Pacific Journal of Mathematics

A NOTE ON THE PRIMES IN A BANACH ALGEBRA OF MEASURES

JAMES HOWARD WELLS

Vol. 12, No. 3

March 1962

A NOTE ON THE PRIMES IN A BANACH ALGEBRA OF MEASURES

JAMES WELLS

1. Introduction. Let V denote the family of all finite complexvalued and conuntably additive set functions on the Borel subsets of $R_+ = [0 \infty)$ (hereafter called measures); $L^1(R_+)$ the set of all complexvalued functions on R_+ which are integrable in the sense of Lebesgue, identifying functions which are 0 almost everywhere; and A the elements in V which are absolutely continuous with respect to Lebesgue measure. For each $\mu \in V$ there exists an $f \in L^1(R_+)$ such that

(1.1)
$$\mu(E) = \int_{E} f(x) dx$$

for each Borel subset E of R_+ . And, conversely, if $f \in L^1(R_+)$ the set function μ defined by (1.1) is a measure.

We introduce a norm into V by the formula

$$(1.2) || \mu || = \sup \Sigma |\mu(E_i)| (\mu \in V),$$

the supremum being taken over all finite partitions of R_+ into pairwise disjoint Borel sets E_i . It is well known ([6], p. 142 or [7]) that V becomes a commutative Banach algebra under the convolution operation

(1.3)
$$\nu(E) = \int_0^\infty \mu(E-x) d\lambda(x) \qquad (\mu, \lambda \in V),$$

where E is any Borel subset of R_+ ; in symbols

(1.4)
$$\nu = \mu * \lambda$$
.

The Laplace-Stieltjes transform of $\mu \in V$ will be denoted by $\hat{\mu}$:

(1.5)
$$\hat{\mu}(z) = \int_0^\infty e^{-zz} d\mu(x) \qquad (Re(z) \ge 0) .$$

The relation (1.4) is equivalent to

(1.6)
$$\hat{\nu}(z) = \hat{\mu}(z)\hat{\lambda}(z)$$
 $(Re(z) \ge 0)$.

The *identity* in V is the measure u such that u(E) = 1 if $0 \in E$ and 0 otherwise. A measure μ is *invertible* provided there exists a measure μ^{-1} such that $\mu * \mu^{-1} = u$; and the measure λ is a *divisor* of the measure μ , in symbols $\lambda | \mu$, provided there exists a measure ν such that $\mu = \lambda * \nu$. It follows from basic properties of the Laplace-Stieltjes

Received December 4, 1961.

transform that V is an integral domain and a semi-simple Banach algebra (see for example [6], p. 149).

The central problem under consideration here is that of determining the prime measures, that is, those noninvertible measures μ such that

(i) $\mu = \lambda * \nu$ always implies that one of the measures λ, ν is invertible.

It is clear that every prime measure μ satisfies the condition

(ii) $V * \mu \subset V * \lambda$ implies that either λ is invertible or $\mu \mid \lambda$.

And (i) follows from (ii) since V is an integral domain. Here $V * \mu$ denotes the ideal $\{\nu * \mu | \nu \in V\}$.

We give a partial solution by showing that all measures of the form

(1.7)
$$\mu_a = \frac{1}{1+a} u - \eta$$
 $(Re(a) > 0)$,

where $d\eta(x) = e^{-x}dx$, are primes. Stated in terms of the ideal structure of V, the result is that the maximal ideals $m_a = \{\mu \mid \hat{\mu}(a) = 0\}, Re(a) > 0$, are principal.

A related problem is the following: Given a fixed measure μ , for what measures λ is it true that $\lambda | \mu$? Climaxing a sequence of papers on this problem, notably [4] and [8], Fuchs [3] proved that $\lambda | \mu$ if and only if the Hausdorff method of summability $[H, \mu]$ includes the method $[H, \lambda]$. In this paper we make use of recent results on the representation of linear transformations by convolution to give a simple, and apparently unnoticed, alternative formulation in terms of the range of a convolution transform.¹

THEOREM 1. Every measure μ_a , Re(a) > 0, is a prime; and if there exists a prime μ essentially different from μ_a , Re(a) > 0 (two primes are essentially different if one cannot be obtained from the other by convolution with an invertible measure) then either $\hat{\mu}(z)$ has a root with real part 0 or the hull of the ideal $V * \mu$ consists only of maximal ideals in V which contain A.

