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l Introduction. The principal object of this paper is to give a
complete set of unitary invariants for a certain class of operators on
Hubert space. The operators considered are exactly those operators
which generate a W*-algebra which is finite of type / in the terminology
of Kaplansky [6]. Such an operator is a direct sum of homogeneous
^-normal operators, and a homogeneous ^-normal operator can be
regarded as a continuous function from a totally disconnected topological
space to the full ring of n x n complex matrices. Thus it was con-
jectured by Kaplansky that if one could find a suitable set of invariants
for complex matrices, one could also solve the unitary equivalence
problem for homogeneous ^-normal operators, and Brown's solution [2]
of the problem in the case n — 2 strengthened this belief. A complete
set of unitary invariants for n x n matrices was furnished by Specht.
In [10] he showed that there is a collection of traces attached to every
n x n complex matrix such that two matrices are unitarily equivalent
if and only if the corresponding traces in this collection are equal. A
generalization of the trace of a matrix to ^-normal operators is given
by Diximier in [3], and it was thus natural to suppose that the gener-
alized Specht invariants would serve for homogeneous ^-normal operators.
(See page 20, [7].)

Unfortunately, the Specht invariants have the unpleasant feature
that they are infinite in number, and for n fixed it seemed likely that
some finite subset would serve. Herein it is shown (Theorems 1 and 2)
that there is always a subset of less than 4n2 traces which is a complete
set of unitary invariants for n x n complex matrices. Furthermore,
the same invariants form a set of orthogonal invariants for n x n real
matrices. (One observes that Specht's proof does not generalize to the
real case, due to the failure there of Burnside's theorem.)

The (local) unitary equivalence problem for homogeneous w-normal
operators generating the same TF*-algebra is then considered, and it is
shown that the same finite number of Dixmier traces is a (local) complete
set of unitary invariants for such operators (Theorem 3). Finally the
question of global unitary equivalence for operators which generate a
finite I^*-algebra of type I is considered, and a global complete set of
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unitary invariants is determined (Theorem 5). In particular, to each
such operator A is attached a countable collection of mutually commuting
normal operators Ni(A). Then A is unitarily equivalent to B if and
only if there is a unitary isomorphism φ between the respective Hubert
spaces which satisfies φNi{A)φ~ι = N^B) for all i.

The author wishes to express his appreciation to Professor Arlen
Brown for his encouragement and patient criticism during the prepa-
ration of this paper.

2, n x n matrices* We first obtain the result for n x n matrices,
or what is the same thing, for operators on an ^-dimensional (complex)
Hubert space. The reader is reminded that a ring of operators, or
ΫF*-algebra, is a self-adjoint algebra of operators closed in the weak
operator topology acting on a Hubert space. ΫF*-algebras are not
assumed to contain the identity operator.

Throughout this paper W will denote the free multiplicative semi-
group generated by the two free variables x and y. Words in this
collection are denoted by w(x, y), and the collection of all words w(x, y)
with the property that the sum of the exponents appearing in w(x, y)
does not exceed n is denoted by W(n). Also, if A is an operator, the
notation WJn) denotes the collection of all operators w(A, A*) with
w(x, y) e W(ri).

LEMMA 2.1. // A is an operator on an n-dimensional Hilbert
space, and d is a positive integer such that every operator in WA(d + 1)
is a linear combination of operators in WA(d), then WA(d) spans the
""-algebra V generated by A.

Proof. Clearly, V consists of all linear combinations of words
w(A, A*) where w(x, y) e W. If WA(d) does not span V, then there is
a word w(A, A*) which is independent of WJd) with the property that
the sum of the exponents in w(x, y) is a minimum. A contradiction is
easily reached by factoring A (or A*) out of w(A, A*) and writing the
other factor as a linear combination of operators in WA(d).

LEMMA 2.2. If A and V are as before, then V is spanned by the
collection of operators WA(n2).

Proof. This follows from Lemma 2.1 and the fact that V can
contain at most n2 linearly independent operators.

We introduce the notation σ(A) for the trace of an operator A
acting on a finite dimensional space.

THEOREM 1. If A and B are operators on an n-dimensional
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Hilbert space J%?f and σ[w(A, A*)] = σ[w{B, B*)] for every word
w(x, y) e W(2n2), then A and B are unitarily equivalent.

