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l Introduction. Let V denote the family of all finite complex-
valued and conuntably additive set functions on the Borel subsets of
R+ = [0 oo) (hereafter called measures); L1(R+) the set of all complex-
valued functions on R+ which are integrable in the sense of Lebesgue,
identifying functions which are 0 almost everywhere; and A the ele-
ments in V which are absolutely continuous with respect to Lebesgue
measure. For each μ e V there exists an / e L1(R+) such that

(1.1) μ(E) = \ f(x)dx

for each Borel subset E of R+. And, conversely, if fe L\R+) the set
function μ defined by (1.1) is a measure.

We introduce a norm into V by the formula

(1.2) \\μ\\ = supΣ\μ(Ei)\ (βeV),

the supremum being taken over all finite partitions of R+ into pairwise
disjoint Borel sets Ei9 It is well known ([6], p. 142 or [7]) that V
becomes a commutative Banach algebra under the convolution operation

(1.3) v(E) = [°μ(E - x)d\{x) (μ, λ e 7 ) ,
Jo

where E is any Borel subset of R+; in symbols

(1.4) v = μ * λ .

The Laplace-Stieltjes transform of μ e V will be denoted by μ:

(1.5) μ(z) = [~e-*dμ(x) (Re(z) ̂  0) .
Jo

The relation (1.4) is equivalent to

(1.6) ί){z) = μ(z)X(z) (Re(z) ϊ> 0) .

The identity in V is the measure u such that u(E) = 1 if 0 e E
and 0 otherwise. A measure μ is invertible provided there exists a
measure μ"1 such that μ * μ-1 = u; and the measure λ is a divisor of
the measure μ, in symbols λ | μ, provided there exists a measure v such
that μ = λ * v. It follows from basic properties of the Laplace-Stieltjes
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transform that V is an integral domain and a semi-simple Banach alge-
bra (see for example [6], p. 149).

The central problem under consideration here is that of determining
the prime measures, that is, those noninvertible measures μ such that

(i) μ = λ * v always implies that one of the measures λ, v is
invertible.

It is clear that every prime measure μ satisfies the condition
(ii) V*μ c F * λ implies that either λ is invertible or μ\X.

And (i) follows from (ii) since V is an integral domain. Here V*μ
denotes the ideal {v*μ\v e V}.

We give a partial solution by showing that all measures of the
form

(1.7) μa = — - — u-η (Re(a) > 0) ,
1 + a

where drj(x) = e~*dx, are primes. Stated in terms of the ideal structure
of V, the result is that the maximal ideals ma = {μ \ μ(a) = 0}, Re(a) > 0,
are principal.

A related problem is the following: Given a fixed measure μ, for
what measures λ is it true that X\μ! Climaxing a sequence of papers
on this problem, notably [4] and [8], Fuchs [3] proved that X\μ if and
only if the HausdorίF method of summability [H, μ] includes the method
[H, λ]. In this paper we make use of recent results on the representa-
tion of linear transformations by convolution to give a simple, and
apparently unnoticed, alternative formulation in terms of the range of
a convolution transform.1

THEOREM 1. Every measure μa, Re(ά) > 0, is a prime; and if
there exists a prime μ essentially different from μa9 Re(a) > 0 (two
primes are essentially different if one cannot be obtained from the
other by convolution with an invertible measure) then either μ(z) has
a root with real part 0 or the hull of the ideal V * μ consists only of
maximal ideals in V which contain A.

THEOREM 2. Let Tμ, μ e V, be the linear operator from L\R+)
into L1(R+) defined by

(1.8) Tμf(t) = / * μ(t) - (V(« ~ x)dμ(x)
Jo

for f € L\R+). Let R^ denote the range of Γμ. Then the measure X
is a divisor of the measure μ if and only if Rμ c Rλ.

1 The author is indebted to the referee for his helpful suggestions.
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2 Proofs of the Theorems*
Proof of Theorem 1. The positive result of this theorem depends

on the obvious fact (see condition (ii)) that if the maximal ideal m in
V is principal and μ is a generator, that is m = V * μ, then μ is a
prime.

Fix Re(a) ^ 0 and set h{μ) = μ(a). It follows from (1.5) and (1.6)
that h defines a multiplicative linear functional on V. Hence ma =
{μ e VI β(a) — 0} is a maximal ideal in V. That V * μa c mα follows
from (1.4), (1.6) and the fact that μa(z) = (1 + α)"1 — (1 + z)~x vanishes
at a.

