Pacific Journal of Mathematics

ABSOLUTE CONTINUITY OF INFINITELY DIVISIBLE DISTRIBUTIONS

HOWARD GREGORY TUCKER

Vol. 12, No. 3

March 1962

ABSOLUTE CONTINUITY OF INFINITELY DIVISIBLE DISTRIBUTIONS

HOWARD G. TUCKER

1. Introduction and summary. A probability distribution function F is said to be infinitely divisible if and only if for every integer n there is a distribution function F_n whose *n*-fold convolution is F. If F is infinitely divisible, its characteristic function f is necessarily of the form

$$f(1) \qquad f(u) = \exp\left\{iu\gamma + \int_{-\infty}^{\infty} \left(e^{iux} - 1 - rac{iux}{1+x^2}
ight) rac{1+x^2}{x^2} \, dG(x)
ight\},$$

where $u \in (-\infty, \infty)$, γ is some constant, and G is a bounded, nondecreasing function. J. R. Blum and M. Rosenblatt [1] have found necessary and sufficient conditions that F be continuous and necessary and sufficient conditions that F be discrete. The purpose of this note is to add to the results of Blum and Rosenblatt by giving sufficient conditions under which an infinitely divisible probability distribution Fis absolutely continuous. These conditions are that G be discontinuous at 0 or that $\int_{-\infty}^{\infty} (1/x^2) dG_{ac}(x) = \infty$, where G_{ac} is the absolutely continuous component of G. In §2 some lemmas will be proved, and in §3 the proof of the sufficiency of these conditions will be given. All notation used here is standard and may be found, for example, in Loève [2].

2. Some lemmas. In this section three lemmas are proved which will be used in the following section.

LEMMA 1. If F and H are probability distribution functions, and if F is absolutely continuous, then the convolution of F and H, F * H, is absolutely continuous.

This lemma is well known, and the proof is omitted.

LEMMA 2. If $\{F_n\}$ is a sequence of absolutely continuous distribution functions, and if $p_n \ge 1$ and $\sum_{n=1}^{\infty} p_n = 1$, then $\sum_{n=1}^{\infty} p_n F_n$ is an absolutely continuous distribution function.

Proof. By using the Lebesgue monotone convergence theorem it is easy to verify that $\sum_{n=1}^{\infty} p_n f_n$ is the density of $\sum_{n=1}^{\infty} p_n F_n$, where f_n is the density of F_n .

Received November 29, 1961.

HOWARD G. TUCKER

LEMMA 3. Let $\{Y, X_1, X_2, \cdots\}$ be independent random variables. Assume that the X_i 's have the same absolutely continuous distribution F, and assume that the distribution of Y is Poisson with expectation λ . Then $Z = X_1 + \cdots + X_r$ has a distribution function which has a saltus $e^{-\lambda}$ at 0 and is absolutely continuous elsewhere, and has as characteristic function

$$f_z(u) = \exp \lambda \int_{-\infty}^{\infty} (e^{iux} - 1) dF(x) \; .$$

Proof. Let E(x) be the distribution function degenerate at 0, and let $F^{*n}(x)$ denote the convolution of F with itself n times. Then it is easy to see that the distribution function of Z, $F_z(z)$, may be written as $F_z(z) = e^{-\lambda}E(z) + \sum_{n=1}^{\infty} e^{-\lambda}(\lambda^n/n!)F^{*n}(z)$. By lemma 1, each F^{*n} is absolutely continuous and has a density f^{*n} . We need only show that $F_z(z) - e^{-\lambda}E(z)$ is absolutely continuous. If we write

$$F_{Z}(z) - e^{-\lambda}E(z) = \sum_{n=1}^{\infty} e^{-\lambda} (\lambda^{n}/n!) \int_{-\infty}^{z} f^{*n}(t) dt$$

and apply the Lebesgue monotone convergence theorem we obtain this conclusion.

3. The theorem. If G is a bounded nondecreasing function used in (1), then we may write $G(x) = G_s(x) + G_{ac}(x)$, where G_s is a singular nondecreasing function and $G_{ac}(x)$ is an absolutely continuous nondecreasing function.

THEOREM. Let F be an infinitely divisible distribution function with characteristic function (1). Then F is absolutely continuous if at least one of the following two conditions is satisfied:

(i) G is not continuous at 0, or

(ii)
$$\frac{1}{\int_{-\infty}^{\infty}}(1/x^2)dG_{ac}(x) = \infty$$
.

