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In this article we determine the Bergman kernel function of the
tube domain over an arbitrary convex cone not containing any entire
straight line. For homogeneous self-dual cones this problem was solved
by O. S. Rothaus ([3], Theorem 2.6). It turns out that his method can
also be used in our considerably more general case. In fact, the proofs
of our Theorems 1 and 2 follow closely the corresponding proofs of
Rothaus; it is only in Lemma 2 that the proof of Rothaus has to be
replaced by an essentially different convexity argument.

Let V be an n-dimensional real vector space. A set D V is called
a cone if xeD and A >0 imply MeeD. Let V* be the dual space of
V. The dual cone D* of D is defined as the set of all ae V* such
that {a, > > 0 for all xe D, # + 0. We call the cone D regular if it is

(i) open,

(ii) convex,

(iii) nonempty, and

(iv) contains no entire straight line, i.e. x € D implies —x ¢ D. It
is easy to see that if D is regular then D* is regular too, and D** = D,

We assume that a Euclidean norm « — |« | is defined on V. The
dual norm on V* will likewise be denoted by a — |«|.

LEMMA 1. If D is a regular cone and K C D is a compact set tiﬁen
there exists a number o > 0 such that {a, x> = p|a| for all xe K, a € D*,

Proof. The proof is the same as that of [2] Lemma 1. By homo-
geneity it suffices to prove the assertion for |a|=1. Let S=
{ee V*||a| =1} be the unit sphere in V*. Now {a,x) is a positive
continuous function on the compact set (SN D*) x K and thus has a
positive minimum p, finishing the proof.

We define the positive real-valued function M on D* by

M@ = | eerda

for all @ e D*. By Lemma 1 the integral converges uniformly on compact
sets. As it can immediately be seen, M is a homogeneous function of
degree —n.

LEMMA 2. Let D be a regular cone and let B cdD* (the boundary
of D* wn V*). Then
Received May 4, 1962.

1355



1356 ADAM KORANYI

lim M(«) = oo .
a—p
Proof. If B =0 the assertion is trivial. Let 8 # 0. For ae D*
and ¢t > 0 define H,(t) = {x € D|<a, > = t} and let

Vt) = S dv,
Hy,(t)
be the volume of H,(t) (dv, denotes the volume element of the hyperplane
{x|<a, x> =t}). Clearly we have V, () =t""'V,1) for all ¢ >0. Also

M(x) = S e=@ Oy = rdtS e~ 2y,
D H (b

0

_ S: Vityetdt = Vy(L)I'(n) .

Therefore the Lemma will be proved if we show that lim, .V, (1) = .

Let Uc D* be a compact neighborhood of B relative to D*. Then
the set L of all x € D such that {a, > < 1 for all a € U has an interior.
(In fact, if A is a bound for |a| on U, it is easy to see that L contains
all €D such that |x] < A™"). Let K be an open sphere contained in
L; let ce D be its center and r > 0 its radius.

For ac U let K, be the (n — 1)-dimensional sphere of radius 7 and
center ¢, = {a, ¢>~'¢ contained in the hyperplane {z|<{a, x> =1}. By
convexity and by <{a, ¢>~*>1 we have K, c H,(1). Since |¢,| =<a, > ¢]|
and since the continuous function <{«, ¢)>™' is bounded on the compact
set U, there exists a number R such that

(1) lea| = R

for all e U.

