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THE SPECTRA OF MINIMAL SELF-ADJOINT EXTENSIONS
OF A SYMMETRIC OPERATOR

ROBERT MCKELVEY

1. Introduction. Let T be a closed symmetric operator with do-
main Dτ dense in a Hubert space 3ίf. A (generalized) spectral resolu-
tion of T is a family of bounded self-adjoint operators Eμ. defined for
— oo < μ < oo and such that:

(a) Eμ. is nondecreasing, continuous from the right, and i?-*, =
0, £L - 1.

(b) For ueDτ and v e

{Tu, v) = [°° μd{E^u, v), \\ Tu ||2 = Γ μ2d(Eμu9 u) .

When in particular T is self-adjoint, it possesses only one generalized
spectral resolution, namely the orthogonal spectral resolution where Eμ.
is for each μ an orthogonal projection. For an account of the theory
of generalized resolutions see [1], Appendix I.

M. A. Naimark has shown that for each generalized resolution Eμ.
there is at least one self-ad joint extension Γ+ of Γ in a Hubert space
Jg^f D Sff with the following property: If E£ is the orthogonal reso-
lution of T+ and P is the projection onto the subspace έ%f of ^g^+,
then Eμ. = PE£. We shall usually require that T+ be a minimal self-
adjoint extension of T, i.e. that J%*+ be the closed linear hull of the
set of vectors E£3l?9 (—00 < μ < 00); (see § 3). The minimal extension
T+ corresponding to a given Eμ. is determined by Eμ. uniquely, up to
unitary equivalence ([8], § 4). We shall denote it by T+ = φ(Eμ).

In this paper we investigate certain questions regarding the spectrum
Σ of T+ = ψ(Eμ). In view of the above mentioned unitary equivalence,
the point set Σ depends only upon Eμ.\ it may in fact be characterized
directly as the set of points of increase of Eμ. (see § 3). Parts of the
spectrum—e.g. eigenvalues and essential spectrum—may likewise be
characterized directly in terms of Eμ. It will be convenient to refer
to the spectrum of T+ as the spectrum of Eμ.

We are interested in comparing the spectra of various resolutions
of a given T. In order to describe the situation precisely, one refers
to A. V. Straus' extension theory of symmetric operators [10]. For any
complex λ, let AT{X) denote the range of T — λ. By definition, the
defect subspace M{X) is the orthogonal complement in 3$f of JT(X).
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Straus has associated with each generalized resolution Eμ of Γ a familjr
of contraction operators Fκ, mapping M{i) into M(—ϊ), and such that
Fκ is analytic on J^X > 0 with \\FK\\ ^ 1 there. Conversely each such
family of contractions is associated with some Eμ. A constant unitary
F corresponds by this association to an orthogonal resolution Eμ, and
for these Straus' extension theory reduces to that of J. von Neumann.
(For a complete description, see § 2)

We characterize the spectral resolutions Eμ of T by the behavior
near the real axis of the corresponding Fλ. Specifically we single out
two extreme cases, where Fλ satisfies, respectively, conditions a and β'
or condition γ as defined in § 4. These are local conditions, defined for
an open real interval Δ. When Eμ is an orthogonal resolution, condi-
tions a and β hold on the entire real axis.

In §§4-6 we consider a symmetric operator T with equal finite
defect numbers (n, n). In § 4 we extend to generalized resolutions of
T, satisfying conditions a and β on an interval A, the theorem of H.
Weyl [13] on the invariance of essential spectrum. In §6 we obtain a.
parallel theorem on the invariance of absolutely continuous spectrum,
proved for T a singular second order ordinary differential operator. This
extends a theorem of N. Aronszajn [2]. (The theorems of Weyl and
Aronszajn both concern self-adjoint extensions of T in Sίf, hence or-
thogonal resolutions.)

When Fλ is such that a and β fail everywhere on an interval Δ
an altogether different pattern emerges, for in this case Δ lies entirely
within the spectrum of Eμ. In § 5 we adopt the more stringent as-
sumption that condition γ holds on Δ. In particular, suppose Fλ is a
family of strict contractions, i.e. satisfies condition 7 on the entire real
axis. Suppose that T — μ has a bounded inverse for each real μ. Then
T+ = ψ(Eμ) is unitarily equivalent to the n-ϊo\ά direct sum of iD with
itself, where D is the differentiation operator in L2 (—°o, oo). This
generalizes a theorem proved by Coddington and Gilbert ([4], Theorem 14)
for T a regular ordinary differential operator of order n. As is indi-
cated in § 6, the situation is more complicated when T is a singular
differential operator.

The study of the spectrum of Eμ requires an analysis of the be-
havior of the resolvent Rκ of Eμ near the real axis. The generalized
resolvent Rκ of a spectral resolution Eμ is defined for ^ \ Φ 0 by

(1.1) Rλ =

Thus Rλ is a bounded operator with domain Sίf, analytic on each half
plane J?X > 0, ^X < 0. Inversely, Eμ is determined by Rκ through
the formula



THE SPECTRA OF MINIMAL SELF-ADJOINT EXTENSIONS 1005

(1.2) {E{Δ)u, u) = lim — ( ^(Λμ + i βw, u)dμ

where Δ is an interval (μlf μ2], μx and μ2 are continuity points of Eμ,
and E(Δ) = E^ — EH. When T is self-adjoint, the (generalized) re-
solvent jRλ of its orthogonal resolution Eμ. coincides with the resolvent
of T, i.e. Rλ = (T - λ)"1 for J?X Φ 0.

Let T+ = α/r(^) The resolvents i2λ

+ and i?λ of J5+ and 2£μ are
related, when ^X Φ 0, by (see [1])

(1.3) R, =

A. V. Straus [10] has given another characterization of Rk, when
0, as the resolvent of a certain quasi-self-adjoint extension Tλ in
of T. (For precise definition, see §2). Thus

(1.4) R, - (Γλ - λ)" 1 .

