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ASYMPTOTICS III: STATIONARY PHASE FOR TWO
PARAMETERS WITH AN APPLICATION TO

BESSEL FUNCTIONS

D. SATHER

1. Introduction. The method of stationary phase has long been
a valuable analytical tool for investigating the asymptotic behavior as
p—* co of integrals of the form

Up) = (βQ(ί) exp (ipF(t))dt.
JO

As a natural generalization of the method of stationary phase involv-
ing one parameter we will investigate the asymptotic behavior of an
integral of the form

I(h, k) = [ V"1? (ί) exp [i(htλf(t) + ktvg(t))]dt
Jo

where h and k tend to infinity independently.
It will be shown that under certain restrictions between the real

numbers λ, v and 7 that the asymptotic form of I(h, k) is determined
by the behavior of the ratio kh~vlλ as h,k-+co and by the character
of / and g in a neighborhood of t = 0. For example, if 7 < v < λ,
7 > 0, /(0) > 0, flr(O) > 0 and kh~vlλ — co then

As an immediate application of our results we will determine the
asymptotic behavior of the Bessel function Jv(x) in Watson's transition
region, i.e. when v, x and | v — x \ are large and v\x is nearly equal to
1. In particular, we will obtain a simple rigorous proof of Nicholson's
formulas under the restriction that 0 < lim sup x~lβ \ v — x | < co.

2 General assumptions* Throughout the paper we shall use A^B
to mean lim AjB = 1, and all limits will mean the limit as h and k
tend to infinity. A similar remark applies to order symbols.

We shall consider I{h, k) under the following general assumptions:

Received January 3, 1962. This paper was written at the University of Minnesota in part
under Contract Nonr 710(16), sponsored by the Office of Naval Research, and in part under
a National Science Foundation Fellowship. The author wishes to express his appreciation
to Professor W. Fulks for suggesting the problem and for giving valuable aid in its
solution.

1423



1424 D. SATHER

( i ) k = o(h),
(ii) λ > 0, v > 0, and 7 > 0,
(iii) g(0) Φ 0 and g(0) Φ 0,
(ίv) /, </ and q are real valued functions such that f e C2, g e C2

and q e C on [0, α],
(v) λ/(t) + t/'(ί) > 0 on [0, a].
For convenience we shall consider here only the case /(0) > 0. If

/(0) < 0 and — / satisfies certain obvious conditions one obtains analog-
ous results with — i and —g replacing i and g, respectively.

3 Preliminary lemmas. We shall first establish the following
lemmas.

S b

ω{t)Ψ{t) exp (ipΦ(t))dt. Suppose d is a
0

nonnegatίve constant and p, a and μ are functions of h and ft such
that p—•» oo, μ—*0 and a is bounded as h, ft—* co.

( i ) Φ(t) = trφ(at), Ψ(t) = t^ψiμit + d)), the functions Φ and ψ
are real with ψ(0) Φ 0, r > 0, 0 < s < r, ^(αί) > 0 for 0 ^ t ^ c',
c' > 0 α^cί ^ G Cw+2 α^cί ψ e Cn for 0 ^ t ^ c' where m and n are the
least integers such that mr > 1 and n ^ m(r — s) + 1, respectively.

(ii) b is a constant such that 0 < b < cf and bMK/mor < 1 where
M — maximumo^^cf | φ\t) |, m0 = minimumo^^c/ ^(ί) and K ^ a when h, ft
are sufficiently large.

(iii) ω = u + iv is a complex valued function such that u(0) =1,
v(0) = 0 and u,v e Cn for 0 ̂ t ^ &. Then

iπs

r[pφ(O)]8lr

Proof. We may set v = 0 since it will be seen that the contribu-
tion from v to I(p) is negligible because v(0) — 0. Let x = t[φ(oct)]llr.
Since x'(t) > 0 for 0 ^ t ^ b and x e Cn+2 there exists a unique inverse
function, say t(x), such that t e Cn+2 for O ^ n ; ^ b[Φ(ab)]ιlr — α, ί(0) = 0
and i'(0) = αx — [^(0)]~1/r. Hence we may write t(x) = α ^ + α2#