The reverse inclusion requires that if μ e ma, then μ — v*μa for
some v G V. To this end we use a device suggested by [9] and define

•(2.1)

where

(2.2) dθa =

The equality of the two integrals is a consequence of μ(a) ~ 0. In case
σ = Re(a) > 0, an application of the Fubini theorem using the second
integral in (2.2) yields

[°\f(x) \dx=\~\ [°e-a{t-χ)dμ(t) dx ^ ( " ( V ^ - Ή | μ(t) \ dx
JO Jo I Ja; Jo Ja;

= [~\'er'«->dxd I μ(t) I = i- ("[1 - e~σt]d \ μ(t) \
Jo Jo σ Jo

This proves / e L\R+) so that, in view of (1.1), θa e A when Re(a) > 0.
It remains to verify that

μ = v*μa = (l + a)[μ + (1 + a)θa] * [(1 + a)-λu - rj\

= (1 + α)[(l + α)~7* - ^ * ) ? + ^ α ~ ( l + α)^α * rj\ .

But integration by parts yields the relation

e~a{y-χ)dμ(y)dx = (1 + αJ^ΓίV^-^d/id/) +

which, together with the fact that d(φ * y)(x) = (f * y)(x)dx whenever
dφ{x) =f(x)dx,feL1(R+) and γe V, shows that (1 + ά)θa*y = —μ*y) + θa.
This establishes the result.

If jM is a prime essentially different from μa, Re(a) > 0, and μ(z)
has no roots with real part 0, then μ(z) has no roots. To see this note
that μ(a) = 0 for Re(a) > 0 implies that 7 * / ι c F * μα = mα. Hence
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μ = v * μa for some v e V which, because of condition (ii), forces v to
be invertible; so μ is not essentially different from μa. Thus V*μ is
not contained in mα for any a, Re(a) ^ 0. Phillips ([6], p. 148 or [7]>
has shown that in the space Δ of maximal ideals in V, Δλ = {ma | Re(a) ^ 0}
is precisely those maximal ideals which omit an element of A so that
Δ2 — Δ — Δλ consists of all those maximal ideals which contain A. It is
clear, then, that the hull of V* μ, i.e., all maximal ideals which contain
it, must be a subset of Δ2.

Proof of Theorem 2. First suppose that λ | μ. Then μ — v * λ for
some v e V and, therefore,

L\R+) *μ = L1(R+) * v * λ c L 1 ^ ) * λ ,

i.e., i?μ c Rκ.
For the converse we note that the inclusion R^ c Rλ implies that

for each / e Lλ{R+) there exists a g e L1(R+) such that

(2.1) f * μ = g*χ.

But the fact that V is an integral domain insures the uniqueness of g.
Hence the relation (2.1) defines a mapping T: f—*g which is linear,
commutes with convolution in the sense that T ( / * 7 ) = Γ ( / ) * 7 for
/ 6 L\R+), 7 G F, and, via an application of the closed graph theorem,
bounded in the norm topology of L\R+). It follows using the type of
argument given in [2], that every such mapping has the form T(f) —
f *v for some measure v. Thus

(2.2) f*μ = ( /*y)*λ = /*( i ;*λ)

for every / e L\R+). A second application of the fact that V is an
integral domain yields μ = v * λ, that is λ | μ, and the theorem is proved.

3. A remark and a question. Let Re(a) > 0, Re(b) > 0. It is
easy to verify that (z + l)/(z + b) is the Laplace-Stieltjes transform of
an invertible measure. Consequently the measure defined by

(3.1) μ(z) = £ ^ f = μa(z) d + *X* + D {Re{z) > 0)
z — b z + o

is a prime not essentially different from μa. The primes given by rela-
tion (3.1) coincide with those given in [4]. Existence of other primes
remains an open question.

Repeated application of Theorem 1 yields the relation

(3.2) V * μai * μa2 * * μan = f\ m H , n = 2, 3, *
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where Re{a{) > 0, i = 1, 2, 3, . On the other hand, it is known [1]
that the closed ideal m = p|Γ=i ̂ H is not trivial in case ΣΓ=i 1/1 aί I < °°
A natural question to ask is the following: Does there exist a measure
μ such that F * μ = m?
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