In §2 we investigate limit values, as λ tends to the real axis, of
JKλ. It is found that in general the interpretation (1.3) fails for limit
values while (1.4) retains its meaning. The interpretation (1.3) remains
valid on a real interval Δ precisely when jBλ can be continued analyti-
cally through Δ, and this is possible precisely when Δ lies in the com-
plement of the spectrum of Eμ (theorem 3.1).

It is a pleasure to express here my indebtedness to E. A. Coddington,
who first drew my attention to generalized resolutions and in particular
suggested that the theorem of Coddington and Gilbert, referred to
above, might be valid in a broader setting. During the course of the
work I have had access to his library and frequent benefit of his
counsel.

2, Limit values of the resolvent We shall designate an arbitrary
one of the half planes J^X > 0, J^X < 0 by π+ and the other by π~.
Choose any λ o e π + and any contraction operator F (i.e. | | . F | | ^ 1) with
domain M(X0) and values in Af(X0). The operator Γ, defined by

(2.1) ΓcfcΓ*,
D$ = {u:u = u0 + φ — Fφ. u0 e Dτ,φe M(x0)}

has been called by A. V. Straus a quasi-self-adjoint extension of T.
The class C+ of operators f obtained by holding λ0 fixed and varying
F is, in fact, independent of the choice of λ0 e π+. (See Straus [10],
Lemma 9 and the discussion preceding it). A second, and in general
different, class C~ of quasi-self-adjoint extensions of T is obtained by
taking λ0 e π~.

Let Rλ be the resolvent of Eμ of T. Straus has proved that, to
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eachλeτr + corresponds a quasi-self-ad joint extension TλeC+ such that

(2.2) (Γ λ - λ)-1 = B λ , λ e π+ .

For a fixed choice of λ0 e π+, the corresponding contraction Fκ = FK(\Q)
is analytic in λ on π+. Conversely, any analytic contraction Fκ carrying
M(X0) into M(λ0) gives rise, through (2.1) and (2.2) to a resolvent i?λ

of T. The relation R-λ = R? (which follows from (1.1) or (1.3)) has as
its correspondent the relation

(2.3) F λ(λ0) - [Fλ(λ0)]*

defining a contraction taking Af(λ0) into ikf(λ0).
The following theorem shows that these statements remain valid in

a limiting sense on the real axis.

THEOREM 2.1. Let λx, λ2, in π+ tend to λ on the real axis.
(A) Suppose that for a certain λ0 6 π+ the sequence of contractions

F\k(\) converges in norm as k —• co. Then the same is true for every
λj G τr+. The limit, also a contraction taking M(λ0) into M(X0), will be
denoted by FA

λ+ = F\+(X0). It defines a quasi-self-adjoint extension in
C+ of T, and the extension Tχ+ so obtained does not depend upon the
particular λ0 e π+ figuring in its construction.

(B) Necessary and sufficient for the convergence in norm of RK]6

to a limit, denoted by Rχ+, is:
(i) Convergence in norm of Fλ]c, and
(ii) Existence of (TA

λ+ — λ)-1 as a bounded operator with domain £ίf.
In this case,

(2.4) RU = (Tu - λ)-1 .

(C) In any subset of [π+ plus the real axis] in which both i?λ and
Fκ are defined (by extension), the single-valuedness and continuity of
either implies that of the other.

(D) When, as above, Rλjc and Fλjc(XQ) tend to limits in norm, then
the same is true of R^k and Fj_Jx0), and

(2.5) Rx- = [RuV , *V(λ 0) - [Fu(λ 0)]* .

Proof. (A) Let ΐ^(λ0) denote the Cayley transform of a quasi-
self-ad joint extension f of T. Thus W= U@F, where

C7(λ0) = (Γ - λo)(Γ - λo)"1

is the Cayley transform of T. One easily shows ([10], equation (5.22)),
that for λ0 and λj in 7Γ+,

(2.6) W(K) = [(λί - λo) - (λj - λo)ΐ^(λo)][(λί - λo) - (λί - λo)ΐ7(λo)]-1
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where the inverse shown is a bounded operator with domain Sίf. Since
this equation holds between Wλjc(X0) = U(X0) φ Fλjύ(X0) and WλJXΌ), there-
fore by continuity WΛ

λ+(K) = lim Wλjc(X'o) exists. Furthermore WΛ

λ+(X0)
and W\+(X'Q) are related by (2.6) and hence are Cayley transforms rela-
tive to λ0 and λί, of the same f = Γ λ + . Since Wλjc(K) = U(X'Q) © Fλjc(X'o)
therefore Fu(K) = Km Fλ]c(X'o) exists, and TFλ+(λί) = W ) 0 F λ + W ) .
Thus FA

λ+(X0) and F\+(X'O) define the same extension of Γ.
(BX Here we establish the necessity of the condition. Let λ0 e π+.

It follows from (2.2) that, for λ e ττ+,

2\ - λ0 - (Γ λ - λ) + (λ - λ0) = [1 + (λ - λo)# λ](T λ - λ)

and therefore that

(Γ λ - λo)-1 = Rλ[l + (λ - λo)^]" 1 , λ e π+ .

Here [1 + (λ — λo)jBλ]
-1 is bounded with domain §ίf. ([10], equation

(5.30), footnote.). By assumption, λ^-^λ on the real axis, and Rλjc-^Ri+
in norm. By choosing a special λ0 for which | λ — λo | || RA

λ+ || < 1, we
guarantee that [1 + (λ — λo)i2^+]"1 exists, is bounded, and has domain
J%f. Consequently the operator

Gλ = Rλ[l + (λ - λo)^]- 1

is well defined for λ = λ + as well as X e π+, and Gλjc—>G\+ in norm.
The Cayley transform Wλ(X0) of 2\ for λ e 7Γ+, is given by

Wλ = (T λ - λo)(Tλ - λo)-1 = 1 + (λ0 - λo)(Γλ - λo)-1 .

