Pacific Journal of Mathematics

HYPONORMAL OPERATORS

JOSEPH GAIL STAMPFLI

Vol. 12, No. 4

April 1962

HYPONORMAL OPERATORS

JOSEPH G. STAMPFLI

We say a bounded linear transformation T on a Hilbert space H is hyponormal if $||Tx|| \ge ||T^*x||$ for all $x \in H$ or equivalently if $T^*T - TT^* \ge 0$. The notion of hyponormality was introduced in [6], through under another name. In [8], Putnam studied properties of the operator $J_{\theta} = e^{i\theta}T + e^{-i\theta}T^*$, where T is hyponormal. Lemmas 1 through 6 which appear below occur as exercises in [1], and will be quoted without proof. Henceforth the term operator will mean bounded linear transformation.

LEMMA 1. Let T be a hyponormal operator on the Hilbert space H, then $||(T - zI)x|| \ge ||(T^* - \overline{z}I)x||$ for $x \in H$, i.e. T - zI is hyponormal.

LEMMA 2. Let T be hyponormal on H; then Tx = zx implies $T^*x = \overline{z}x$.

LEMMA 3. Let T be hyponormal on H with $Tx_1 = z_1x_1$, $Tx_2 = z_2x_2$ and $z_1 \neq z_2$. Then $(x_1, x_2) = 0$.

LEMMA 4. If T is hyponormal on H and $M \subset H$ is invariant under T; then $T|_M$ is hyponormal.

LEMMA 5. Let T be hyponormal on H, with $M \subset H$ invariant under T and let $T|_{\mathfrak{M}}$ be normal. Then M reduces T.

LEMMA 6. Let T be hyponormal on H and Let $M = \{x \in H : Tx = zx\}$. Then M reduces T and $T|_M$ is normal.

THEOREM 1. Let T be hyponormal on H, then $||T|| = R_{sp}(T)$ (the spectral radius of T).

Proof. For $x \in H$, ||x|| = 1 we have

$$||Tx||^2 = (Tx, Tx) = (T^*Tx, x) \leq ||T^*Tx|| \leq ||T^2x||.$$

But then $||T||^2 \le ||T^2|| \le ||T||^2$ which implies $||T||^2 = ||T^2||$.

Now

$$egin{aligned} &\|T^nx\|^2 = (T^nx,\ T^nx) = (T^*T^nx,\ T^{n-1}x)\ &\leq \|T^*T^nx\|\cdot\|T^{n-1}x\| \leq \|T^{n-1}x\|\cdot\|T^{n-1}x\| \,. \end{aligned}$$

Received February 15, 1962.

Thus $||T^n||^2 \leq ||T^{n-1}|| \cdot ||T^{n-1}||$, and combining this with the equality above, a simple induction argument yields $||T^n|| = ||T||^n$ for $n = 1, 2, \cdots$. Since $R_{sp}(T) = \lim_{n \to \infty} ||T^n||^{1/n} = \lim_{n \to \infty} ||T||$ the proof is finished.

COROLLARY. The only quasi-nilpotent hyponormal operator is the transformation which is identically zero.

THEOREM 2. Let T be hyponormal on the Hilbert space H and let z_0 be an isolated point in the spectrum of T. Then $z_0 \varepsilon \sigma_p(T)$, the point spectrum of T.

Proof. By Lemma 1 we may assume $z_0 = 0$. Choose R > 0 sufficiently small that 0 is the only point of $\sigma(T)$ contained in or on the circle |z| = R. Define

$$E=\int_{|z|=R}(T-zI)^{-1}dz.$$

Then E is a nonzero projection which commutes with T (see [9]; projection as used here does not necessarily mean self-adjoint).

Thus EH is invariant under T and $T|_{EH}$ is hyponormal. Also

$$\sigma(T|_{\scriptscriptstyle EH}) = \sigma(T) \cap \{|z| < R\}$$

by, [9] p. 421, so $\sigma(T|_{EH}) = \{0\}$.

From the last corollary we may conclude that $T|_{EH}$ is the zero transformation. In fact, it is now clear that $EH = \{x \in H: Tx = 0\}$ which implies EH actually reduces T.

THEOREM 3. If T is hyponormal on H with a single limit point in its spectrum, then T is normal.

Proof. We may assume by Lemma 1 that the limit point is 0. By Theorem 1 there exists $z_1 \varepsilon \sigma(T)$ such that $|z_1| = ||T||$.