2 + +
an-1x

n~1 + A(x)x% where A e C2 and αz is bounded as h, ft —> oo for
2 ^ Z ̂  n — 1. We may assume that c' is sufficiently small such that
if t(x) = α^( l + w{x)) then | ^(x) | < 1 for 0 ̂  x ^ α. This implies that

(tix))*-1 = αΓ^l + M + + δw-2#%-"2 + ̂ (x)^"1)^8-1

where z e C and δz is independent of x for 1 ̂  Z ̂  n — 2. If we now
expand ψ and ω about ί = 0 and substitute t(x), and let B(x) =ω(t(x))

+ d)) we have

B(x) ^M- = a Mμtyx-1 + cox
s + + cn^xs+n~* + D(x)xn+

dx
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where h and k are sufficiently large such that μd < b, D e C and ct is
bounded as h,Jc—*co and independent of x for 0 g I ^ w — 3. There-
fore,

S α w-3 Ca

Xs'1 exp (ίpOcte + J(p) + Σ M χS+ι e χ P (i£Wr)d#
0 1=0 JO

where J(p) = \" D(x)xn+s-2exp(ίpxr)dx. Since ( V t ^ 1 ^ exp (MΓ/3/2)Γ(/3)
Jo Jo

f or 0 < β < 1 and r ^n + s — 1 < r + 1 when r > 1 we have

f ( μ ) exp
/(p) =

exp (^)(7)

; 2 r / V r 7 + W +

Finally an integration by parts yields J(p) = 0(11p) since w—(r+1—s)^0
by the choice of n and D e C. This completes the proof of Lemma I
for the case r > 1. For 0 < r g 1 one makes the change of variable
t = xm and the desired result follows from the case r > 1.

LEMMA II. Suppose that in addition to the assumptions of Lemma
I that r is an even integer, s = 1, φ(at) > 0 for —c'^t^c', b satis-
fies the same conditions as in Lemma I except that M and m0 are now
determined for —cr tί t ^ c\ and ω, ψ and Φ are now in their respec-
tive differentiability classes given in Lemma I for —cτ^t^cf. Then

P 2f (0)Γ
ω(t)Ψ(t) exp (ipΦ(t))dt

J-&
r[pφ(θ)]1/r

The proof follows immediately from Lemma I.

We will introduce the following functions which will be used through-
out the remainder of the paper:

F(t) = tλf(t), G(t) - Pg(t) and Q(t) = P-Xq(t).

LEMMA III. Under the general assumptions on F, G and Q we
have for each arbitrarily small but fixed positive constant c < a that

L{h, k) - \aQ(t) exp [i(hF(t) + kG(t))]dt - O(l/Λ) .

Proof. Let H(t) = F(t) + (fc/fc)G(ί). Then H'(t) > 0 for c ^ ί g a
and /̂ , fc sufficiently large since λ/(£) + tfr{t) > 0 by hypothesis and
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k = o(h). Hence an integration by parts implies L(h, k) = 0(l/h).
This completes the necessary lemmas and the main results of the

paper will now be presented.

4* The asymptotic evaluation of I{h, fc) We shall first consider
the case where kh~vlλ —> 0 so that I(h, k) is almost completely determined
by the character of hf at the origin.

THEOREM I. Suppose that
1. / G Cn+2 and q e Cn for 0 ^ t ^ c, c > 0, where m and n are

the least integers such that mλ > 1 and n ^ m(λ — 7) 4-1, respectively,
2. if O^t^c then tvg(βt) = 60 + 6^ + + δΛ_2£

n-2 + B{t)tn~ι where
B e C and bt is bounded as β —* 0 for 0 ^ I ^ w — 2,

3. &λ = o(fev) α^d 7 < λ. Then

7 i
q(0)r(

k)

Proof of Theorem I. For c as given we have

I(h,k) = ( ' + [ " = Γ(h, k) + 0(1//*)
JO Jc

by Lemma III. Let t = a;fc-1/v, f(x)^f(xk'lh')f g(x) - g(xk'll")f Q(x) =
Q(xk~llv) and ί) = fefc~λ/v. For any 6 such that 0 < b < c we have

[Q(x) exp (ig(x)a;v)] exp (ipf(x)xλ)dx

= I"(fc, k) + J(fe, fe), respectively.