Hence

(2.7) Wλ = 1 + (λ0 - λo)Gλ , for λ e π+ .

We define the transformation Wχ+ also by this formula, and show that
Wχ+ is a quasi-unitary extension, with || Wλ+ || ^ 1 of the Cayley trans-

form £7(λ0) of T. In fact, the statements

II Wλ || ^ 1 WJ= U(XQ)f for / e Jτ(\)

are valid for λ e 7Γ+ and, since by (2.7) TFλjfc —• PΓA

λ+»
 a r e valid for λ =

λ + as well. But by [10], Lemma 8, these statements imply that WA

λ+

is a quasi-unitary extension of U(X0).
Consequently Wχ+ is the Cayley transform of a quasi-self-adjoint

extension (of class C+) of T. From the relation

X for

it follows, since Wλjc —• W\+, that: JP^ + = limi^7^ exists and

Wu=
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Thus Wχ+ is the Cayley transform of the extension which we have
denoted (in A) by Tχ+.

From the relation between any quasi-self-adjoint extension and its-
Cayley transform we have

Wu = (T% - \)(Tu - λo)-1 = 1 + (λ, -

Comparing this relation with (2.7), we conclude that

/ rn. -\ \—1 /"^ * Z>A M i /C~ Λ \ D A 1—1

l^ λ+ ~ λo; = {jrχ+ = iίλ+L-L "T (Λ ~ λojiίi+j

From this it immediately follows that R^1 exists and that

TV - λ0 = [l + (λ - \0)Rχ+]Rχ+- = R^1 + (λ - λ 0 ) .

Hence

or

ĴA -_ CJ1* λ) - 1

This shows the necessity of conditions (i) and (ii) for the special choice
of λ0 made in the course of the argument. But from part (A), already
proved, it follows that the conditions hold as well for any other λ0 G π+.

(B)2 In order to prove the sufficiency of the conditions (i) and (ii),
we make use of the inverse relation between Tλ and its Cayley trans-
form, namely

T λ = (λ0ΫFλ - λo)(ΐfλ - I )" 1 for λ G π+ or λ = λ + .

(For notation, see the proof of part A). Hence

Tλ - λ = [(λ0 - X)Wλ + (λ - λo)](T^λ - I)- 1 .

and, since (2\ — λ)"1 exists (condition ii), therefore

(2.8) (Γ λ - λ ) - = (Wλ - l)[(λ - λΌ) - (λ -

for λ G π+ or λ = λ + .

Furthermore, since the inverse appearing on the left side of this equa-
tion is bounded with domain 3$f, the same is true for the inverse
appearing on the right side. This fact, together with Wλjc —> WA

λ+ in
norm, shows that

which proves the proposition.
(C) This is a direct consequence of the reciprocal relations (2.7)

and (2.8), namely



THE SPECTRA OF MINIMAL SELF-ADJOINT EXTENSIONS 1009

Rλ = (W, - l)[(λ0 - λ) - (λ - λo)^]- 1

Wλ = 1 + (λ - λo)Λλ[l + (λ - λo)^]"1 .

These are valid in 7Γ+ and under the assumptions of (C), are valid, in
the limiting sense, on the entire set considered. Since the inverses
displayed are bounded operators with domain £ίf, the assertion regard-
ing continuity is evident.

REMARK 2.1. When Rχ+ exists (as a limit in norm) it is, by Theo-
rem 2.1, an extension of (T — λ)~\ This implies that λ is a point of
regular type of T, i.e. that (T — λ)"1 exists and is bounded.
In particular (see [1], Chap. 7), the defect numbers of T are equal.

REMARK 2.2. Necessary and sufficient for the continuity of Rκ

across an open interval Δ of the real axis is:
(i) Continuity of Rκ down to Δ in π+ and
(ii) Self-adjointness of Rλ+ on Δ, i.e. i?λ+ = i?λ_.

In the presence of (i), condition (ii) is equivalent to
(ii)' Unitariness of Fκ+ on Δ, i.e. (Fλ+)-λ = F λ_.

Under these conditions iϋλ is in fact analytic across Δ.
(One has only to consider (i2λ/,/), which is analytic in π+ and π~~ and
continuous across Δ)

3 Resolvent set and spectrum* By the resolvent set of a spectral
resolution will be meant the points of 7Γ+ U π~ plus any real point λ0

contained in an open real interval Δ across which Rλ may be continued
analytically. The resolvent Rλ at λ = λ0 is the common value of the
limits Rλ0+ and Rλ0- there.

In this paragraph we characterize the resolvent set, showing that
it is the complementary point set of the spectrum of EM described in
the introduction.

According to M. A. Naimark, the spectral family Eλ in £ίf may be
regarded as the projection on £έf of an orthogonal family E£ in an
enclosing space ^ + 3 £ίf. Thus Eλ = PE£, where P is the orthogo-
nal projection onto 3ίf\ P ^ + = £$f. The family E£ is the spectral
resolution of a self-ad joint operator T+ in Jg^+. In the following we
shall assume that T+ is a minimal self-ad joint extension of T, thus
we assume that the set of vectors

{E+(Δ)h: Δ is any interval, h e

is fundamental in ^g^+. In other words, ^f^ is the closed linear hull
of this set. (See Naimark [8], §4).

LEMMA 3.1. Let Δ he a (possibly degenerate) interval of the real
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axis. Then
(A). The set of vectors

Z{Δ) = {E+(Δr)h: Δ' c Δ, h e

is fundamental in E
(B) ί?+(J) = 0 if and only if JE7(J) = 0.

