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NON-EXISTENCE OF ALMOST-COMPLEX STRUCTURES

ON QUATERNIONIC PROJECTIVE SPACES

W. S. MASSEY

l Introduction* In [3] P. Hirzebruch proved that the ^-dimensional
quaternionic projective space (which we denote by Pn(H)) does not admit
any almost structure in case n φ 2 or 3. According to Hirzebruch's
lecture at the 1958 International Congress [5], Milnor has since proved
that P2(H) and PZ{H) do not admit almost complex structures. At the
time of this writing, Milnor's proof has not yet been published.

It is the purpose of this note to give a short proof of this theorem
of Milnor's making use of the theory of the ring K(X) of complex vector
bundles over a space X due to Atiyah and Hirzebruch together with
certain facts that are readily available in the literature. From the brief
description given in Hirzebruch's lecture (loc. cit.) it seems that our
method is quite different from Milnor's. Our method may be applicable
in other cases to prove the existence or nonexistence of almost complex
structures on a manifold.

2* Summary of some known facts* We will make use of the
following results:

(a) The cohomology ring H*(Pn(H), Z) is a truncated polynomial
ring generated by a 4-dimensional cohomology class u and subject to the
single relation un+1 = 0.

(b) Let τn denote the tangent bundle to Pn(H). The total Pontr jagin
class of τn is given by the formula

(1) P(τn) = (1 + u)2n+2(l + An)-1

for appropriate choice of the generator u (Borel and Hirzebruch [2],
15.5 or Hirzebruch [3]).

(c) We will use the following notation: If ξ is a real w-plane bundle,
then ξ (g) C denotes its complexification, while if £ is a complex w-plane
bundle, then ξR denotes the real 2%-plane bundle obtained by "restriction
of coefficients" to the reals. Also, ξ* denotes the complex conjugate
bundle. We then have the following relation for any complex vector
bundle ξ:

(2) ξR <g) C = ξ + ξ * (Whitney sum) .

(see Hirzebruch, [4], p. 68, proof of Theorem 4.5.1). Moreover, for any
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real vector bundle η,

(3) Pi(y) = (-iy

(Hirzebruch [4], p. 67).

(d) We will also need to make use of the properties of the ring
K(X) as summarized for example in § 2 of Atiyah and Todd [1]. We
will use their notation and results without any further comment.

3 The ring K(Pn(H))Φ By proposition 2.3 of [1] the Chern character

ch:K(Pn(H))-+H*(Pn{H),Q)

is a monomorphism.

LEMMA 1. The image of this homomorphism, denoted by chPn(H),
is the subring of H*(Pn(H), Q) generated by

2 cosh i/ΊΓ = 2 (1 + v\2\ + va/4! + + vn/(2n)l)

where v is an appropriately chosen generator of

H\Pn(H)y Z) c H\H), Q) .

Proof. Consider the well-known principal fibre bundle πn: S4n+3 —>
Pn(H) with group Sp(ΐ); let ηn denote the associated bundle with fibre
a quaternionic vector space of dimension 1. We assert that the total
symplectic Pontrjagin class of this bundle is

e{ηn) = 1 + eλ{ηn) = l + v

where v is an appropriately chosen generator of H\Pn{H), Z). This
foΏows from the fact that πn: S4n+3 -> Pn(H) is a universal bundle for
the group Sp(l) (up to the dimension An + 2), and that the integral
cohomology ring of the classifying space for Sp(l) is a polynomial ring
generated by the symplectic Pontrjagin class ex (see Borel and Hirzebruch,
[2], §9.6).

Let ξn denote the complex vector bundle obtained from rjΛ by ' 're-
striction of coefficients'' to the complex numbers; the associated principal
bundle is a U(2)—bundle which is the extension of πn: S4n+3->Pn(H)
under the standard inclusion Sp(ϊ) c [7(2), By § 9.6 of [2],

hence

c(ξn) = 1 - v %

The Chern character (see [2], § 9.1) of ξn is
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ch(ξn) = β* + e"2

where

Hence

Vi + y2 = 0 , y^j = -v

From this we conclude that

2/i = VΊ7, y2 = - l / T ,

βMI ) = exp(v) + exp(—v) = 2 cosh l/ v .

Hence ck(Pn(H)) contains the subring generated by 2 cosh V v it
remains to show that it is exactly equal to this subring. This is done
by induction on n exactly as in the proof of Proposition 3.1 of [1], The
details may be left to the reader.