6

Set μ = fc~1/v, ψ — q, Φ .= /, λ = r, 7 = s, ω(#) — exp (i^g^)) and note
that /(0) > 0 implies that f(x) > 0 for 0 ^ a? ̂  c', c' > 0, so that 6 may
be chosen to satisfy the requirements of Lemma I. Hence by Lemma I

τn(h ,Λ . g(0)Γ(7/λ)

Therefore to complete the proof of Theorem I it is sufficient to
show that hy'λJ(h, k) - o(l). Let d = bk~liv, H{t) = F(ί) - + (k/h)G(t)
and P(t)=Xf(t) + tf'(t) + kp-λlh[vg(t) + g'(t)t]. Note that P(d)-> λ/(0) =
2B > 0 as h,k—> co since &λ = 0(fev) and P(t) is continuous for
0 < d ^ ί ^ a. We may assume that c is such that for h, k sufficient-
ly large, P(t) Ξ> B for the entire closed interval d g t g c. This im-
plies fl"f(ί) ^ J5ίλ-1 > 0 f o r 0 < c Z g ί ^ c and hence we can integrate
J(h, k) by parts as follows;
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J(h, k) = \CQ(t) exp (ihH(t))dt = <*°> ̂ (fH(c)) _ Q(d)
U %hH (c)'(c) ihH'(d)

JL_ fc Q'(ί) exp (ihH(t))dt 1 fc Q(t)H"(t) exp (ίhH(t))dt
ih U H'{t) ih it

+ 4̂. + J'(h, k), respectively.

Using the estimates H'(t) ^ Bt^1 and | H"{t) | ^ Ktλ~2 for some K we
see immediately that J = 0(fc(λ-γ)v/fc). Since fcλ = o(hv) this implies
hylλj(h, k) = o(l) which completes the proof of Theorem I.

We state the following corollary to Theorem I which may apply
when tvg{βt) does not have the required smoothness at the origin but
/, g and q are highly differentiate on [0, c], c > 0.

Corollary. Suppose that v + 7 > λ and
1. / e Cw+2, # e Cw and q e Cw for 0 g £ g c, c > 0 where m and w are the

least integers such that m(v+y—λ)^2, m λ > l and %^m(λ—
2. kλ = o{hv) and 7 < λ. Then

Proo/. Note that mv ^ m(λ — 7) + 2 > w by the definition of n
and hence xmv e Cw. The change of variable ί = xm and the use of
Theorem I completes the proof.

We shall next consider the case where the behavior of kg at the
origin becomes a significant factor in the asymptotic evaluation of
J(Λ, k).

THEOREM II. Suppose that
1. q e Cn and g e Cn+2 for 0 S t ^ c, c > 0, wAere m and w are ίfce

least integers such that mv > 1 and n i> m(v — 7) + 1, respectively,
2. if 0 ^t ^c then tλf(βt) =b0 + bxt + . . . + bn^tn'2 +

BeC and bt is bounded as β —> 0 for 0^1 ^n — 2,
3. 0(0) > 0, ftv = o(fcλ) and 7 < v < λ.

7

—jexp

Proof of Theorem II. The proof of Theorem II follows from the
proof of Theorem I with the roles of / and g, λ and v, h and k inter-
charged.
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COROLLARY. Suppose that
1. feCn,qe Cn and g e Cn+2 for 0 ^ t ^ c, c > 0, where m and n are the

least integers such that m(λ + 7 — v) ^ 2, mv > 1 and n ^ m(v— 7) + l,
2. #(0) > 0, hv = o(fcλ) emc? 7 < v < λ.

J(Λ, fc)

When fcfe"v/λ —> co and #(0) < 0 the character of both F and G in
a neighborhood of £ = 0 becomes important since for h and k suffici-
ently large they determine uniquely in some (0, c0) a number τ such
that hFf(τ) + kGf(τ) — 0 and in terms of which the asymptotic form
of I(h, k) may be expressed.

THEOREM III. Suppose that g(0) < 0, v < λ, 7 < λ, hv = o(fcλ), / e Cc,
g eC6 and q e C2 for 0 ^ ί ^ c, c > 0, αwd hypothesis 1 αnc? 2 Theorem
II are satisfied when v Ξ> 7.
A. 7/ v < 27

• ^7Γ -

Ίl/2(λ—V)

7(Λ,fc) (λ - y)1 / 2

x exp [i(hF(τ) + ΛG (τ))] .