Proof. (A) Given / e E+(Δ)^P+. For any ε > 0 there exists g =
Σ*-i E+(Ak)gk, for certain intervals Λ and certain #& e £(?, such that
11/ - g \\< e. We can write E+(Δk)gk = E+(Δk n )̂<7* + #+(Λ - Λ)Λ,
and thus g = #(1) + #(2) with <;(1) = Σ £ i E+(ΔfM] and </(2) - Σ^iE+(Δr/)gf,
where JJ c ^ and Δ'j Π J = 0. Thus #(1) e E+{Δ)£έf+ while #(2)

 1 J B + ( J ) T + ,

and | | / - ^ | | 2 - | | / - ^ ( 1 ) H 2 + l k ( Ί ! 2 . It follows that 1 1 / - <?(1)||< s,
proving the proposition.

(B) (i) Suppose E(Δ) > 0. The there exists h e Sίf such that
0 < (E(Δ)h, h) = (PE+(Δ)h, h) = (E+(Δ)h, h) = \\ E+(Δ)h\|2. Thus E+(Δ) > 0.

(ii) Suppose E(Δ) = 0. Then for Δ' c Δ, E(Δ') - 0 also. Hence for
h e Sίf, 0 = (JS?(4f)A, λ) = (E+(Λ')h, h), i.e. JS?+(J')λ = 0. By part (A)
this implies that E+(Δ) = 0.

THEOREM 3.1. A real point λ of the resolvent set of the spectral
family Eλ of T may be characterized in these equivalent ways:

(A) Rλ may be continued analytically across some open real inter-
val Δ containing λ.

(B) E(Δ) = 0, for some real interval Δ containing λ.
(C) λ is in the resolvent set of a minimal self-adjoint extension

T+ = f(Eλ) of T.
In this case, Rx = PRA

λ

+, where iϋλ

+ is the resolvent of T+.

Proof. (A—>B) This is a consequence of the formula (1.2).
(B —> C) By the lemma, E+(Δ) = 0. Since El is an orthogonal

resolution of the identity, this implies that the points of Δ are in the
resolvent set of T+.

(C—*A) If Δ is in the resolvent set of T+ then RΛ

λ

+ exists for
λ G Δ, and PRχ is well defined for points in Δ as well as for nonreal
points. Since R£ is analytic across Δ, the same is true of PR£. But
for nonreal λ, Rλ = PR£. Hence Rλ can be continued analytically
through Δ, and will then equal PR£ there.

EEMARK 3.1. The representation Rλ = PR£ throughout the resolvent
set allows the establishment of a number of formulas already known
for nonreal points:

μ — λ
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(ii) For / 6 ΔT{X), (Λμ - Rλ)f = (μ - X)R,Rλf
(iii) Δτ{μ) = [1 + (λ - μ)Rk]Δτ(X).
We next obtain a result concerning the point spectrum of a minimal

self-ad joint extension T+ of T. In the following theorem, dim g7 de-
notes the dimension (^oo) of the manifold i?(λ) of solutions of T*u —
Xu. Also E[X] = Eλ+ - # λ _ .

THEOREM 3.2. Let M+(x) be the characteristic manifold in
corresponding to an eigenvalue X of T+, a minimal self-adjoint ex-
tension of T. Then dim M+(X) = dim E[X\£ί? g dim gf (λ).

Proof, (i) E^κ\3ίf c S?(λ); proving the inequality in the theorem.
To verify this let fce^T and choose / e Dτ. Then I7/ = T+f, and
(#[λ]Λ, Γ/) = (E+[X]h, Tf) = (T+E+[X]h,f) = (XE+[X]h,f) = X(E[X]h,f).
Thus J£[λ]fc e Dτ* and Γ * ^ ^ ] ^ = XE[X]h.

(ii) By Lemma 3.1, E+[X]£^ is dense on Λί+(λ). Thus dim M+(X) =
dim E+[X]β£*. The theorem will be proved by showing dim E+]X]βέf =
dim E\x\£έf.

Suppose Λ, ,/ w are vectors in ̂ T such that JS'+lλ]/;, ., £ f+[λ]/m

are linearly independent. Then E[X]fly , E[X]fm are also linearly
independent. For otherwise there would be constants cl9 •• ,cm, not all
zero, such that

ckE+[X]fk = Σ c^[λ]Λ = 0 .

This would then imply that / = Σ c/^+lΛ]Λ was a characteristic vector
of Γ + such that / e < ^ + θ ^ B ^ t that cannot be, since no reducing
manifold of a minimal extension can lie in ̂ g^+ Q έ%f (see Naimark [8],
§4.)

On the other hand E+[X]flf , E+[X]fm are obviously independent
when their projections E[X]flf , E[X]fm are. Thus dim E
dim E[X]β^, proving the theorem.

REMARK 3.2. Because of the unitary equivalence of all minimal
self-ad joint extensions T+ associated with a given spectral resolution Eμ.
of T, it is natural to associate with Eμ the various aspects of the
spectrum of T+. Thus by the spectrum, point spectrum, essential
spectrum, etc. of E^ will be meant the corresponding point sets in the
spectrum of Γ+. An eigenvalue of E^ will mean an eigenvalue of T+,
with its multiplicity the dimension of the corresponding manifold in Jg^+.

From the theorems of this paragraph it follows that certain aspects
of spectrum may be simply characterized directly in terms of Eμ. We
mention especially:

( i ) Spectrum: The points of increase of E^
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(ii) Eigenvalues: Points of jump of Eμ. The multiplicity of an
eigenvalue λ is dim E[X\β^.

(iii) Point Spectrum: Closure of the set of eigenvalues.
(iv) Essential Spectrum: Cluster points of the spectrum, plus

eigenvalues of infinite multiplicity.

4«. Essential spectrum* Let Eμ be a generalized resolution of the
identity associated with a symmetric operator T. From Remark 2.2, a
necessary condition for an open real interval Δ to belong to the re-
solvent set of Eμ. is that the associated family of contractions Fk from
M(X0) to M(X0) have the properties:

(a) Fλ is continuous from π+ down to Δ, and
(β) Fk+ is unitary on Δ.
These properties obviously cannot hold for any Δ unless the defect

spaces ikf(λ0) and M(X0) have the same dimension. Hence, when T has
unequal defect numbers, the spectrum of any resolution i?μ consists of
the entire real axis.