Proof. If condition (i) is satisfied, then by Lemma 1 it easily follows that F is absolutely continuous, since in that case F is a convolution of a normal distribution with another infinitely divisible distribution. We now prove that condition (ii) is sufficient. By Lemma 1 it is sufficient to prove that the distribution function F_0 whose characteristic function is

(2)
$$\exp \int_{-\infty}^{\infty} \left(e^{iux} - 1 - \frac{iux}{1+x^2} \right) \frac{1+x^2}{x^2} \, dG_{ac}(x)$$

is absolutely continuous. Let $\varepsilon_n > \varepsilon_{n+1} > 0$ for each n be such that $\varepsilon_n \to 0$ as $n \to \infty$ and such that

$$\lambda_n = \int_{S_n} ((1+x^2)/x^2) dG_{ac}(x) > 0$$
 ,

where

$$S_n=(-arepsilon_{n-1},\,-arepsilon_n]\,\cup\,[arepsilon_n,\,arepsilon_{n-1})$$
 , $n=1,\,2,\,\cdots$,

and where $\varepsilon_0 = \infty$. Let U_n be a random variable with characteristic function

(3)
$$f_{U_n}(u) = \exp \int_{S_n} \left(e^{iux} - 1 - \frac{iux}{1+x^2} \right) \frac{1+x^2}{x^2} \, dG_{ac}(x) ,$$

and let

$$H_n(x) = (1/\lambda_n) \int_{(-\infty,x] \cap S_n} ((1 + x^2)/x^2) dG_{ac}(x) \; .$$

One easily sees that $\lambda_n < \infty$ and that $H_n(x)$ is an absolutely continuous distribution function of a bounded random variable. For each positive integer n we may write, by Lemma 3, that

$$U_n = X_{n,1} + X_{n,2} + \cdots + X_{n,Zn} - \int_{S_n} (1/x) dG_{ac}(x)$$

where Z_n is a random variable with Poisson distribution with expectation λ_n , where $\{X_{n,1}, X_{n,2}, \dots\}$ have the common absolutely continuous distribution function $H_n(x)$, and where $\{Z_n, X_{n,1}, X_{n,2} \dots\}$ are independent. If we assume that

$$\{\{Z_n, X_{n,1}, X_{n,2}, \cdots\}, n = 1, 2, \cdots\}$$

are all independent, then the distribution function of

$$U_0 = \sum_{n=1}^{\infty} U_n = \sum_{n=1}^{\infty} \left(\sum_{j=1}^{Z_n} X_{n,j} - \int_{S_n} (1/x) dG_{ac}(x) \right)$$

is equal to F_0 . Now let us define a sequence of events $\{C_n\}$ by

$$C_1 = [Z_1
eq 0]$$
 , $C_2 = [Z_1 = 0][Z_2
eq 0]$,

and, in general,

$$C_n = [Z_n
eq 0] igcap_{i=1}^{n-1} [Z_i = 0] \; .$$

These events are easily seen to be disjoint. If we define

(4)
$$C_0 = \left(\bigcup_{n=1}^{\infty} C_n\right)^c = \bigcap_{n=1}^{\infty} [Z_n = 0]$$
,

then $\Omega = \bigcup_{n=1}^{\infty} C_n$, where Ω is the sure event. The distribution function of U_0 is

HOWARD G. TUCKER

$$F_{\sigma_0}(u) = \sum_{n=1}^{\infty} P([U_0 \leq u] | C_n) P(C_n) + P([U_0 \leq u] C_0) \;.$$

By (4) and by hypothesis, we obtain

$$P([U_{\mathfrak{0}} \leq u]C_{\mathfrak{0}}) \leq P(C_{\mathfrak{0}}) = \lim_{n \to \infty} \exp\left\{-\int_{-\infty}^{-\varepsilon_n} + \int_{\varepsilon_n}^{\infty} (1/x^2) dG_{ac}(x)
ight\} = 0 \; .$$

Also, $P([U_0 \leq u] | C_n)$ is the distribution function of $X_{n,1} + W_n$, where $X_{n,1}$ and W_n are independent random variables. Since the distribution function of $X_{n,1}$ is absolutely continuous, it follows by Lemma 1 that $P([U_0 \leq u] | C_n)$ is absolutely continuous for each n. Lemma 2 then implies that $F_{U_0}(u)$ is absolutely continuous, which concludes the proof of the theorem.

The condition given in this theorem is not necessary, as is shown in the following example. Let $\gamma = 0$ in (1), and let α , β be real numbers which satisfy $\beta > 1, 1 > \alpha > \beta/2$. For $j = 1, 2, \cdots$, let us denote

$$x_j=j^{-lpha} \quad ext{and} \quad
ho_j=j^{-eta} \; .$$

Let G be a pure jump function with jumps at x_j and $-x_j$ of size ρ_j for every j. (The total variation of G is $2 \sum \rho_j < \infty$.) In this case we obtain

$$f(u) = \exp 2\sum_{n=1}^{\infty} \left(\cos \frac{u}{n^{\alpha}} - 1\right) \frac{n^{2\alpha} - 1}{n^{\beta}}.$$

We shall show that there is a constant K such that for all $|u| \ge \pi$, the inequality

(5)
$$0 < f(u) < \exp(-K |u|^{2-\beta/\alpha})$$

is true. This is equivalent to showing that

(6)
$$\sum_{n=1}^{\infty} \frac{n^{2\alpha}+1}{n^{\beta}} \sin^2 \frac{|u|}{2n^a} > K |u|^{2-\beta/\alpha}$$