B. If v = 27 ί/̂ βw

J(fe, fc) ̂  9 ( 0 ) Γ V 2 ^ Θ X P W i { V^exp [i(fcF(τ) + fcG(r))1 _ f a_1 / 1l ^
( —vfcgf(0))1 / 2 I (λ — v)1'2 J

C. 7/ v > 27

I(h, k) ^

Proof of Theorem III. We may assume that c is such that G'{t) < 0
and f(t) > 0 for 0 < t ^ c. For 0 < t ^ c let D(ί) - F'(t)l-G'(t) with
7>(0) = 0. Then D'(ί) - ίλ+v-V(G'(ί))2[vλ/(ί)ί/(ί)(v-λ) + ^ ( ί ) ] for 0 < t ^ c
where E is continuous on [0, c]. Hence there exists cQ such that
0 < Co < c, D'{t) > 0 for 0 < t ^ c0, 7)(c0) > 0 and for h and k suffici-
ently large kjh < D(c0). This implies that there exists a unique
re (0, c0) such that 7)(τ) = fc/Λ which is equivalent to hF'(τ) + A:Gr(r) = 0.
Moreover from the definition of D we have

_ / —vkg(0)^llλ-*
λA/(0) ,
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which implies that τ λ " v — o{kjh) = o(l).
If we now let H(t) = F(t) + {kjh)G{t) and expand h(H(t) - H(τ))

about t = T we have using1 the integral form of the remainder

h(H(t) - H(τ)) = λj' (ί - y)F"{y)dy + fcj'(ί - y)G"{y)dy

= hR(t, τ) + fcS(ί, τ), respectively.

We may further assume that c0 is so small that /, / ', / " , g, gf and g"
are of constant sign for 0 g t ^ c0. If we apply the mean value theo-
rem for integrals and substitute t = τ(# + 1) we have for — 1 < x < 1
that

T(x, τ) = R(φ + 1), r) = 1 ^ [λ(λ - l)/(r0(»))αo(»)

where α0, «„ α2 6 C°°, aoφ) = «2(0) = a^O) = 1, P, e C4 and P1(0)=λ(λ-1)
/(0)+o(l). Similarly

W(αf T) = S(φ + 1), T) = |rVP2(a;)

where P2 e C4 and P2(0) = y(υ - 1)0(0) + o(l). Let d0 = (co/r) - 1, J'(A, k) =
exp(—ίhH(τ))I(h, k) and choose δ such that τ(6 + l)<c 0 and 0 < δ < 1.

I'(h, k) = J°° + θ(i-) = J"(Λ, fc) + θ ( l ) .

/"(Λ, fc) = r j ~ * + τ j % τj^Q(φ + 1)) exp [i(ΛΓ(aj, r) + kW(x, τ))]dx

= L(h, k) + Γ"(h, k) + J(h, k), respectively.

Let

f = q, ω(x) = (1 + xy-1 and Φ(x) = P^

Then 0(0) = λ(λ - v)/(0) + o(l) implies for h, k sufficiently large
that φ{x) > 0 for — c' ^ x ^ c',c' > 0. Hence b may be chosen small
enough that the conditions on b in Lemma II are satisfied. Therefore

V ' ' (λ -

The contribution of L(h, k) to I(h, k) may be determined by con-
sidering

L\h, k) = [{1~b)Q(t) exp (ihH(t))dt .
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We note that the uniqueness of τ in [ε, c0], ε > 0, implies that Hf{t) Φ 0
on ε ̂  ί ̂  τ(l - 6) for every ε > 0. In fact, there exists a number
K > 0 which is independent of ε and for which we have | H'(t) | ̂  K{klh)V"-λ

for ε ̂  t ̂  τ(l - 6).

( i ) For v < 7 the usual integration by parts together with the
above inequality for H'(t) yields that L'(h, k) =o(l/&). Hence L'(fe, fc) -
o(fev-2Vfcλ-2γ)1/2(λ~v) since &v = o(/bλ).

