
Pacific Journal of
Mathematics

ABELIAN SUBGROUPS OF p-GROUPS

CHARLES RAY HOBBY

Vol. 12, No. 4 April 1962



ABELIAN SUBGROUPS OF ^-GROUPS

CHARLES HOBBY

Let G be a finite p-group where p is an odd prime. We say that
<? has property An if every abelian normal subgroup of G can be generated
by n elements. Further, if Gn denotes the wth element in the descending
central series of G, we say that G has property An(Gn) if every abelian
subgroup of Gn which is normal in G can be generated by n elements.
If G has property Al9 then G is cyclic. N. Blackburn [1] found all of
the groups which have property A2. It follows from the work of Blackburn
that if G has property A2 then the derived group of G is abelian and
every subgroup of G has property A2. We shall show that if G has
property Az then every subgroup of G has property A3. There exist
groups which have property A5 in which the derived series is arbitrarily
long [2] so no analogue of Blackburn's result on the derived group is
possible. We next consider groups G which have property An(Gn) and
show that Gn can be generated by n elements. This leads to the existence
of a bound on the derived length of G which depends only on n and the
exponent of Gn.

We shall use the following notation: p is an odd prime; G=G1ZDG2ZD

is the descending central series of G; Z(G) = Zλ{G) c Z2(G) c is the
ascending central series of G; G{k) is the kth. derived group of G; (H, K)
is the subgroup of G generated by all elements (h, k) = h~xk~λhk for
heH, ke K; N<\G means N is normal in G; N c G means N is properly
contained in G; Cβ(N) is the centralizer of N in G; H& is the normal
subgroup of G generated by H; @(G) is the subgroup generated by pth
powers of elements of G. Ω(G) is the subgroup generated by all elements
of order p in G; φ(G) is the Frattini subgroup of G; \G\ is the order of G.

If A O G and A c CQ{A), then there is a subgroup B of CQ(A) such
that B <\G and [B: A] = p. It follows that if a normal subgroup A of
G is properly contained in an abelian subgroup C of G, then A is properly
contained in some abelian normal subgroup B of G.

LEMMA 1. Suppose A <| G and A c C where C is an elementary
abelian subgroup of G. Then G contains an elementary abelian normal
subgroup B such that A is a subgroup of index p in B.

Proof. Suppose G is a group of minimal order for which the lemma
is false. Then C c G , so there is a subgroup M of index p in G which
contains C. It follows that M contains an elementary abelian normal
subgroup Bx such that [Bx: A] = p. Set D = MΠ Ca(A). T h e n J ? 1 < D < G .
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Since (D, Bλ) g A and (A A) = 1, we have Bx g Z2{D) < G. Therefore
i?ί S ^2(-D). But Z2(D) is a regular p-group for p > 2, so 5* has exponent
p. Let B be a subgroup of Bf which is normal in G and which contains
A as a subgroup of index p. Clearly B is elementary abelian, so the
lemma is true for G.

THEOREM 1. If G has property A3 then every subgroup of G has:
property Az.

Proof. Suppose G is a group of minimal order for which the theorem
is false. Then G contains an elementary abelian normal subgroup A of
order p3, and there is a subgroup M of index p in G which does not
have property A3. It follows that M contains an elementary abelian
normal subgroup D of order p\ Let N be a subgroup of order p2 in A
which is contained in M and which is normal in G. If we let C = CG(N),
then [G: C] ̂  p, hence [D: D Π C]^p. Thus we may suppose that
N c D, since otherwise we could choose a new subgroup A in (C Π D)N
such that N c DX<\M and A is elementary abelian of order p\

Since G has property A3 it follows from Lemma 1 that A contains
the only elements of order p in C0(A). Therefore N = D Π ̂ (A). It
is easy to see that [C: C0(A)] ̂  p2, thus C = DC0(A). Therefore, if
deD, geG, then g~λdg = dλc for some d1eD, ce C0(A). We recall that
D is an abelian normal subgroup of My and that M<\G. Thus D and
g~~xDg generate a group of class at most two; hence for p > 2 the group
generated by D and g~xΌg has exponent p. Thus it follows from g~λdg =
ώxc that cp = 1, whence c e i . Therefore AD <\ G. But A Π D = JV, so
[AD: D] = p. Since D is not normal in G, we must have AD = D(g-λDg)
for some element geG. Therefore D Π g~λDg has order at least p3 and
is contained in ZX{AD) which is normal in G. Thus AD must contain
an element of order p which centralizes A and which does not belong
to A. This is a contradiction.

THEOREM 2. If G has property An(GJ then Gn can be generated
by n elements.

Proof. Suppose G is a group of minimal order for which the theorem
is false. Then Gn is not abelian, so φ(Gn) Φ 1. Let Z be a group of
order p in ZX(G) Π Φ{Gn). Then Gn and (GIZ)n have the same number
of generators, so {GjZ)n must contain an elementary abelian subgroup
BjZ of order pn+1 which is normal in G\Z. Let B be the preimage of
BIZ in G. Then B<\G, B has order pw+2, and B{1) S ^. Thus B has
class at most two, hence is regular for p > 2. But ̂ (5) S ^, so J2(j?)
is a group of order at least pn+1 which is normal in G. Thus there is
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a subgroup A of Ω{B) such that A <\ G, o(A) = 1, and A has order pn+1.
Let N be a subgroup of index p in A which is normal in G. Then | N\ =
p* and ΛΓ<]G imply NSZn(G), whence NSZλ(Gn). Therefore A is
abelian, a contradiction.

COROLLARY. Suppose G has property AJGn), where Gn has exponent
pm. Let k be an integer such that 2fc ^ n. Then G{JC+m) = 1.

Proof. By Theorem 2, Gw can be generated by n elements. Therefore
[3, Theorem 2] φ(Gn) = Ω(Gn). It follows that G{

n

m) = <1> [4, Theorem 2].
In any p-group, G{t) S Gat. Therefore G(fc) C Gn, whence G(fc+m) - <1>.
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