X". Then by Koebe's lemma
[1, p. 213] each of Xf and X" must tend to a definite point of {|s| = 1}.
The end points of Xf and X" must be distinct. If not, let D be that
part of {|21 < 1} bounded by X and a single point b on {\z\ — 1}. Then
the part of W" corresponding to D will contain an infinite number of
sheets W joined along various χ's, which correspond to X's, all ending
at b. Thus f(z) would have infinitely many distinct asymptotic values,
namely exp (i arg an), at b; but this would contradict the theorem of
Lindelof [4, p. 9] to the effect that a bounded holomorphic function can
have at most one asymptotic value at a given point.

Thus each X is a crosscut of {\z\ < 1}. A second property is that
no two X 's have a common endpoint. To see this, suppose Xλ and X2

are two distinct X ' s with a common endpoint 6 on {\z\ = 1}. Let the
corresponding curves χλ and χ2 in <W end at points aλ and a2, respectively,
over {|w| = 1}. If ax Φ a2 then we would again have a contradiction of
Lindelof's theorem. Now suppose aλ = a2. We may construct a sequence
of arcs Δn in \\z\ < 1}, each joining a point of Xλ to a point of X2, such
that diam Δn —* 0. Since by Lindelof's theorem f(z) -^ aλ uniformly
between Xx and X2 we may also require diam {f(Λn)} < 1/n. But from
the structure of W" it is clear that there exists a curve χ on ^ 7 , with
endpoint φ a19 such that any curve on 5^", joining a point of χx to a
point of χ2, must intersect χ. Since the projection of χ into {\w\ < 1}
and the common projection of χx and χ± are a positive distance δ apart,
we must have diam {f{Άn)} ^ 3, which is incompatible with diam
-{/(//„)} < l/n.
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Next, for any ε > 0, the set S = {X\ diam X > ε} is finite. For, any
disc {\z\ < 1 — δ} intersects only a finite number of the X's. Hence if
S were infinite there would exist an infinite sequence {Xn}T of distinct
crosscuts and a nondegenerate arc A on {z\ = 1} such that the radius
joining z = 0 to an arbitrary point of J crosses every Xn. Now any
radial limit f(eίθ) = eioύ, eiθeA, forces the χΛ, corresponding to Xn and
ending at eic*n, to satisfy an —> α. But then /(βίθ) = eία> for almost all
eiθeA, which contradicts the theorem of F. and M. Riesz. The point
of this paragraph is that if b is a limit point of F, then any neighbor-
hood of b contains infinitely many complete fundamental regions R.
There are at least some examples of Fuchsian groups possessing a
set of fundamental regions (connected) whose diameters are bounded
away from zero.

5 Properties of f(z) on the boundary.

THEOREM 1. Let b be a limit point of F, U a neighborhood of b,
and let eioύ e E. Then the set

U n L(a)

has the power of the continuum.

Proof. There exists a cross-cut X, corresponding to the curve χ
in ^ ~ , which separates {z\ < 1} into two domains, one of which, D, is
contained in U. The corresponding part, £^, of 'W" contains infinitely
many sheets. In {\w\ < 1} we may select among the arcs Cn two
sequences, {Cw(0)}Γ, and {Cn(l)}Γ, which satisfy either the following three
conditions
(2) the lengths of the Cn(0) and Cn(l) tend to zero,
(3) arg Cn(0) i a, and arg Cn(l) [ a,
(4) arg Cn+1(0) < arg C»(l) < arg CM;
or the same conditions with the arrows in (3) and the inequalities in (4)
reversed. Such sequences {Cw(ε)}, ε = 0,1 exist because of ei(* e E, the
initial choice of {an}, and (1).

Now let Γ(ε) = Γ(εly ε2, •••), e< = 0, 1, be an arc in &r with the
properties:
(5) Γ(ε) crosses, in order, curves X in ^ over the arcs C^βi), C2(ε2),
C3(ε3), •••, and meets no other χ ' s .
(6) Γ(ε) tends to a point on the boundary of & over eia.

This construction of Γ(e) is possible by (2), (3), (4), and since all
the curves χ over a < arg w < a + δ, δ = δ(η), are of length < η. Γ(ε)
corresponds to an arc Δ(ε) in {\z\ < 1} which tends to a definite point
b(ε)e U Π {\z\ = 1}, since f(z)-*eicύ on Δ(ε). By a well-known theorem
of Lindelδf [4, p. 10] then the radial limit of f(z) exists at b(ε) and has
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the value of eίa.
By associating b(ε) with the dyadic expansion 0. ελε2ε3 , we see

that we have found a set of points b(e) in U Π {\z\ — 1}, associated with
the radial limit ei0C/, having the power of the continuum, provided that
distinct sequences of ε's correspond to distinct points δ(ε). To show that,
let {εj and {ε'} be two distinct sequences and let p be the smallest
integer for which εp ψ εf

p. Then Cp(ep) and Cp(εp) are distinct and the
corresponding crosscuts Xp(ep) and Xp(εp) subtend two disjoint (recall
the structure of W) closed arcs Ap and A'p on U f] {\z\ = 1}. But δ(s)
G Ap and δ(ε') e Ap and so δ(ε) φ b(ε').

THEOREM 2. Lei b be a limit point of Fand let Ube a neighborhood
of b. The set

{θ I eiθ e U, f(eίd) does not exist}

has the power of the continuum.

Proof. Select three distinct arcs, C(0), C(l), C(2), from among the
arcs Cn. Suppose a curve Γ in "W meets, in succession, curves χ over
the arcs in the sequence

C(eO, C(ε2), C(ε3), . . . (ε, = 0,1, 2; ε, ^ εi+1)

and crosses no other χ's. To those curves χ in W~ which Γ meets there
corresponds a sequence of crosscuts Xl9 X2, X39 , which subtend arcs
Alf Λ2, ΛB, ••• on {\z\ = 1} satisfying the condition Aζ+1 c A°n. Also we
choose e1 = 0 and Xx fixed, in 27, so that the image of Γ lies in U.
The sequence {εn} then determines a unique point b(e) = [}A°ne U. The
radius to b(ε) intersects all Xn; hence f(z) has no radial limit at 6(e), for
C(0), C(l), C(2) are all distinct and εt φ εi+1. Now given the start of the
sequence, el9 ε2, , εp, there are two possible choices for εp+1 and the
two possible arcs Ap+1 are disjoint. Thus distinct sequences {εj yield
distinct points 6(ε). The set of sequences {εj has the power of the
continuum.

THEOREM 3. Let eiaeE'. Then the set L(a) is countable.

Proof. Let U be a neighborhood of eia containing none of the
points an. Then ^ c o n t a i n s a countable number of schlicht components
^ i , ^<2, ••• over U Π {|w| < 1}. Each ^/ n maps onto y n c {|«| < 1},
where Vn is bounded by an arc Anoί {\z\ = 1} and a crosscut of {|s| < 1}
The function f(z) is holomorphic on An and there is just one radius,
ending on An, associated with the radial limit eioύ. Since Ύ^ con-
tains only this countable collection of components over Z7, the result is
clear.
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We remark that if E is void, then the use of a two-point set {al9 a2}
leads to a Blaschke product satisfying Theorem 3. With a three-point
set we can satisfy both Theorem 2 and Theorem 3. Theorem 1 is of
course vacuous.
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