(ii) For v > 7 we rewrite Z/(fe, fc) as

L'(Λ, fc) = [a~b)Q(t) exp { - i[kt\-g{t)) + ht\- f(t))]}dt
Jo

and apply Theorem II with — g playing the role of / . Hence

7 Ϊ
g(0)r(

L'ih, k)
v[-kg(fl)γlv

(iii) Finally for v = 7 a closer examination of the proof of Lemma
I together with the change of variable t = xh~llκ implies for p' —
that L'(h, k) = /t^'λ0(l/ί?') = 0(l/fc).

The given relation fev = o(fcλ) and the calculation

Z,V-2γ \ l/2(λ-v) \ / / I, \v-2γ/2(λ-v)

fcλ/v

then imply that I'"(h, k) = o(k-ylv) if ̂ >27 and L'(h, k) = o((h"-2y/kλ-2ψ2{λ-v))
if 7 ̂  v < 27. When v = 27 we note that both L'(h, k) and Γ"(fc, fe)
are of the same order so that both terms contribute to I(h, k).

To complete the proof of Theorem III we need only show tha^
J(h, k) is negligible compared to I"'(h, k). For P(t) defined as in the
proof of Theorem I and d = τ(b + 1) we have

P(d) = λ/(0)[l - (b + iy~λ](l + o(l)) .

Then P(d) > 0 for h and k sufficiently large and hence proceeding
exactly as in the proof of Theorem I we obtain H\t) ^ Bt^1 > 0 for
0 < d ̂  t g c0 and 2B = λ/(0)[l - (1 + 6)v~λ]. We now write

J(h, k) = f C°Q(t) exp (ihH(t))dt
Jd

and integrate by parts as in Theorem I to obtain J(h, k) = 0((hv-ylkλ-ψλ-v).
Hence hv — o(kλ) implies that

l/2(λ-V) / / ZjV \l/2(λ-V)
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To obtain the value of exp [ί(hF(τ) + kG(τ))] in a more explicit form
we need to know more about the exact relation between h and k.
For example we shall state the following corollary under more stringent
assumptions.

COROLLARY. // in addition to the above assumptions in Theorem
III we have kλ+1 = o(hv+1) then

Proof of the Corollary to Theorem III. We will use the same
notation as in the proof of Theorem III. If we expand hH{τ) about
the origin and substitute for τ we have

exp( (ihH{τ)) = exp \i\hf(0)
I L \hf(0)

Hence if fcλfl = o(hv+1) the Corollary is established.
Finally, we shall consider the case where lim sup fcfc"~v/λ is bounded

away from both 0 and oo.

THEOREM IV. Suppose that 7 < λ, v < λ and 0 < lim sup p < 00
where p == kh~vlλ. Then

, k) ^ ?(0)Λ"^/λ( V - 1 exp [i(f(0)xλ + pg(0)xv)]dx
Jo

+ g(0)χv)]dx .
h \γ/λ—v r 0

-T-)
ft/ Jo
T
ft

Proof of Theorem IV. We will consider only values of c > 0 such
that (i) vg{t) + tg'(t) is of constant sign for 0 ^ t ^ c and (ii) for each
ε > 0 we have | q(t) - q(Q) \ < ε, \f(t) - /(0) | < ε and | g(t) - flf(O) | < ε

for 0 g ί ^ c. Set fί(ί) = F(ί) + (fc/λ) G(ί) and Γ(h, k) = ("as usual.
JO

Let m = minimumo^ί^αλ/(ί) + tf'(t) > 0, ω = lim sup 2> and M" =maxi-
mumo,(,β (1, \fu) I, I ? I, I ?f IJ 0{ι) 11 *>ff(*) + ^ ' ( 0 I) for ί = 0,1, 2. Consider
a number 6 > 1 chosen such that b>N = (4Mώ/m)1/u~v). If d = bh~llλ<c
then for 0 < ίί ^ ί ^ c we have for ^(0) < o

H'(t) > t^ (m -J°M) > ί^ (m mk
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since 2ω>kh~vlλ for h and k sufficiently large. Hence H'(t) ^ (l/2)mίλ"1 >0
for 0 < d ^ t ^ c. Let ί - xh~llλ, q(x) = q(xh~llλ), f(x) = f{xh~lίλ) and
g(x) = g(xh~llλ). Then

hylλΓ(h, k) = I α?- 1 ^) exp [i(/(ίφ λ

Jo
+ = i"(h, k) + J{h, k), respectively.