THEOREM 2. Let T_{μ} , $\mu \in V$, be the linear operator from $L^{1}(R_{+})$ into $L^{1}(R_{+})$ defined by

(1.8)
$$T_{\mu}f(t) = f * \mu(t) = \int_{0}^{t} f(t-x)d\mu(x)$$

for $f \in L^1(R_+)$. Let R_{μ} denote the range of T_{μ} . Then the measure λ is a divisor of the measure μ if and only if $R_{\mu} \subset R_{\lambda}$.

¹ The author is indebted to the referee for his helpful suggestions.

2. Proofs of the Theorems.

Proof of Theorem 1. The positive result of this theorem depends on the obvious fact (see condition (ii)) that if the maximal ideal m in V is principal and μ is a generator, that is $m = V * \mu$, then μ is a prime.

Fix $Re(a) \ge 0$ and set $h(\mu) = \hat{\mu}(a)$. It follows from (1.5) and (1.6) that h defines a multiplicative linear functional on V. Hence $m_a = \{\mu \in V \mid \hat{\mu}(a) = 0\}$ is a maximal ideal in V. That $V * \mu_a \subset m_a$ follows from (1.4), (1.6) and the fact that $\hat{\mu}_a(z) = (1 + a)^{-1} - (1 + z)^{-1}$ vanishes at a.

The reverse inclusion requires that if $\mu \in m_a$, then $\mu = \nu * \mu_a$ for some $\nu \in V$. To this end we use a device suggested by [9] and define

(2.1)
$$\nu = (1 + a)\mu + (1 + a)^2\theta_a$$

where

(2.2)
$$d\theta_a = \int_0^x e^{a(x-t)} d\mu(t) dx = -\int_x^\infty e^{-a(t-x)} d\mu(t) dx = f(x) dx$$
.

The equality of the two integrals is a consequence of $\hat{\mu}(a) = 0$. In case $\sigma = Re(a) > 0$, an application of the Fubini theorem using the second integral in (2.2) yields

$$egin{aligned} &\int_0^\infty &|f(x)|\,dx = \int_0^\infty &\left|\int_x^\infty e^{-a(t-x)}d\mu(t)
ight|dx &\leq \int_0^\infty \int_x^\infty e^{-\sigma(t-x)}d\mid\mu(t)\mid dx \ &= \int_0^\infty &\int_0^t e^{-\sigma(t-x)}dxd\mid\mu(t)\mid = rac{1}{\sigma}\int_0^\infty &[1-e^{-\sigma t}]d\mid\mu(t)\ &\leq rac{1}{\sigma}\int_0^\infty &|d\mu(t)| < \infty \ . \end{aligned}$$

This proves $f \in L^1(R_+)$ so that, in view of (1.1), $\theta_a \in A$ when Re(a) > 0. It remains to verify that

$$egin{aligned} \mu &=
u st \mu_a = (1+a)[\mu + (1+a) heta_a] st [(1+a)^{-1}u - \eta] \ &= (1+a)[(1+a)^{-1}\mu - \mu st \eta + heta_a - (1+a) heta_a st \eta] \,. \end{aligned}$$

But integration by parts yields the relation

$$\int_{0}^{t} e^{-(t-x)} \int_{x}^{\infty} e^{-a(y-x)} d\mu(y) dx = (1+a)^{-1} \left[\int_{0}^{t} e^{-(t-y)} d\mu(y) + \int_{t}^{\infty} e^{-a(y-t)} d\mu(y) \right]$$

which, together with the fact that $d(\phi * \gamma)(x) = (f * \gamma)(x)dx$ whenever $d\phi(x) = f(x)dx$, $f \in L^1(R_+)$ and $\gamma \in V$, shows that $(1+a)\theta_a * \eta = -\mu * \eta + \theta_a$. This establishes the result.