Proof. Let R(A) and R(B) be the *-algebras generated by A and
B respectively. If A* = XA for some scalar λ, then it is easy to see
that JB* = XB, so that A and B are normal, and the traces assumed
equal are more than enough to guarantee the unitary equivalence of A
and B. Thus, we can assume that A and A* are linearly independent,
and it results from the preceding lemmas that there is a basis β(A) —
{Wi(A, A*)IWi(x, y) e τ) of R(A) such that τ c W(n2 - 1), wλ(x, y) = x and
w2(ίc, y) = y. It follows easily from the hypothesis and the fact that
σ(CC*) = 0implies C = 0 for arbitrary C that β(B) = {w^B, B*)IWi(x,y) e r}
is a basis for R(B). To complete the proof, it suffices to show that if
Wj(x, y) is any word in τ and Wj(A9 A*) A = Σ Λ W^A, A*), wά{A, A*)A* =
ΣίViiWίίA, A*), then wά{B, B*)B = Σla^w^B, B*) and Wj{B, B*)B* =
Σ* yi3wi(B> B*) For if this is so, then it is clear that if any word
w(A, A*) is formed by multiplications of appropriate powers of A by
appropriate powers of A*, and the corresponding word w(By B*) is formed
similarly, we will obtain w(A, A*) = ΣA^XA, A*) and w(B, B*) =
ΣiδiW^B, 5*). This implies that σ[w(A, A*)] = σ[w(B, B*)], and the
result will follow from the original theorem of Specht. Thus let wά(x,y) e τ
and consider L = w3(B, B*)B - ^a^w^B, 5*) and N = wά(B, £*)£ -
ΣiΎijwi(B> B*) Since LL* and NN* are linear combinations of words
each of which is in WB(2n2), it follows from the hypothesis that σ(LL*) =
σ(NN*) = 0, so that L — N = 0, and the proof is complete.

It is easy to see that some of the equalities σ[w(A, A*)] = σ[w(B,B*)]9

w(x, y) G W(2n2), follow from others as a result of properties of the trace
function, and thus there are smaller sets of invariants than the set indi-
cated by Theorem 1. For example, it suffices to assume equality for words
of the form x* and xiy5xk y* in view of the identity σ(A*) = [tf(A)]*
and the fact that the trace of any commutator is zero. Detailed con-
sideration of the case n = 3 indicated (see § 5) that it is probably not
worthwhile to pursue the question of how many words can thus be dis-
pensed with, so we content ourselves with the observation that there are
more distinct sequences of positive integers each having the property
that the sum of its terms is at most 2n2 than there are traces needed.

THEOREM 2. There is a complete set of unitary invariants for
n x n complex matrices containing fewer than 4̂ 2 elements.

Proof. By induction, the number of distinct sequences of positive
integers each having the property that the sum of its terms is a given
positive integer k is 2*~\ and one sums the resulting geometric series.

The following corollary extends the above result to real matrices.
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COROLLARY. Any collection of traces which is a complete set of
unitary invariants for n x n complex matrices is also a complete set
of orthogonal invariants for n x n real matrices, and therefore there
is a complete set of orthogonal invariants containing fewer than 4w2

elements.

Proof. We can assume A and B are real n x n matrices with
UAU* = B, U complex unitary. Let U = R + iJ where R and J are
real matrices. Then RA = BR, JA = BJ, RA* = B*Rf JA* = B*J, and
one can choose a real λ such that S = R + λJ is nonsingular. It follows
that SAS*1 = B and SA*S~1 — B*, and the usual construction yields an
orthogonal real matrix V such that FAF* = B.

3* Homogeneous n-normal operators* Terms such as abelian pro-
jections, equivalence of projections, and homogeneity of projections are
taken as defined in [6]. A FF*-algebra R is n-normal if it satisfies
the identity

where the sum is taken over all permutations on 2n objects, and the
sign is determined by the parity of the permutation. An n-normal
algebra is homogeneous n-normal (also called type In) if the unit is
homogeneous of order n, and an operator is (homogeneous) n-normal if
the Wr*-algebra it generates is (homogeneous) n-normal.