Now let 2 > R be an arbitrarily large number. There exists an
element ae€ D, |a| =1 such that {B,a) =0, for otherwise we would
have Be D*. Hence there exists an element e D, || =1 such that
B,x> < (R+ 2)t. It follows then that there exists a neighborhood
U@)c U of B relative to D* such that <{a, 2> < (R+ 2)7* for all
ac U(2). Let xz, =<a,x)™ . Clearly we have z,¢c H,(1) and

(2) |#,] >R+ 2

for all e U(2). Now H,(1) is convex, and thus contains the convex
hull B, of K, and z,; hence, be (1) and (2),
vz | an>_ o
Ba n — 2
for all ae U(Q), C denoting the volume of the (n» — 2)-dimensional
sphere of radius ». This completes the proof.
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Let V, = V@1V be the complexification of V. The tube over D
in V, is the domain 7T, = {x + iy|xe D,ye V}. For 2z =2 +iye V, and
aec V* we write <{a, 2> = {a, x> + Ka, y>. We denote by Z*(Tp) the
Hilbert space of holomorphic functions on T,, square integrable with
respect to dxdy, and by L%(D*) the Hilbert space of functions on D*
square integrable with respect to M(a)dc.

THEOREM 1. The mapping ¢ — f defined by
(3) 1@ = n| pl@eeda
18 am isomorphism of Li(D*) onto Z*(Ty).

Proof. Let e Li(D*). Then

|, lp@eeda = | |p@]|e“da

= (SD*I pa))P M (a)da)llzqmg—m,n M(a)—ldoz>l/2

by the Schwarz inequality. The first integral is just ||®||?, the second
is also convergent by Lemma 2 and by the homogeneity of M; by Lemma
1 it is even bounded on compact subsets of D. Thus (3) converges
absolutely and uniformly on compact subsets of T',, and hence represents
a holomorphic function. Furthermore, reversing the order of integration
(which is possible since the integrand is positive and measurable), and
then applying the Plancherel theorem we have

(4)  lelr=| lp@FM@da=| |p@[da| cvda
= 2| lp@lda] eends =2 |da| |plee e da

- SndeV|f(m + i) Pdy = || fII*,

which shows that fe <% T,) and also that the mapping is an isomor-
phism.

Remains to show (and this is the more important part) that the
isomorphism is onto.

First we prove that there exists a measurable function ¢ on V*
such that

f(2) = f(x + 1) = lim ﬂ"”’2SV*¢(a)e‘<“~”da

for almost all z € D. In fact, by Fubini’s theorem f(z + ty) as a function
of y is in L*(V) for almost all z; so the Fourier transform
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¥(z, @) = lim 71'"'”/28 f(@ + ty)e~“*vdy

exists. The assertion is that (x, @) = @(@)e=** with some measurable
®. Let Nc D be a subset whose distance from 9D is d > 0. Then,
by a well-known property of <“*spaces, |f(2)| = |f(z + )| = C.||f|
for all xe N, fe &*Tp). Using this remark the proof of our assertion
is the same as that of a similar assertion in [1], p. 128, and will not
be reproduced here.

Next we show that (@) = 0 for almost all « ¢ D*. In fact, using
the Plancherel theorem and reversing the order of integration we obtain

Iflr =2 dal |p@]exeda.

In particular, S | p(a) e **»dx exists for almost all « and is integrable.
D

Now if a¢ D*, then <{a, 2> < 0 for some x€D and hence S e X@ N dy

diverges. Therefore o(a) = 0 for almost all such «. B
Finally we must show that ¢ e L%(D*). This however follows at
once from the Plancherel theorem through the equalities (4).

THEOREM 2. The Bergman kernel function of T, s

K(Zy 7/()) = %Sn*e—ﬂn,zi—if))M(a)_lda{ .

Proof. From Theorem 1 it is clear that, for fixed we T,, K(z, w)
as a function of z is in <#*T,). Also for fixed we T, and z € D, K(z, w)
is in L V) as a function of .

Let fe <#*(Tp), then f can be represented in the form (3). Using
the Plancherel theorem and then reversing the order of integration
(which can be done since the integrand is measurable and the repeated
integral in reverse order exists absolutely), we obtain

|, f@RG, wdsdy = | ds| F@K G widy
=2 | pl@ereerwm@ da
— 2| dagp(@e- =M@ oxerda
= | e evda = raw)

for all we T,. Owing to the fact that the Bergman kernel is uniquely
determined by its reproducing property, the proof is finished.
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