On the other hand, when T has equal defect numbers the properties
(a) and (β) may well hold; in particular, when Fκ is a constant unitary
operator, thus when Eμ is an orthogonal resolution, the properties are
valid for every interval Δ.

In the remainder of the paper we shall consider a symmetric oper-
ator A with equal finite defect numbers. We recall that the essential
spectrum Σe is the same point set for all orthogonal resolutions of A,
that is, for all self-adjoint extensions in Sίf of A. This is the classical
theorem of H. Weyl, ([13] p. 251), proved originally for ordinary differ-
ential operators, and later extended to abstract operatars by E. Heinz
[6]. The principal theorem of this paragraph extends WeyΓs result to
generalized resolutions which satisfy (a) and (β).

THEOREM 4.1. Let the symmetric operator A have defect numbers
{n, n) with n < oo, and let Σe denote the points of the essential spectrum* of
any (hence every) orthogonal resolution of A. If Eμ, be an arbitrarily
chosen (generalized) resolution of A with essential spectrum Σ'e, then:

( i ) Σ'.ΊΪΣ..

(ii) When (a) and (β) hold on Δ for the family of contractions
associated with Eμy then Σ'e and Σe coincide on Δ.

(iii) If (oc) and (β) fail on every subinterval of Δ, then Δ c Σ[.
We remark that the hypothesis of (iii) holds in particular under the

condition:
(γ) Fλ is continuous from π+ down to the open real interval Δ

and \\Fλ+\\ < 1 on Δ.

The proof will be based upon two lemmas of independent interest.
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Por any complex λ, let i?(λ) denote the eigenspace of solutions of
T*u = Xu. Thus gf (λ) = Λf(λ).

LEMMA 4.1. Let T be a quasi-self-adjoint extension of T defined
by F: M(λ0) —> M(X0). For f,geDτ* introduce the form </, g} =
(ϊ7*/, βf) - (/, Γ*flf). Then the domains of t and f* have the following
•characterization:

Di = {u: ue DΓ and <u, φ - F*φ> = 0 for all φ e %f(XQ)}

Dfa — {u: u G DΓ* cmc? <w, ψ — Fψy = 0 / o r αii ψ e §?(λ0)} .

Proof. The proof of Theorem 1 in Coddington [3] is directly adap-
table.

LEMMA 4.2. Consider a symmetric T with equal finite defect
numbers (n, n), and suppose that X is a real point of regular type of
T, i.e. that T—X has a bounded inverse. For any quasi-s.a. extension
t, if (f — λ)"1 exists, it is a bounded operator with domain

Proof, (f - X)-1 is defined on 4f>(λ) = JΓ(λ) 0 [4# (λ) θ 4r(λ<)] It
is bounded on the first since (T — λ)"1 is bounded at a point of regular
type, and bounded on the second since the enclosing subspace M(X) has
dimension n. Hence (f— λ)"1 is bounded on the sum of these orthogo-
nal manifolds.

It remains to show that z^(λ) = £$f. Since Δτ{\) is closed, the
problem reduces to showing that z/̂ (λ) Q JT(X) is ^-dimensional. By
(2.1), which gives the domain of t, and by the existence of (f — λ)"1,
it follows that ^ί(λ) contains n vectors which are linearly independent
mod JΓ(λ). Their projections onto J#(λ) © ̂ r(λ) are therefore linearly
independent. Q. E. D.

Proof of Theorem 4.1. The statement that in general Σ\ Z) Σe

follows from a result of Hartman, ([5], §3, proof of proposition (iii)):
He has shown that, when X e Σe (and n is finite), there exists a sequence
fn e DA such that | | / Λ | | = l,/w-*0 weakly (in Jg^) and (A - λ)/w —0
strongly. Consequently for any extension A+ in β^+

f fn e DA+, fn —> 0
weakly (in Jg^+), and (A+ — X)fn -> 0 strongly. Thus by WeyΓs cri-
terion ([9], § 133), λ is in the essential spectrum of A+, and (by Remark
3.2) in the essential spectrum of the corresponding Eλ.

Next we show that, under the conditions (ii) on Fλ9 when X $ Σe

it cannot belong to Σ'β. Since X $ Σe, therefore the eigenspace of A at
λ is finite dimensional at most. We can depress 3ίf and every Jg^+

to the orthogonal complement of this manifold without changing any
essential spectrum. Hence it may be assumed from the beginning that
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λ is not an eigenvalue of A. Hence, by [5], §3, property (ii), there
exists a self-adjoint extension A in §ϊf of A for which λ is not an
eigenvalue. Since X $ Σe, it cannot be a cluster point of the spectrum
of A; consequently λ is in the resolvent set of A. Let Δ about λ be

o o

an open real interval in which Rx — {A — λ)"1 is analytic. We shall show
that Rλ (corresponding to the given Eλ) is analytic in Δ except at iso-
lated points. Since λ has at most finite multiplicity (by Theorem 3.2)
as an eigenvalue of Eλ, it follows that λ 0 Σ'β.

It will be enough to show that (Aλ — X)φ = 0 has a nonzero solution
at only isolated points λ in Δ. For, by Lemma 4.2, Rλ will then exist
except at these isolated points and, by the conditions of the theorem,
and Remark 2.2, will be analytic.

Following M. G. Krein (see [1], §84), we introduce an analytical
basis φx(X)9 , φn(X) for If (λ), λ e π+ U π~ U Δ, by

Φ*(λ) = [1 + (λ - Xo)RMXo) , k = 1, 2, , n .

Here Φi(λ0), , φn(X0) form a basis (for convenience assumed orthonormal)
for if (λ0), with λ0 G 7Γ+.

The solution space of (Aλ — X)φ = 0 is i?(λ) Π DΛλ. According to
Lemma 4.1, this subspace contains a nonzero vector at just those points
X e Δ which are zeroes in (Δ—) of

(4.1) det <φ,(λ), φ,(λ0) - Fΐφk(X0)> , Xeπ~[J (Δ-) .