The imposition of (*) on an algebra R restricts the number of non-
zero, orthogonal, equivalent projections in R to a maximum of n, and
since every direct summand of an n-normal algebra contains an abelian
projection [2], it follows easily that any n-normal algebra is a direct
sum of algebras of type Ik where k ^ n. Kaplansky [5] and Brown [2]
gave a structure theory for these algebras, and according to [2], if R
is a homogeneous n-normal algebra, then R is unitarily isomorphic to
the algebra of all n x n matrices with entries from an abelian W*-algebra
Z' containing 1. By applying the representation theorem for abelian
C*-algebras to Z', one obtains that Z' is C*-isomorphic to the C*-algebra
C(ϊ) of all continuous complex-valued functions on a compact Hausdorff
space X. Now Zr is weakly closed, and it has been shown that this
gives 36 the additional properties that the closure of every open set is
open, and the compact open sets form a base for the topology [11]. It
results that R is C*-isomorphic to the C*-algebra MJlί) of all continuous
functions from 3c to the full ring Mn of n x n complex matrices, where
|| A( ) || = supίE£ || A(t) ||. If A = (Ai3)eR, then A corresponds to the
function A(-)eMn{l) whose value at te3c is A(t) = {aiά{t))y where α^( )
js the function in C(3c) corresponding to AiS in Z'. See [2] for details,
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It will be useful from here on to have a notation for a diagonal
matrix which has the same entry E in every position on the main
diagonal and zeros elsewhere. We hereby adopt the notation Diag(JS')
for this matrix whose size will always be clear from context.

Dixmier [3] has demonstrated the existence of a unique center
valued trace-like function (called by him "Γapplication % canonique")
defined on finite W*-algebras. This function, which we denote by D(-),
is linear, a unitary invariant, constant on the center of the algebra,
preserves the *-operation, and has the property that if Aλ is a net of
uniformly bounded operators converging weakly to A, then D(Aλ) con-
verges weakly to D(A). For more information concerning this function,
see [3].

Our intention is to use operators of the form D[w(A, A*)] as unitary
invariants for operators A generating finite W* -algebras of type I. To
this end, let R be a homogeneous ^-normal T^*-algebra. Then as
mentioned, we can take R to be the W*-algebra of all n x n matrices
over an abelian algebra Z', and any A e R has the form A = (Ad).
Thus one can define a mapping A —> Diag (Ijn Σ* ̂ ώ from R to the
center of R, and it is not hard to see that this mapping has all of the
afore mentioned properties of D{-), and in addition is globally weakly
and uniformly continuous. From these considerations and from Theorem
3, page 267, [3], it follows that D(A) - Diag (1/n Σ* Au). The usefulness
of this fact is that under the C* -isomorphism between R and MJjί),
any operator D[w{Ay A*)] e R corresponds to the function Diag
(llnσ[w(A(-),A*(.)]) in Mn(X).

We solve the local unitary equivalence problem first in the simplest
case where the ^-normal operators A and B under consideration are
both in the homogeneous W* -algebra R and where A is assumed to
generate R. We begin by supposing that D[w{A, A*)] = D[w(B, B*)]
for w(x, y) G C, where C is any collection of words w(x, y) furnishing a
complete set of unitary invariants for n x n matrices. Then it follows
that A(t) is unitarily equivalent to B(t) for each ί e ϊ , and as a result
D[w{A, A*)] = D[w(B, B*)] for all words w(x, y) e W. At this point we
make two observations. The first is that the problem of finding a
unitary operator in R satisfying UAU* = B is equivalent to being able
to choose the unitary matrix U(t) implementing the equivalence of A(t)
and B(t) in a continuous fashion. The second follows: consider the
mapping φ:p(A, A*)<-+p(B,B*) between the algebraic *-algebras generated
by A and B. It is clear, since φ was shown above to be trace pre-
serving, that φ is in fact a norm-preserving *-algebra isomorphism, and
as such can be extended to a C*-isomorphism between the C*-algebras
generated by A and B. Thus the question of whether A is unitarily
equivalent to B is exactly the question of whether the isomorphism φ
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is implemented by a unitary operator. To answer this question, it is
useful to consider the problem locally in Mn(ϋ), where the appropriate
AW*-algebras are more accessible. The following lemmas lead to the
result.

LEMMA 3.1. Suppose A generates the homogeneous n-normal W*-
algebra R, and as such corresponds to the function A(-)e Mn(X). If
<%/ is any compact open subset of X, then there is a te^/ such that
A(t) generates the full*-algebra Mn ofnxn complex matrices.