Let $M_1 = \{x \in H: Tx = z_1 x\}; M_1$ is not empty by theorem 2 and since M_1 reduces T, we conclude from theorem 2 that $T|_{M^{1\perp}}$ does not have z_1 in its spectrum. We note also by Lemma 6 that $T|_{M_1}$ is normal. We continue in this way, selecting points in $\sigma(T)$ ordered by absolute value, setting $M_i = \{x \in H: Tx = z_i x\}$.

Then $M_1 \bigoplus \cdots \bigoplus M_n$ reduces T and $T|_{|\mathfrak{M}_1 \oplus \cdots \oplus \mathfrak{M}_n}$ is normal. We observe that $T|_{|\mathfrak{M}_1 \oplus \cdots \oplus \mathfrak{M}_n|\perp}$ is hyponormal with its spectral radius equal to its norm. Thus, since 0 is the only limit point of $\sigma(T)$, the normal operators $T|_{\mathfrak{M}_1 \oplus \cdots \oplus \mathfrak{M}_n}$ must converge to T in the uniform operator topology. Hence, T is normal.

COROLLARY 1. If T is a hyponormal, completely continuous opera-

tor, then T is normal.

COROLLARY 2. If T is hyponormal on H with only a finite number of limit points in its spectrum; then T is normal.

Proof. Let z_1 be a limit point of $\sigma(T)$ and choose a smooth simple closed curve G which does not intersect $\sigma(T)$ and contains only the limit point z_1 in its interior. Now define

$$E_{\scriptscriptstyle 1} = \int_{\scriptscriptstyle G} (T-zI)^{\scriptscriptstyle -1} dz.$$

Then T is invariant on E_1H and

$$\sigma(T) \cap [\text{Interior } G] = \sigma(T|_{E_1H})$$

so $\sigma(T|_{E_{1H}})$ can have only one limit point.

We now apply theorem 3 to $T | E_1H$ to conclude that it is normal. Then by Lemma 5, T is reduced by E_1H . We may thus turn our attention to T on $(E_1H)_{\perp}$ and continue this process until the limit points are exhausted.

Theorem 1 and the first corollary to Theorem 3 have been proved independently by both T. Ando and S. Berberian, and will soon appear.

The subsequent theorem generalizes the well-known result which equates similarity equivalence of normal operators with unitary equivalence. However, there is a strong restriction on the spectrum of the operator.

THEOREM 4. If T is a hyponormal scalar operator and $\sigma(T)$ has zero area, then T is normal.

Proof. Since T is scalar, (see [2]), $T = QAQ^{-1}$ where Q is positive self-adjoint and A is normal. Let $A = \int z dE(z)$. For $\varepsilon > 0$, there exists a set of half-open, half-closed disjoint squares $\{R_i\}_{i=1}^k$ with each R_i of dimension $1/n \times 1/n$ such that $k/n^2 = \text{area} (U_{i=1}^k R_i) < \varepsilon$ where

 $\sigma(T) \subset (U_{i=1}^k R_i)$. Now for $x_i \in E(R_i)H$; z_i the center of R_i

we have

$$||(A - z_i I)x_i|| \leq \left[\int_{R_i} |z - z_i|^2 d || E(z)x_i||^2\right]^{1/2} \leq \frac{1}{n}$$
.

Thus

$$\begin{aligned} \|(A - z_i I)Q^2 x_i\| &= \|A^* - \bar{z}_i I)Q^2 x_i\| = \|Q(T^* - \bar{z}_i I)Q x_i\| \\ &\leq \|(T^* - \bar{z}_i I)Q x_i\| \cdot \|Q\| \leq \|(T - z_i I)Q x_i\| \cdot \|Q\| \end{aligned}$$

$$egin{aligned} &= ||\, Q(A-z_iI)x_i\,||\cdot||\,Q\,|| \leq ||\,Q\,||^2 \cdot rac{1}{n} & ext{and} \ & ||\, Q^2(A-z_iI)x_i\,|| \leq ||\,Q\,||^2 \cdot rac{1}{n} \ . \end{aligned}$$

Combining these we have

$$||(AQ^2-Q^2A)x_i||\leq 2\,||\,Q\,||^2\cdotrac{1}{n}\,\,\, ext{for}\,\,\,x_iarepsilon E(R_i)H.$$

Now $E(R_i)H$ is orthogonal to $E(R_j)H$ for $i \neq j$ so for $y \in H$, ||y|| = 1 we have

$$y = \sum_{i=1}^k a_i x_i$$
 where $\sum_{i=1}^k |a_i|^2 = 1$.