o h

We will first estimate J{h, k) in terms of the number b. Since
H\t) ^ (l/2)mέλ~1 > 0 for 0 < d ^ t ^ c we may integrate J(λ, fc) by
parts as follows:

J(h k) = /^/λ / Q(c) e χ P (ihHjc)) _ Q(d) exp (ihHjd))

, 1 fc Q(t)F"{t) exp (ihH(t))dt
ih )dih id H\t) ih )d [H'(t)

,, -fe fc Q(t)G"(t) exp (ihH(t))dt 1

λ/λ) + A + J'(λ, fc) + J"(h, k) + J"'(fc, k), respectively.

Hence | A \ ̂  2M/m6λ-y = j56γλ,

d m ( λ — 7)

A/If2

I J"(h, k) I < ——— = B"V-χ , and

'"ih, k) I <
m\2X - 7 - y)6 2 λ -^ v ~ m%2X - Ί - v)b

Define

h^I0(h, k) = ( V - W ) exp [i(f(0)xκ + pg(0)xv)]dx = Γ
Jo Jo

Then there exists a number K which is independent of h, k and ε and
for which | J(h, k)\ ^ Kb^x and |R(b) | ^ ϋΓ6^λ . Consider

- q(x)) exp [i(f(x)xλ + pg(x)x")]dx

( -'U - P(a )) exp [ΐ(
Jo

+ Rφ) + 0(^-λ/λ) - J(Λ, k)

= L(h, k) + L'(Λf Λ) + J2(6) + 0(/ιγ-λ/λ) - J(Λ, Jfc),
respectively,

where P(x) = exp {i[/(*) - /(0))a;λ + p(g(x) - g(0))x*]}. By the choice
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of c for each ε > 0 we have | L(h, k) | ^ Mebλ+\ \L'(h, k) \ < 2Mεbλ+y+
2Meωbv^y. If we take lim sup of both sides of (*) as h, k—> co we
obtain

0 ^ lim sup hylλ \ Io - I\ ^

which is true f or ε > 0 and b > N. Since lim sup hylλ \I0 — I\ is inde-
pendent of both ε and 6 we first let ε —> 0 and then b —-> co. Hence
hylλ(I0 - I) = o(l) which implies that I(h, k) ^ I0{h, k). To obtain the
alternate form of J0(Λ, k) we let x = h"k(kjk)llik-v)t.

5 Discussion of the suggested application* Consider for x > 0
Schlafli's generalization of BesseΓs integral:

os(vέ - x sin t)dt - s m V 7 Γ t°°exp [- vt - a;
JΓ Jo

= — J2 Γexp [i(vί - x sin ί)]dί + 0 (—
π Jυ \ v

Let F(ί) = ί - sin t and |G(ί) | = ί. We rewrite F(έ) as F(t) - (l/6)ί8

cos (r(t)) and let fe = x, k = \ v - α? |, g(ί) = 1 and /(£) = 1\6 cos (r(t)). It
follows that the condition 3/(ί) + ί/'(ί) > 0 for 0 ^ ί ^ TΓ is satisfied
since F\t) = 1 - cos ί > 0 for 0 < t ^ TΓ.

We note that our Theorem 1 and III yield the dominant terms of
some well known complete asymptotic expansions for Jv(x) with τ — Arc-
cos vjx in Theorem III1. For the case 0 < lim sup x~1131 v — x \ < co we
have by Theorem IV with p — x~irό \ (v — x)x~lβ \ that

Γ C O S (—
Jo \ 6

where the expression on the right is one of Airy's integrals2, whose
evaluation for p > 0 and p < 0 yields precisely Nicholson's formulas
when v is an integer3.

1 See W. Magnus and F. Oberhettinger, " Formeln und Satze fur die Speziellen Funk-
tionen der Mathematischen Physik," Springer-Verlag, Berlin, 1948, pp. 33-34. Our theorems
ϊ and III give results which are equivalent to the dominant terms of the expansions (63)
and (61), respectively.

2 See, for example, G. N. Watson, " Theory of Bessel Functions," Cambridge, 1944,
pp. 188-190.

3 See G. N. Watson, op. cit., pp. 248-249.
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