Proof. Suppose there is some compact open <%/ such that for each
t e <%/, the *-algebra of matrices generated by A(t) [which is, of course,
a direct sum of factors] is not the full algebra Mn. Let (**) be the
polynomial identity obtained from (*) by replacing n by n — 1. It
follows from the facts about polynomial identities in [1] that for any
te *%S, the *-algebra of matrices generated by A(t) satisfies (**). Now
the characteristic function of W corresponds to a projection E' in Z'',
and thus the operator E — Diag (Ef) is a central projection in R. What
we have just proved is that the algebraic *-algebra generated by EA
satisfies (**). It follows by continuity that ER satisfies (**) also, which
is impossible because ER is homogeneous w-normal with R and thus
contains n2 matrix units which cannot satisfy (**).

The next lemma uses the fact that if <%/ is any compact open subset
of ϊ , then the algebra Mn(^/) of continuous functions from <?/ to Λf»,
considered as a normed algebra with sup norm, is a C*-algebra and, in
fact, an AW*-a\gebm.

LEMMA 3.2. Suppose that A( ) and B( ) are elements of Mn{H) such
that for every word w(x, y)e W and for every t e 36, σ[w(A(t), A*(t))] =
σ[w(B(t)9 B*(t))]. Suppose further that s e ϊ is such that A(s) generates
Mn. Then there is a compact open set <?/ containing s and a unitary
element V( )eMn(<%?) such that for each te^, B(t) = V(t)A{t)V*{t).

Proof. Since A{s) generates Mn, there are n2 words Wi(x, y) such
that the matrices Wi(A(s), A*(s)) are linearly independent, and we can
take w1(A(8)9 A*(s)) = A(s) and w2(A(s), A*(s)) = A*(s). Since A( ) can
be regarded as a matrix with continuous functions as entries, there is
a compact open set ^/ containing s such that for t e <%?, the n2 matrices
Wi(A(t), A*(t)) remain linearly independent. Thus for each t e"?/, one
obtains, just as in the proof of Theorem 1, that the n2 matrices
Wi(B(t), B*(t)) are linearly independent. Furthermore, if

, A*(t))Wj(A(t), A*(t)) = Σ dUt)wk(A(t), A*(t)) ,
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then the same equation holds with A everywhere replaced by B. Now
any element T(-)e Mn(<%s) is such that T(t) = ΣSi c^w^Ait), A*(£))
for te^, where the c{( ) are uniquely determined continuous complex-
valued functions on <%s. This is the crucial fact, for it allows us to
define the mapping

of MJ&) onto itself. Using the facts mentioned above, it is not hard
to see that φ is in fact a *-algebra automorphism of Mn(^) which leaves
the center elementwise fixed. It follows from Theorem 3, [5] that
there is a unitary element V( )e Mn(<%s) implementing φ, and since φ
maps A( ) to B( ) we have the desired result. (It is perhaps worth
remarking that instead of using Kaplansky's theorem above, the desired
unitary element V( ) could have been constructed via a construction
from standard algebra.)

THEOREM 3. Suppose A is a homogeneous n-normal operator gener-
ating the W*-algebra R, and suppose B is any operator in R. Suppose
also that C is any collection of words w(x, y) with the property that
the associated traces form a complete set of unitary invariants for
nxn complex matrices. Finally, suppose that D[w(A, A*)]~D[w(B, JS*)]
for each w(x,y)eC. Then there is a unitary element UeR such that
UAU* = B.

Proof. Consider collections of nonzero, orthogonal, central pro-
jections Eλ in R for which there exists some unitary operator Vλ in R
satisfying BEλ = VλAV^Eλ. By Zorn one obtains a maximal collection
{Eλ}. Let F = supλ {Eλ} = Σ λ Eλ. To show that F is the unit of R,
suppose not. Then the central projection 1 — F is nonzero, and thus
is of the form Diag (£") where E' is a projection in Z'. Now E' cor-
responds to the characteristic function of a compact open subset ^ί of
£, and by Lemmas 3.1 and 3.2 we can drop down to a compact open
subset ^ of ^< such that there is a unitary V(-) e Mn(^) with B(t) =
V(t)A(t)V*(t) for every te^. Then of course F( ) can be extended
to a unitary element V(-)e Mn(£), and if E is the central projection
in R corresponding to the set ^ , we have BE = VAV*E. This con-
tradicts the maximality of the collection {Eχ\, and thus Σ λ Eλ = 1. If
U is defined as Σλ ^Λ Vλ, it is an easy matter to verify that U is a
unitary operator in R and that UAU* = B.