As noted, the expression is meaningful also in ττ~~, indeed is analytic
there and continuous in π~ U (Δ—). Thus the theorem can be proved
by showing that (4.1), (which is nonvanishing in ττ~), can be continued
analytically across Δ.

For λ G π+ U (Δ+) we have

F,Φk(X0) = Σ i^(λ)<Mλ0), where Fkι(X) = (Fλφk(X0), φ,(λ0)) .

The coefficient determinant, det (Fkι(X)) is analytic on π+ and continuous
on π+ U (Δ + ) . It is non-vanishing wherever F^1 exists, hence in par-
ticular on J + .

We shall show that the expression, defined for λ G π+ (J (Δ+),

(4.2) (-1)* det (φz(λ0), Fλφk(XQ)). det <φ,(λ), ψΛ(λ0) - F?φk(X0)>

coincides on Δ with (4.1). Since this expression (4.2) is analytic on π+
and continuous on π+ U Δ + , it furnishes the desired continuation of
(4.1) across Δ.

Since i*Y+ = ί\*+ on Δ, therefore
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= F?+Fλ+φk(λ0) - Fλ+φk(X0)

Noting that Fλ*_ = Fk+, this permits writing the limit value of (4.1) in
the form

(4.3) ( - iy det (Fkl{X +)) det <φ, (λ), φι(\0)

But

= (Fλ+φk(X0), φ,(

, Fλ+φk(XQ))

so that (4.3) is identical with the limit value on Δ of (4.2).
The theorem is proved.

5* Strict contractions* In this paragraph we shall examine spectral
resolutions of a symmetric operator A satisfying the conditions

( I ) A has equal finite defect numbers (n, n).
(II) Every point X on a real interval Δ is of regular type for

A9 i.e. (A — λ)"1 exists and is bounded.
Condition II can be stated in the following equivalent form:

(IΓ) Any self-adjoint extension in £%f of A has in Δ only isolated
points of its spectrum. No point of Δ is common to the spectra of all
such extensions.
The equivalence of II and IΓ follows from Hartman ([5], prop, (ii))

Let Eμ be a spectral resolution of A, and i*\ be the associated
family of contractions of M(X0) into M(λ0). It follows from theorem
4.1 that, on any sub-interval of Δ where (a) and (β) hold, the spectrum
of Eμ will contain only isolated points.

Our interest here, however, will be in resolutions for which con-
dition (γ) of §4 holds on Δ. In this case, by Theorem 4.1 (iii), the
spectrum of Eμ includes Δ. We first state a result valid when Δ is the
entire real axis &. When (γ) holds on & we shall describe Fλ as a
family of strict contractions.

THEOREM 5.1. Suppose that A satisfies (I), and (II) on &. Let
Eμ be a resolution of A for which the associated family of contractions
Fλ is strict. Then:

The associated minimal self-adjoint extension of A is unitarily
equivalent to the n-fold direct sum of iD with itself, D being the.
differential operator d\dx on J 2 ^ ( — oo, oo).

REMARK 5.1. This theorem generalizes results of Coddington and
Gilbert [4] for ordinary differential operators on a closed bounded inter-
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val. Their method of proof appears to be adaptable to handle certain
other ordinary differential operators satisfying I and II, in particular,
singular operators in WeyΓs limit circle case.

REMARK 5.2. Condition II on & of course implies that A has no
eigenvalues. However it is easy to analyze the more general situation
in which eigenvalues do occur, provided II on & holds for the restric-
tion of A to the manifold orthogonal to the eigenvectors. In that case
the minimal self-adjoint extension is equivalent to the direct sum of
the discrete part of A with the operator described in Theorem 5.1.

We shall prove Theorem 5.1 as a special case of a more general
theorem. We now suppose that I, II, and (γ) hold on i By assump-
tion, Fλ+, and hence Aλ+, exists for every X e Δ. The assumptions that
|| Fλ || < 1 and that A has no eigenvalues on Δ imply that DΛλ+ f] Ί?(λ) =
{0} for λ e Δ, and hence that (̂ 4λ+ — λ)"1 exists. This statement follows
from the fact, noted by Hartman [5], that when / e ^(λ), for λ e ^ ,
is written in the form

/ = f0 + f+ + /-, where f0 e DA, f+ e if (λ0), / - e gf (λ0)

for λ0 e 7Γ+, then | | / + | | = | |/~| | . Then, by assumption I and Lemma
4.2, Rλ exists, and is continuous in λ, on π+ U (Δ+).

One may define a basis for gf(λ), X e π+ U Δ, by

(5.1) φfc(λ) =: [1 + (λ - λo)βλ]φ,(λo) , k - 1, 2, , n .

Here λ0 e ττ+, and ^(λo), •• ,Φw(^o) form a basis for §f(λ0). That ψk(X)
is in iί(λ) follows from (A* - X)Rλ - 1. That φ^X), , φn{X) are inde-
pendent follows from the fact that

1 + (λ - X0)Rλ = {Aλ - λo)(Aλ - λ)-1

has an inverse.1

We shall henceforth identify π+ with the half-plane ^ ( λ ) > 0.
The basis (5.1) allows a simple representation for ^Rκ+ = l/2ΐ [i2λ+— Rλ-]:

LEMMA 5.1. Assume that A satisfies I, II, and Fκ satisfies (γ).
Then for every X e Δ and every f e

(5.2) ^Rx+f = Σ ŷ*
j k i
Σ

j,k=i

The matrix Φ(X) is positive definite and continuous in X. Here π+

has been identified with the half plane ^(X) > 0.

1 In what follows only the existence of a continuous basis is needed, not its relation

(5.1) to Rλ.
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Proof. Since for every / e 3f?> (A* - X)Rλ+f = /, therefore
f G ίf(λ). In terms of an orthonormal basis $19 •••,$* for

gf (λ), ^ # λ + / - J?Ct&, where

Ck =

for some α/rfc G |?(λ). Writing &, , 0n, ψlf , α/rn as linear combi-
nations of 0i(λ), •••, ^w(λ) establishes the form of (5.2).