Thus

$$egin{aligned} ||\,(AQ^2-Q^2A)y\,|| &= ||\sum_{i=1}^k a_i(AQ^2-Q^2A)x_i\,|| \ &\leq \sum_{i=1}^k |\,a_i\,|\,\,||\,(AQ^2-Q^2A)x_i\,|| \ &\leq \left\{\sum_{i=1}^k |\,a_i\,|^2\,\sum_{i=1}^k \left(2\,||\,Q\,||^2\cdotrac{1}{n}
ight)^2
ight\}^{1/2} &= 2\,||\,Q\,||^2\!\cdot\!k^{1/2}/n \ &\leq 2\,||\,Q\,||^2arepsilon^{1/2} \end{aligned}$$

implying that $AQ^2 = Q^2A$.

Noting that Q is positive we may conclude from the spectral theorem that AQ = QA and thus T = A which completes the proof.

The author has been unable to decide whether the condition on the area of the spectrum in the last theorem may be omitted. He would conjecture that it cannot. There is a generalization of the theorem quoted above which states that if A and B are normal operators, Q an arbitrary operator such that AQ = QB; then $A^*Q = QB^*$. This statement does not hold if A is normal and B semi-normal. To see this, let H be a Hilbert space with the basis $\{\phi_i\}_{i=-\infty}^{\infty}$ and define $A\phi_i =$ ϕ_{i+1} , all i; $B\phi_i = \phi_{i+1}$, $i \ge 0$ $B\phi_i = 0$, i < 0; and Q = B. Then it is clear that AQ = QB but $A^*Q\phi_0 = \phi_0 \neq QB^*\phi_0 = 0$.

Before going on to the next theorem we must recall some results from the literature. Let B be a normal operator of finite spectral multiplicity n, and let T be an operator commuting with B. Then there is a finite measure $v(\cdot)$ defined on Borel sets of the complex plane and vanishing outside of $\sigma(B)$ and n Borel sets e_1, \dots, e_n with e_1 the plane and $e_i \subset e_{i+1}$, such that if we define $v_i(e) = v(e \cap e_i)$ for such Borel set e; set $\hat{H} = \sum_{i=1}^{n} L_2(v_i)$ and define

$$\widehat{B}f(s) = \widehat{B}(f_1(s), \cdots, f_n(s)) = (sf_1(s), \cdots, sf_n(s)) = sf(s)$$

for $f(a)\in H$; then B and \hat{B} are unitarily equivalent. Also there exist measurable functions $a_{ij}(s)i, j = 1, \dots, n$ such that if we define

$$Tf(a) = \begin{vmatrix} a_{1,1}(s) \cdots a_{1,n}(s) \\ \vdots \\ a_{n,1}(s) \cdots a_{n,n}(s) \end{vmatrix} \begin{vmatrix} f_1(s) \\ \vdots \\ f_n(s) \end{vmatrix}$$

for $f(s) \in \hat{H}$; then T and T are unitarily equivalent. The foregoing may be found in [3] Chapter X theorem 5.10, in [4], [7] and in its earliest form is due to von Neumann.

Using results of Gonshor (see [5] Theorem 3 and remarks in section 6) we may define \hat{H} in such a way that

$$T = egin{bmatrix} a_{11}(s) & a_{12}(s) \cdots a_{1n}(s) \ 0 & a_{22}(s) \cdots a_{2n}(s) \ dots & 0 & dots \ 0 & 0 & dots \ 0 & a_{nn}(s) \end{bmatrix}$$

or roughly speaking \hat{T} has super diagonal form. In what follows we will identify \hat{T} with T and \hat{B} with B.

THEOREM 5. Let T be a hyponormal operator with $T^n = B$ where n is a positive integer and B is a normal operator; then T is normal.

Proof. For $x_0 \in H$, let $M = clm[B^i B^{*j} T^k x_0]$ (the closed linear manifold spanned by the iterates) for $k = 0, 1, \dots, n-1$; $i, j = 0, 1, 2, \dots$

Then *M* reduces *B* and *B* has spectral multiplicity *n* on *M* (we will assume $x_0, Tx_0, \dots, T^{n-1}x_0$ are linearly independent). Also *M* is invariant under *T* since $TB^iB^{*j}T^kx_0 = B^iB^{*j}T^{k+1}x_0$ and invariance holds under closure. The Fuglede theorem is used in obtaining the last equality.