We can remove the restriction in Theorem 3 that A generates a
homogeneous algebra, provided we maintain the requirement that A
generates a W*-algebra of type /, finite. For it is known that any
such algebra R is a direct sum Σ ei Θ -K» where / is some (perhaps
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infinite) subset of the positive integers and each R{ is homogeneous i-
normal, and it is easy to see that the Dixmier trace D(-) on R is the
direct sum of the functions A( ) defined as previously on the homo-
geneous summands R{. Thus we get immediately.

THEOREM 4. If A generates the finite W*-algebra R of type I, B
is any operator in R, and D[w(A, .A*)] — D[w(B, B*)] for each
w(x, y) G W, then there is a unitary operator Ue R such that UAU* = B.

4. Global unitary equivalence. We now shift our attention from
the question of local unitary equivalence to the question of global unitary
equivalence. In other words, if A and B are operators on the Hubert
spaces 3^ and J3Γ respectively, and each generates a finite ΫΓ*-algebra
of type /, we wish to set forth necessary and sufficient conditions for
the existence of a unitary isomorphism φ mapping §ίf onto 3ίΓ and
satisfying φAφ~ι = B. Suppose A and B generate the W* -algebras
R(A) and R(B) respectively. Let Da( ) be the Dixmier trace defined
on the algebra R{A), and similarly let A( ) be the trace on the algebra
R(B). In order to eventually arrive at a complete set of unitary in-
variants for A and B, we must set forth conditions which will ensure
that the algebras R(A) and R(B) are unitarily equivalent, and the
following lemma begins this program.

LEMMA 4.1. If A and B are as above, and if there is a unitary
isomorphism φ mapping ^ onto 5ίΓ such that φDa[w(A, A*)]^"1 =
Db[w(B, £*)] for each w{x, y) e W, then φZ{A)φ~λ = Z(B), where Z(A)
and Z(B) are the centers of R(A) and R(B) respectively.

Proof. It clearly suffices to demonstrate that the T^*-algebra Z(Γ)
which the collection Γ = {Da[w{A, A*)]/w(x, y) e W) generates is Z(A).
By the fundmental density theorem, Z(Γ) is the ultraweak ("ultrafaible")
closure of the algebraic *-algebra generated by Γ, and R(A) is the
ultraweak closure of the algebraic *-algebra generated by A. If Ke Z(A),
then there is a net of polynomials pλ{A, A*) converging ultraweakly to
K, and Da[pλ(A, A*)] converges ultraweakly to Da(K) = K.

One conjectures that the number of traces required in the previous
lemma can be reduced somewhat if it is assumed that R(A) and R(B)
are both ^-normal for some n. (This is equivalent to supposing that
there exists a positive integer n such that neither R(A) nor R(B) has
a nontrivial i-homogeneous summand with i > n.) The following lemma
affirms this conjecture.

LEMMA 4.2. If R(A) and R(B) are both n-normal W*-algebras, C
is any collection of words w(x, y) furnishing a complete set of unitary
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invariants for n x n complex matrices, and φDa[w(A, A*)]<p-1 =
Db[w(B, £*)] for w(x, y) e C, then φZ{A)φ~ι = Z(B).

Proof. As before, it suffices to demonstrate that the T7*-algebra
which the collection Ω = {Da[w(A, A*)]lw(x, y) e C} generates is Z(A).
On the other hand, we know from Lemma 4.1 that the collection Γ =
{Da[w(A, A*)]lw(x, y) e W} generates Z(A). Thus it suffices to show
that Ω and Γ generate the same W*-algebra, or even less, the same
C*-algebra. Now R(A) is a direct sum of homogeneous algebras Rif