From the known relation

J) ^ 0 for ^ λ > 0

follows

(5.3) (^Rχ+f9f)^0 for

Recalling that i?(λ) is invariant under ^R^+, let {^^i?λ+} denote the
restriction of ^Rλ+ to §?(λ). We assert that

(5.4) i[^Rχ.+}Φ, Φ)>® w h e n || ̂  || > 0 , ^

In view of (5.3) it is sufficient to show that

(5.5) {^Rλ}ψ = 0 implies ψ — 0.

Suppose that {^R^ψ = 0. Then sf = Rλ+ψ = J?λ_'f belongs to
) Π 2>(Aλ«). Writing g in the form

ί/ = 0o + g+ + g~, go

then, by the definition of D(Aλ±),

Since || Fλ+ \\,\\ F λ _ || < 1, this implies that g+ = g- = 0, i.e. βr G
Since Rλ+ψ e D(A) therefore ψ e dA(X), the orthogonal complement of
if (λ). Thus ψ = 0. This proves (5.4).

Now let ̂  be an arbitrary element of if(λ) and put

In view of the independence of ^(λ), •• ,λn(0), this relation is a one-
to-one linear mapping of g^(λ) onto the ̂ -dimensional space of vectors
ξ = (&, " ' ^ J . Thus relation (5.4) is equivalent, because of the form
of (5.2), to

Z<PjkQM£k>0 when | | | | | ^ 0 .

That is, the matrix Φ(λ) is positive-definite.
It remains only to prove the continuity of Φ(x). This follows

directly from the relation
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since det (0μ(λ), 0, (λ)) =£ 0.

THEOREM 5.2. Suppose that on an interval Δ the operator A satis-
fies I, II and that Eμ. is a spectral resolution of A for which the corre-
sponding mapping Fλ satisfies (γ). Let A+ in Sίf* he a minimal s.a.
extension of A with orthogonal resolution E£ satisfying Eμ = PEμ.
For μ e Δ define ρ(μ) = llπ\Φ(μ)dμ. Then the part of A+ on E+{Δ)£έf+

is unitarily equivalent to the multiplication operator on J5f2(p(μ)),
μe Δ.

Proof of the Theorems. It is pointed out by Coddington and Gilbert
[4] that the multiplication operator in J*f2(p) (where p is strictly increas-
ing and continuous in λ on &) is unitarily equivalent to the w-fold
direct product of iD with itself, D being the differential operator djdx
on jS â(—°°> °°) Thus Theorem 5.1 is a corollary of Theorem 5.2.

For every / e <§ίf and every bounded real interval A9 c A,

(E(Δ')f,f) = limi-

π

Here we have used the continuity of Rκ on π+ \J (d+) and of Eκ on Δ.
Let fif(λ) = {gk(X)}l=1 be denned by gk(X) = (/, φk(λ)). Hence

(E(A')f,f) = - U ΣΦ3k(X)gj(X)gh(X)dX
7Γ J4'

(5.6) || E+(J')f\\2 = ί
JΔ'

Now suppose / e ^ is in E+(Δ)£^+. Thus #(4)/ = /. Consider
V: E+(Δ')f —> χj'(λ)flr(λ), where χj/(λ) is the characteristic function of
the interval zf' c J. From (5.6) V is an isometric mapping of Z(Δ)
(see Lemma 3.1) into £f*(pfa)), (λ 6 A), which carries i?+(Λ') into the
operation of multiplication by XJf(X). Since Z(Δ) is fundamental on

Theorem 5.2 follows.

6. Differential operators* Let Lu = — (jm')' + ̂ ^ be an ordinary
differential expression on the positive axis 0 ̂  x ^ oo, with p and g
real measurable functions such that p(x) > 0,

< oo , I I q(χ) \dx <
Jo
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for any b > 0. With a suitably prescribed2 minimal domain in j£^2(0, oo),
L defines a symmetric quasi-differential operator Lo with defect numbers
(1,1) or (2, 2). It is easily seen that Lo has no eigenvalues. When the
defect numbers are (2, 2), the Conditions I and II of § 5 are automati-
cally satisfied on ^ , so that the results of that section hold.

We shall assume that Lo has defect numbers (1,1), i.e. is in the
limit point case, and shall study the absolutely continuous spectrum of
a minimal self-adjoint extension Li of Lo. As before (§ 3), Li operates
in a space £έfΛ~ containing ^f and has a spectral family of projections
denoted by E£.

Let Ma and Ms be the absolutely continuous and singular subspaces
of ^f^ with respect to Li (see [7] for definitions). Thus Ma and Ms

reduce Li, are orthogonal, and Sίf^ = Ma © Ms. For any u e Ma[u e Ms],
the function (Eμu, u) is absolutely continuous [singular] with respect to
Lebesque measure on — oo < μ < oo. Let Eμ be a generalized resolution
of Lo for which Eμ — PEμ. By the absolutely continuous spectrum of
Li (or of Eμ) will be meant the spectrum of the part of Li in Ma.
The singular spectrum is defined similarly.

It has been proved by N. Aronszajn [2] that the absolutely continu-
ous spectrum is the same point set for all orthogonal resolutions of the
differential operator Lo. The following theorem extends Aronszajn's
result to generalized resolutions in a way parallel to Theorem 4.1 for
essential spectrum. Clause (iii) contains a partial extension, for differ-
ential operators, of Theorem 5.1.

THEOREM 6.1. Let Lo be a quasi-differential operator as described
above and let Σa denote the points of the absolutely continuous spectrum
of any (hence every) orthogonal resolution of Lo. // Eμ is an arbitraily
chosen (generalized) resolution of Lo with absolutely continuous spec-
trum Σf

a and singular spectrum Σf

s, then:
( i ) Σ'a^Σa

(ii) When (a) and (β) hold on Δ for the family of contractions
associated with Eμ, then Σf

a and Σa coincide on Δ.
(iii) When (7) holds on Δ, then Δ c Σ'af while Δ Π Σ'8 = 0.