Let us consider, for each fixed $|u| \ge \pi$ the integer N defined by

$$N=\left[rac{1}{2}\left(rac{2\left|\,u\,
ight|}{\pi}
ight)^{\!\!1/a}\!\!+1
ight]$$
 ,

where the square brackets have their usual meaning. It is easy to verify that $0 < |u|/2N^{\alpha} < \pi/2$, and thus we may write

$$rac{N^{2lpha}+1}{N^eta}\sin^2rac{\mid u\mid}{2N^lpha}>N^{2lpha-eta}\sin^2rac{\mid u\mid}{2\Big[ig(rac{2\mid u\mid}{\pi}ig)^{1/lpha}\Big]^lpha}\ >K\mid u\mid^{2-eta/lpha}$$
 ,

1128

where K does not depend on u. This inequality implies that inequality (6) is true, thus implying (5). Inequality (5) implies that $f(u) \in L_1(-\infty, +\infty)$, which in turn implies that f(u) is the characteristic function of an absolutely continuous distribution. (See Theorem 3.2.2 on page 40 in [3].)

I wish to acknowledge several helpful suggestions by my colleague, Professor H. D. Brunk. The example just outlined was suggested by the referee to whom I wish to express my appreciation.

References

1. J. R. Blum and M. Rosenblatt, On the structure of infinitely divisible distributions, Pacific J. Math., 9 (1959), 1-7.

2. M. Loève, Probability Theory, D. Van Nostrand, Princeton, 1960 (Second Edition).

3. Eugene Lukacs, Characteristic Functions, Hafner, New York, 1960.

UNIVERSITY OF CALIFORNIA, RIVERSIDE

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

A. L. WHITEMAN University of Southern California Los Angeles 7, California

LOWELL J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F.	BECKENBACH	D. DERRY	H. L. ROYDEN	E. G. STRAUS
т. м	. CHERRY	M. OHTSUKA	E. SPANIER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY	SPACE TECHNOLOGY LABORATORIES
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

RALPH S. PHILLIPS Stanford University Stanford, California

M. G. ARSOVE University of Washington Seattle 5, Washington

Pacific Journal of Mathematics Vol. 12, No. 3 March, 1962

Alfred Aeppli, Some exact sequences in cohomology theory for Kähler manifolds	791			
Paul Richard Beesack, On the Green's function of an N-point boundary value	0.01			
problem				
James Robert Boen, On <i>p</i> -automorphic <i>p</i> -groups	813			
James Robert Boen, Oscar S. Rothaus and John Griggs Thompson, Further results	017			
On p-automorphic p-groups	017			
problem for second order uniformly elliptic operators	873			
Chen Chung Chang and H. Jerome (Howard) Keisler Applications of ultranroducts	025			
of pairs of cardinals to the theory of models	835			
Stephen Urban Chase On direct sums and products of modules	847			
Paul Civin Annihilators in the second conjugate algebra of a group algebra				
I H Curtiss Polynomial interpolation in points equidistributed on the unit	055			
circle	863			
Marion K Fort Ir Homogeneity of infinite products of manifolds with	000			
boundary	879			
James G. Glimm. Families of induced representations	885			
Daniel E. Gorenstein, Reuben Sandler and William H. Mills, On almost-commuting				
permutations	913			
Vincent C. Harris and M. V. Subba Rao, Congruence properties of $\sigma_r(N)$	925			
Harry Hochstadt, Fourier series with linearly dependent coefficients	929			
Kenneth Myron Hoffman and John Wermer, A characterization of $C(X)$	941			
Robert Weldon Hunt, The behavior of solutions of ordinary, self-adjoint differential				
equations of arbitrary even order	945			
Edward Takashi Kobayashi, A remark on the Nijenhuis tensor	963			
David London, On the zeros of the solutions of $w''(z) + p(z)w(z) = 0$	979			
Gerald R. Mac Lane and Frank Beall Ryan, On the radial limits of Blaschke				
products	993			
T. M. MacRobert, <i>Evaluation of an E-function when three of its upper parameters</i>				
differ by integral values	999			
Robert W. McKelvey, <i>The spectra of minimal self-adjoint extensions of a symmetric</i>				
operator	1003			
Adegoke Olubummo, <i>Operators of finite rank in a reflexive Banach space</i>	1023			
David Alexander Pope, On the approximation of function spaces in the calculus of				
variations	1029			
Bernard W. Roos and Ward C. Sangren, <i>Three spectral theorems for a pair of</i>				
singular first-order differential equations	1047			
Arthur Argyle Sagle, Simple Malcev algebras over fields of characteristic zero	1057			
Leo Sario, Meromorphic functions and conformal metrics on Riemann surfaces	1079			
Richard Gordon Swan, <i>Factorization of polynomials over finite fields</i>	1099			
S. C. Tang, Some theorems on the ratio of empirical distribution to the theoretical distribution	1107			
Robert Charles Thompson, Normal matrices and the normal basis in abelian				
number fields	1115			
Howard Gregory Tucker, Absolute continuity of infinitely divisible distributions	1125			
Elliot Carl Weinberg, Completely distributed lattice-ordered groups	1131			
James Howard Wells, A note on the primes in a Banach algebra of measures	1139			
Horace C. Wiser, <i>Decomposition and homogeneity of continua</i> on a 2-manifold	1145			