and thus is C*-isomorphic to an algebra of the form Σ i € I Θ Mffii) where
/ is a subset of the first n positive integers. Consider the compact
Hausdorff space X = \Jiei Xif defined by agreeing that a set ^ is open
in 2ί if and only if <%/ n X» is open in Xt for each iel. Clearly, Z(A)
is C*-isomorphic to the C*-algebra F of all continuous complex-valued
functions on 36. For any w(x, y) e W, let fweF be the element corres-
ponding to Da[w{A, A*)] in Z(A). If A corresponds to Σ e i Θ ^ ( ),
then it is easy to see that /„/£< (the restriction of /„, to 3̂ ) is equal to
lliσ[w(Ai( ),Aϊ( ))]. We want to prove that Ωx - {/„ 6 Fiw(x, y) e C}
and Γ1 = {fw e F/w(x, y) e W) generate the same closed subalgebra of
F. Define gwβι = i -fwβi for iel. Then Ωx and Γx generate the same
closed subalgebra of F if and only if Ω2 = {gw\w{x, y)eC} and Γ2 =
{gjw(xf y) G W) do also. We apply the Stone-Weierstrass Theorem to
prove that Ω2 and Γ2 do indeed generate the same C*-subalgebra
of F, and thus complete the argument. Suppose tu ί2 e X, and suppose
9v>(ti) — Qw(Q for each w(x, y) e C. Say tx e ϊ^ and ί2 e ϊ 5 . Then the
matrices -Â ίO and Aχί2) can both be made into n x n matrices by
forming direct sums with appropriate sized zero matrices, and one sees
by virtue of the hypothesis on C that the resulting n x n matrices are
unitarily equivalent. Thus gw(tλ) — gw(t2) for all w(x9 y) e W, and it
remains only to show that if ί e X* is such that gw(t) — 0 for all w(x, y) e C,
then gw(t) = 0 for all w(x, y) e W. This is immediate, however, since
then Aι(t) is unitarily equivalent to the zero matrix and thus is equal
to zero.

One knows (Theorem 3, [2]) that two w-homogeneous TF*-algebras
whose centers are unitarily isomorphic are then themselves unitarily
isomorphic, and the next lemma gives conditions under which the
homogeneous summands of two finite W* -algebras of type / can be
aligned.

LEMMA 4.3. Suppose A generates the n-homogeneous W*-algebra
R(A) with center Z, and suppose B generates the m-homogeneous W*-
algebra R(B) whose center is also Z. Suppose also that Da[w(A, A*)] =
Db[w(B, 5*)] for each w(x, y) e T7(max [2n\ 2m2]). Then m = n.
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Proof. We can regard R(A) and R{B) as matrix algebras over the
common center Z, and if X is taken to be the maximal ideal space of
Z, we obtain C*-isomorphisms of Z onto C(ϊ), R(A) onto Mn(%), and
R(B) onto Mm(3E). If A <-> A( ) and B *-* B{ ) under these isomorphisms,
then as usual Dα[w(A, A*)] and JD6[W(I?, B*)] correspond respectively to
the n x n matrix Diag (l/na[w(A(-), A*( ))]) and the mxm matrix
Diag(l/m0 [w(J3( ), J5*(•))]). It follows from the hypothesis and the
isomorphism between C(ϊ) and Z that m/iw[w(A(ί),A*(ί))] = <7[w(B(ί),S*(ί))]
for each ί e X and for each w(#, τ/)e I^(max [2w2, 2m2]). By Lemma 3.1
we can choose a point s e 3£ such that A(s) generates ΛfΛ, and thus find
n2 words w^x, y) e W(n2) such that the matrices Wi(A(s), A*(s)) are
linearly independent. Proceeding just as in the proof of Theorem 1,
one concludes that the n2 matrices wi(B{s)J B*(s)) are linearly independent,
and thus m ^ n. The result follows by symmetry.

We are now in a position to prove the central result of the paper.

THEOREM 5. Suppose A is an operator acting on the Hilbert space
£ίf and generating the finite W*-algebra R(A) of type /. Let Da( )
be the Dixmier trace defined on the algebra R(A), Then A is unitarily
equivalent to an operator B acting on the Hilbert space 5ΐ~ if and only

if
(1) B generates a W*-algebra R(B) which is finite of type /, and
(2) there is a unitary isomorphism φ of the Hilbert space Sίf

onto the Hilbert space 3ίΓ satisfying φDa[w(A, A*)]^"1 = Db[w(B, B*)]
for each w(x,y)e W, where A( ) is the Dixmier trace on the algebra
R(B).