Note that chPn(H) may be equivalently described as the subring of
H*(Pn(H), Q) generated by

w = 2 cosh V v - 2 = v + 2^/4! + + 2vnl(2n)l

For many purposes this description of ch Pn(H) is more convenient; note
that wn+1 = 0, and {1, w, w2, , wn} is a basis of ch PJfl) over the integers.

Lemma 1 and equation (1) above are both stated in terms of
' 'appropriately" chosen generators, v and u respectively, of the infinite
cyclic group iϊ4(Pn(H), Z). Therefore u = ±v. We assert that u = +v.
To prove this, it obviously suffices to show that ch(τn (g) C) belongs to
the subring of H*(PW(H), Q) generated by 2 coshi/w, but that it does
not belong to the subring of H*(Pn(H),Q) generated by 2 cosh V —u.
This we will now do by an essentially straightforward, but rather
lengthy, computation.

LEMMA 2. The Chern character of τn(g) C is given by

ch(τn ® C) = (in + 4) cosh Vu — 4 cosh2 Vu .

Proof. It follows from equations (1) and (3) that the total Chern
class of τn® C is given by

c(τn <g) C) = (1 - ufn+\l - An)'1 .

To compute the Chern character of τn ® C, we may proceed as follows:
Write the total Chern class as a formal product
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where the x/s have degree 2. Then

To actually carry out the computation, take the logarithm of both sides
of the equation

Π (1 + x{) = (1 - uYn+\l - An)-1 ,

and use the MacLaurin series expansion of log (1 + z) and log (1 — z).
The result is

k>0 k>0

where

An

Q — V wk

«fc — _/ ι i

Since each x{ is of degree 2, while u is of degree 4, we conclude from
equation (4) that

Therefore

ch(τn0ί

0

2(2%

Φ(^)

for fc
ι 2

4TC

odd ,
A*)u*

= 4% 4

= 4% + Σ 2(2% + 2 - 4*K/(2fc) !
A;>0

= (4w + 4) cosh T/ U — 2 cosh V An — 2

= (4t̂  + 4) cosh T/ t6 — 4 cosh21/ % ,

as was to be proved.
It is obvious from this formula that ch(τn (g) C) belongs to the

subring of H*(Pn(fiΓ), Q) generated by 2 coshλ/n; we must now prove
that ch(τn (g) C) does not belong to the subring generated by

2 cosh V — u = 2 cos V7 w .

Assume the contrary; then there exist integers a09 al9 , an such that

ch(τn (g) C) = Σ α^(2 COS T / ¥ - 2)k ,
A;=0

that is,



NON-EXISTENCE OF ALMOST-COMPLEX 1383

2 Σ (2n + 2 - 4:k)ukl(2k) !

= Σ «*(-^ + 2w2/4! - 2 ^ / 6 ! + ± 2^/(2^)!)* .

If we compare coefficients of u, u2, u3, and u* in this equation, we obtain

β __ 2/γι 4- 2

αa = (w - 4)/3 ,

α3 = (7 - w)/18 ,

α4 = (5w - 47)/504 .

For n = 2 or 3, α2 is not an integer; for n < 7, α3 is not an integer;
and for any value of n, it is impossible that both α3 and α4 are integers.
For, if a3 is an integer, then

n = 7 mod 18 or 5n = 35 mod 18 ,

while if a4 is an integer, then

5n == 47 mod 18

which is a contradiction.

This completes the proof that u — +v.

4. Proof of the theorem. Assume τn admits an almost complex
structure θn; we will show that this leads to a contradiction.

θn is a complex 2n-plane bundle over Pn(H) such that τn = ^ n Λ .
Then by equation (2)

τn (g) C = ^%R (g) C = θn + θt .

Next, recall that

where cfc< denotes the component of ch of degree 2i. However, since
the base space of the bundle θn is Pn(H),

ch(θ*) =

Therefore

ch(τn (g) C) -

It follows from Lemma 2 that

cft(0n) = (2n + 2) cosh l / ¥ - 2 cosh2 T/ΊΓ

- - I (2 cosh τ / ¥ - 2)2 + (n - 1) (2 cosh τ / ¥ - 2) + 2n .

This is the desired contradiction, since the Chern character of any complex
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vector bundle is an integral linear combination of the powers of
w = (2 cosh Vΰ — 2).

REMARK. We have actually proved a slightly stronger theorem, in
that we have shown that for any integer n > 1, Pn(H) does not admit
a ' 'generalized almost complex structure" as defined by Hirzebruch in
his lecture [5]. As Hirzebruch remarks, this can be proved easily by
induction on n, once the case n — 2 is taken care of. However, the
above computations of ch(Pn{H)) and ch(zn(&C) may be of some inde-
pendent interest.
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