If μ is a prime essentially different from μ_a , Re(a) > 0, and $\hat{\mu}(z)$ has no roots with real part 0, then $\hat{\mu}(z)$ has no roots. To see this note that $\hat{\mu}(a) = 0$ for Re(a) > 0 implies that $V * \mu \subset V * \mu_a = m_a$. Hence

 $\mu = \nu * \mu_a$ for some $\nu \in V$ which, because of condition (ii), forces ν to be invertible; so μ is not essentially different from μ_a . Thus $V * \mu$ is not contained in m_a for any a, $Re(a) \ge 0$. Phillips ([6], p. 148 or [7]) has shown that in the space \varDelta of maximal ideals in V, $\varDelta_1 = \{m_a | Re(a) \ge 0\}$ is precisely those maximal ideals which *omit* an element of A so that $\varDelta_2 = \varDelta - \varDelta_1$ consists of all those maximal ideals which contain A. It is clear, then, that the hull of $V * \mu$, i.e., all maximal ideals which contain it, must be a subset of \varDelta_2 .

Proof of Theorem 2. First suppose that $\lambda \mid \mu$. Then $\mu = \nu * \lambda$ for some $\nu \in V$ and, therefore,

$$L^{\scriptscriptstyle 1}\!(R_{\scriptscriptstyle +})*\mu=L^{\scriptscriptstyle 1}\!(R_{\scriptscriptstyle +})*
u*\lambda\subset L^{\scriptscriptstyle 1}\!(R_{\scriptscriptstyle +})*\lambda$$
 ,

i.e., $R_{\mu} \subset R_{\lambda}$.

For the converse we note that the inclusion $R_{\mu} \subset R_{\lambda}$ implies that for each $f \in L^{1}(R_{+})$ there exists a $g \in L^{1}(R_{+})$ such that

$$(2.1) f*\mu = g*\lambda.$$

But the fact that V is an integral domain insures the uniqueness of g. Hence the relation (2.1) defines a mapping $T: f \to g$ which is linear, commutes with convolution in the sense that $T(f*\gamma) = T(f)*\gamma$ for $f \in L^1(R_+), \gamma \in V$, and, via an application of the closed graph theorem, bounded in the norm topology of $L^1(R_+)$. It follows using the type of argument given in [2], that every such mapping has the form $T(f) = f*\nu$ for some measure ν . Thus

(2.2)
$$f * \mu = (f * \nu) * \lambda = f * (\nu * \lambda)$$

for every $f \in L^1(R_+)$. A second application of the fact that V is an integral domain yields $\mu = \nu * \lambda$, that is $\lambda \mid \mu$, and the theorem is proved.

3. A remark and a question. Let Re(a) > 0, Re(b) > 0. It is easy to verify that (z + 1)/(z + b) is the Laplace-Stieltjes transform of an invertible measure. Consequently the measure defined by

(3.1)
$$\hat{\mu}(z) = \frac{z-a}{z-b} = \hat{\mu}_a(z) \frac{(1+a)(z+1)}{z+b} (Re(z) \ge 0)$$

is a prime not essentially different from μ_a . The primes given by relation (3.1) coincide with those given in [4]. Existence of other primes remains an open question.

Repeated application of Theorem 1 yields the relation

(3.2)
$$V * \mu_{a_1} * \mu_{a_2} * \cdots * \mu_{a_n} = \bigcap_{i=1}^n m_{a_i}$$
, $n = 2, 3, \cdots$

where $Re(a_i) > 0$, $i = 1, 2, 3, \cdots$. On the other hand, it is known [1] that the closed ideal $m = \bigcap_{i=1}^{\infty} m_{a_i}$ is not trivial in case $\sum_{i=1}^{\infty} 1/|a_i| < \infty$. A natural question to ask is the following: Does there exist a measure μ such that $V * \mu = m$?

References

1. T. Carleman, Über die approximation analytischer funktionen durch lineare aggregate von vorgegeben potenzen, Arkiv för mat., astronomi och fysik, 17, **9** (1923), 1-30.

2. R. E. Edwards, Representation theorems for certain functional operators, Pacific J. Math., 7 (1957), 1333-1339.

3. W. H. J. Fuchs, A theorem on Hausdorff's methods of summation, Quarterly J. of Math., 16 (1945), 64-77.

4. H. L. Garabedian, Einar Hille and H. S. Wall, Formulations of the Hausdorff inclusion problem, Duke Math. J., 8 (1941), 193-213.

5. Einar Hille and J. D. Tamarkin, Questions of relative inclusion in the domain of Hausdorff means, Proc. Nat. Acad. Sci., **19** (1933), 573-577.