Proof. If there is a unitary isomorphism φ of £%f onto 3f satis-
fying φAφ-1 = B, then φR(A)φ~ί = R(B), and φZ(A)φ~1 = Z(B), where
Z{A) and Z(B) are the centers of the respective algebras R(A) and
R(B). That <pDa[w(A, A*)]^-1 = Db[w(B, B*)] for each w(x, y)eW follows
easily from the uniqueness of the Dixmier trace (Theorem 3, page 267,
[3]). Going the other way, suppose B generates the finite Wr*-algebra
R(B) of type /, and suppose there is a unitary isomorphism φ of ,*%?
onto 3ίί such that φDa[w(A, A*)]^-1 = Db[w(B, 5*)] for w(x, y) e W.
Let Aj be the operator φAφ-1 acting on 3ίΓ, and suppose AΛ generates
the TF*-algebra R(Aλ) with center Z(Aλ) and Dixmier trace Dai(-). Then
another uniqueness argument shows that Db[w(B, B*)] = Daι[w(Au Af)]
for w(x, y) G W, and from Lemma 4.1 we obtain Z(B) = Z{Aλ). Write
R(Aλ) = Σi€/ Θ Ri and R(B) = Σiej Θ Tj where R{ and T{ are homo-
geneous ΐ-normal algebras, and / and J are subsets of the positive
integers. (It is convenient to regard the above direct sums as internal
in this situation, and we do so.) If Et is the unit of the algebra Ri9

then at least E% is a central projection in Z(B), and we show that Ei



A COMPLETE SET OF UNITARY INVARIANTS FOR OPERATORS 1415

is in fact the unit of T{ (thus proving / c / ) . Write E{ = Σ e j θ ^ ; ,
where each F3 is a central projection in T3 . If F3 is nonzero, then the
algebra FjR(B) = F3T3 is j-homogeneous, and since F3 ^ #<, FaR(A^ = 7 ^
is ΐ-homogeneous. It is easy to see that Lemma 4.3 is applicable to
the operators FjAι and FjB, and it results that j = ί and hence Ei =
i^. Thus JS7€ is dominated by the unit of the algebra Tif and from
symmetry considerations one can conclude that E{ is the unit of the
algebra T{ and that I = J. In other words, for i e I, the homogeneous
algebras Rt and T{ have the common center EiZ(B). If Theorem 3,
[2], is now applied for each iel, there results a unitary operator V
such that VRiAJV* = R(B) and V commutes with Z{Aλ). Consider
A, = VΛF* which clearly generates the PF*-algebra R(B). This fact
and another uniqueness argument yield Db[w(A2, Af)] = Db[w(B, B*)] for
w(x, y) e Wf and it follows from Theorem 4 that there is a unitary
operator YeR(B) satisfying YA.2Y* = B. Thus (YVφ)A(YVφ)'1 = B,
and the argument is complete.

As was the case in Lemma 4.2, if it is known that the operators
A and B of Theorem 5 each generate an ^-normal ΫΓ*-algebra, it is
possible to get by with assumptions on fewer traces.

THEOREM 6. If the W*-algebras R(A) and R(B) of Theorem 5 are
n-normal, and φDa[w(A, A*)]*?-1 = Db[w(B, B*)] for w(x, y) e W(2n2),
then A and B are unίtarίly equivalent.

The proof is similar to that of Theorem 5 and is omitted.

5 Remarks •
(1) It is of interest to ask how near the upper bound in2 obtained

in § 2 is to the least upper bound on the number of traces required to
form a complete set of unitary invariants for n x n matrices. In this
connection, it is well known that for n = 2 the collection {σ(A)9 tf(A2),
σ(AA*)} is a complete set of invariants, and also the author has shown
[9] that for n = 3, a collection of nine traces suffices. Thus it would
appear that the estimate 4*a is not very good, but it is thought that
to obtain any substantial improvement, a completely new approach will
be necessary.

(2) (Added in proof) I wish to acknowledge my indebtedness to
Don Deckard for pointing out a slight simplification in my original proof
of Theorem 1 which enabled me to reduce the number of traces needed
from 16*a to 4π'\

(3) Whether the sets of invariants provided by Theorem 5 and 6
are satisfactory is, of course, open to question. We present the following
facts in support of their reasonableness:

(a) Two normal operators are unitarily equivalent if and only
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if their associated spectral measures are, and thus a solution of
this simpler problem requires the simultaneous unitary equivalence
of the corresponding elements in two infinite families of commuting
projections.

(b) Brown [2] has given a complete set of unitary invariants
for homogeneous binormal operators which requires the simultaneous
unitary equivalence of four commuting normal functions of the opera-
tors. Furthermore, he shows by example that one cannot do away
with the simultaneity of this unitary equivalence.
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