The proof depends upon

LEMMA 6.1. Let p(μ) — [ftfc(/*)];U=i be a nondecreasing Hermitian
matrix (-—00 < μ < 00) and A the multiplication operator with maxi-
mal domain in J*f2(P) Let

p(μ) = pa(μ) + ps(μ)

be the Lebesque decomposition of p into its absolutely continuous and

2 A precise specification may be found in [1], Appendix II,
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singular parts, defined by the corresponding decomposition of the
components of p.

Then pa and p8 are nondecreasing Hermitian matrices. -&ζ(pa)
and -S?(ft) are, respectively, the absolutely continuous and singular
subspaces of £%{p) with respect to A. Thus the absolutely continuous
spectrum of A consists of the points of increase of pa, or equivalently
of its trace tr pa. A similar statement holds for the singular spectrum.

We shall omit the proof of Lemma 6.1.

Proof of Theorem 6.1. For J?X Φ 0, let ψλ = ψ(x, X) denote the
-Sf solution of Lψ = Xψ which is determined by

[p(x)ψ'(x,X)]x=0 = - 1 .

Put ψ(0, X) = m(λ). Each generalized resolution Eμ of Lo is now specified
by a family of contractions Fκ: M(i)—>M(—i) of the form

Fλt-< = W(X)ψi

where W(X) is analytic and | W(X) | ^ 1 for ^X > 0. Define

Θ(X) =
1 - W(X)

Since ^m(ϊ) > 0 and m(—i) = m(i), therefore ^Θ{X) Ξ> 0 (with θ — oo
when W = 1).

A. V. Straus [11] has associated with each Eμ a spectral matrix
Pif*) — [Pjk(f*)]j,k=i,2> ~oo<μ<co, which is Hermitian nondecreasing,
and such that

"1 C P

tr ρ(μ) = — lim I ̂
7Γ ε-»+0J0

where

(6.D Φ(X) = ":}:rΛ} z : . ^ x > o.

In particular, when ΫF(λ) = 1, ^(λ) reduces to m(λ).
Let A be the multiplication operator with maximum domain in

Jέf2(p) and let Li be a minimal self adjoint extension of Lo, with Eμ =
PE+. By the reasoning in [4], §4, A is unitarily equivalent to Lo

+.
Therefore, by Lemma 6.1, the problem is reduced to a consideration

of the absolutely continuous and singular parts of tr^o. But such con-
sideration is possible along the lines of [2].

A set G is a support of a real measure v when v{& — G) — 0. It
is a minimal support when for every support Gx c G, the Lebesque
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measure | G — Gλ | = 0. It is easy to prove that when v and 1/ are
absolutely continuous measures with minimal supports G c G ' then
v <v* (i.e. ι/(β) = 0 implies v(s) = 0).

The following disjoint sets Gα and Gs are minimal supports for,
respectively, the absolutely continuous and singular parts of t r ^ (com-
pare [2]):

Ga = {μ G &\ lim φ(X) exists finitely and lim^φ(X) > 0}

Gs = {μe &\ J^Φ{X) -» 00 when λ -> μ} .

(Here it is understood that X—>u with the constraint that ε < Arg(λ—μ)<
π — ε for some fixed ε > 0.)

We shall compare the sets Ga, Gs corresponding to an arbitrarily
chosen resolution Eμ. with the special sets G°a, G°s corresponding to the
orthogonal resolution for which W = 1. Thus in the definitions of
Glf G°s, φ(X) is replaced by m(λ).

We note first that ^θ, ^φ and ^m are all ^ 0 when ^X > 0.
Since lini;^ ^(λ) exists finitely except for λ on a certain set So of

Lebesgue measure zero, inspection of (6.1) and the formula

„ (1 + I θ n^m + (1 + I m
\m + θ\2

reveals that GaZD Gl — So. Since these are minimal support it follows
that tr pa >- tr p°a, implying the statement (i) of the theorem.

Next, assume that (a) and (β) hold on Δ. Therefore Θ{X) may be
continued down to Δ with ^θ(μ+) = 0 on Δ. Inverting (6.1) one
obtains the formulas

m =
θ - φ \θ - φ\

which show on inspection that Ga Π Δ czG°a. Together with the earlier
obtained inclusion, this implies that Ga and G°a coincide on Δ. Since
these are minimal supports, (ii) follows.

Finally, assume (7) holds on J . In this case Θ(X) may be continued
down to Δ with ^θ{μ + ) > 0 for μ e Δ. Equation (6.1) shows that ^(λ)
remains bounded as λ —• μ on Δ and hence that Gs Π Δ — 0. Thus
Σf

s n Δ = 0. At the same time, by Theorem 4.1 (iii), Δ does belong to
the spectrum of Eμ, and hence must belong to the absolutely continuous
spectrum Σ'a. Q.E.D.

REMARK 6.1. A. V. Straus [12] has shown that when Θ(X) may be
continued to real limit values on the entire real axis—equivalent to the
assertion that (a) and (β) hold on &— then E£ has simple spectrum,
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This, together with Theorem 6.1 (ii), implies the unitary equivalence
of the absolutely continuous parts of minimal self-adjoint extensions
corresponding to resolutions Eμ. satisfying (a) and (β) on &.

REMARK 6.2. Assume (γ) holds on &. If conditions I and II of
§5 hold for Lo then, by Theorem 5.1, the multiplicity of spectrum of
Lt will be 1, and the operator equivalent to iD. Simple examples
show that in general (i.e. without Conditions I and II) the multiplicity
of spectrum may well be 2 (the maximum consistent with p being a
2 x 2 matrix) and that Lt may even be equivalent to iD 0 iD.
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