6. Einar Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Coll. Publ., XXXI, 1957.

7. R. S. Phillips, Spectral theory for semi-groups of operators, Trans. Amer. Math. Soc., **71** (1951), 393-415.

8. W. W. Rogosinski, On Hausdorff's method of summability, Proc. Cambridge Phil. Soc., **38** (1942), 166–192.

9. L. L. Silverman and J. D. Tamarkin, On the generalization of Abel's theorem for certain definitions of summability, Math. Z., **29** (1928), 161-170.

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

A. L. WHITEMAN

University of Southern California Los Angeles 7, California

LOWELL J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	D. DERRY	H. L. ROYDEN	E. G. STRAUS
T. M. CHERRY	M. OHTSUKA	E. SPANIER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CALIFORNIA RESEARCH CORPORATION
OSAKA UNIVERSITY	SPACE TECHNOLOGY LABORATORIES
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

RALPH S. PHILLIPS Stanford University Stanford, California

M. G. ARSOVE University of Washington Seattle 5, Washington

Pacific Journal of Mathematics Vol. 12, No. 3 March, 1962

Alfred Aeppli, Some exact sequences in cohomology theory for Kähler manifolds	791
Paul Richard Beesack, On the Green's function of an N-point boundary value	
problem	801
James Robert Boen, <i>On p-automorphic p-groups</i>	813
James Robert Boen, Oscar S. Rothaus and John Griggs Thompson, <i>Further results</i>	817
<i>on p-automorphic p-groups</i>	01/
problem for second order uniformly elliptic operators	823
Chen Chung Chang and H. Jerome (Howard) Keisler, <i>Applications of ultraproducts</i>	625
of pairs of cardinals to the theory of models	835
Stephen Urban Chase, On direct sums and products of modules	835 847
Paul Civin, Annihilators in the second conjugate algebra of a group algebra	855
	000
J. H. Curtiss, Polynomial interpolation in points equidistributed on the unit circle	863
Marion K. Fort, Jr., Homogeneity of infinite products of manifolds with	
boundary	879
James G. Glimm, <i>Families of induced representations</i>	885
Daniel E. Gorenstein, Reuben Sandler and William H. Mills, On almost-commuting	
permutations	913
Vincent C. Harris and M. V. Subba Rao, <i>Congruence properties of</i> $\sigma_r(N)$	925
Harry Hochstadt, Fourier series with linearly dependent coefficients	929
Kenneth Myron Hoffman and John Wermer, A characterization of $C(X)$	941
Robert Weldon Hunt, <i>The behavior of solutions of ordinary, self-adjoint differential</i>	
equations of arbitrary even order	945
Edward Takashi Kobayashi, A remark on the Nijenhuis tensor	963
David London, On the zeros of the solutions of $w''(z) + p(z)w(z) = 0$	979
Gerald R. Mac Lane and Frank Beall Ryan, On the radial limits of Blaschke	
products	993
T. M. MacRobert, Evaluation of an E-function when three of its upper parameters	
differ by integral values	999
Robert W. McKelvey, The spectra of minimal self-adjoint extensions of a symmetric	
operator	1003
Adegoke Olubummo, Operators of finite rank in a reflexive Banach space	1023
David Alexander Pope, On the approximation of function spaces in the calculus of	
variations	1029
Bernard W. Roos and Ward C. Sangren, <i>Three spectral theorems for a pair of</i>	
singular first-order differential equations	1047
Arthur Argyle Sagle, Simple Malcev algebras over fields of characteristic zero	1057
Leo Sario, Meromorphic functions and conformal metrics on Riemann surfaces	
Richard Gordon Swan, Factorization of polynomials over finite fields	
S. C. Tang, Some theorems on the ratio of empirical distribution to the theoretical	
distribution	1107
Robert Charles Thompson, Normal matrices and the normal basis in abelian	
number fields	1115
Howard Gregory Tucker, Absolute continuity of infinitely divisible distributions	
Elliot Carl Weinberg, <i>Completely distributed lattice-ordered groups</i>	
James Howard Wells, A note on the primes in a Banach algebra of measures	
Horace C. Wiser. <i>Decomposition and homogeneity of continua on a 2-manifold</i>	