Let us now consider $T|_{\mathcal{M}}$ which we may write as

$$\begin{array}{c|c}a_{11}(s)\cdots a_{1n}(s)\\0\\\cdot\\\cdot\\a_{nn}(s)\end{array}$$

Then for the vector $f_1 = (x_{\sigma(B)}, 0, \dots, 0)$, where $x_{\sigma(B)}$ is the characteristic function of $\sigma(B)$,

we have

$$|| \; T | \;_{\scriptscriptstyle M} f_{\scriptscriptstyle 1} \, ||^{\scriptscriptstyle 2} = \!\!\! \int_{\sigma_{(B)}} | \, a_{\scriptscriptstyle 11}(s) \, |^{\scriptscriptstyle 2} dv_{\scriptscriptstyle 1}(s)$$

and

$$||(T|_{M})^{*}f_{1}||^{2} = \sum_{j=1}^{n} \int_{\sigma(B)} |a_{1j}(s)|^{2} dv_{j}(s)$$
.

But $||T|_{\mathfrak{M}} f_1|| \ge ||(T|_{\mathfrak{M}})^* f_1||$ since the restriction of a hyponormal operator to an invariant subspace is hyponormal. Thus $a_{1j}(s) = 0$ a.e. (v_j) for $j = 2, 3, \dots, n$. Continuing this argument, we find that $a_{ij}(s) = 0$ a.e. (v_j) for $i \ne j$. We conclude from this that $T|_{\mathfrak{M}}$ is normal, or $||T|_{\mathfrak{M}} y|| = ||(T|_{\mathfrak{M}})^* y||$ for $y \in \mathcal{M}$. Therefore,

$$||Tx_0|| = ||T|_{\mathfrak{M}}x_0|| = ||(T|_{\mathfrak{M}})^*x_0|| \le ||T^*x_0||.$$

But this with hyponormality implies that $||Tx_0|| = ||T^*x_0||$. Since x_0 is arbitrary T must be normal.

COROLLARY. If T is hyponormal and commutes with a normal operator having finite spectral multiplicity; then T is normal.

EXAMPLE. Let $\{\varphi_i\}i = -\infty$ be a basis for the Hilbert space Hand define $T\varphi_i = a_i\varphi_{i+1}$. Then if $|a_i| \leq |a_{i+1}|$, all i, T is hyponormal. T will be normal if and only if $|a_i| = |a_{i+1}|$ for all i. If $|a_k| = |a_{k+1}|$ for some fixed k and $|a_j| \neq |a_k|$ for some j > k then T will not be subnormal. Another example of hyponormal operator which is not subnormal is given in [6].

Reference

1. S.K. Berberian, Introduction to Hilbert Space, New York, Oxford University Press 1961.

2. N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354.

3. N. Dunford and J. T. Schwartz, *Linear Operators II*, New York, Interscience Publishers, to be published.

4. S.R. Foguel, Normal operators of finite multiplicity, Comm. Pure Appl. Math, 11 (1958), 297-313.

5. H. Gonshor, Spectral theory for a class of non-normal operators, Can. J. Math, 8 (1956), 449-461.

6. P.R. Halmos, Normal dilations and extensions of operators, Summa Bras. Math, 2 (1950), 124-134.

7. M.A. Naimark and S.V. Fomin, Continuous direct sums of Hilbert spaces and some of their applications, Amer. Math, Soc. Trans., Vol. 5, series 2, 35-65.

8. C.R. Putnam, On semi-normal operators, Pacific J. Math., 7 (1957), 1649-1652.

9. F. Riesz and B. Sz.-Nagy, Functional Analysis, New York, Frederick Ungar, 1955.

NEW YORK UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RALPH S. PHILLIPS Stanford University Stanford, California

M. G. ARSOVE University of Washington Seattle 5, Washington A. L. WHITEMAN University of Southern California Los Angeles 7, California

LOWELL J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E . 1	F. BECKENBACH	D. DERRY	H. L. ROYDEN	E. G. STRAUS
т.	M. CHERRY	M. OHTSUKA	E. SPANIER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON * * NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION UNIVERSITY OF OREGON OSAKA UNIVERSITY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION UNIVERSITY OF SOUTHERN CALIFORNIA

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is \$18.00; single issues, \$5.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$8.00 per volume; single issues \$2.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 12, No. 4 April, 1962

Tsuyoshi Andô, On fundamental properties of a Banach space with a cone	1163		
Sterling K. Berberian, A note on hyponormal operators			
Errett Albert Bishop, Analytic functions with values in a Frechet space	1177		
(Sherman) Elwood Bohn, Equicontinuity of solutions of a quasi-linear			
equation	1193		
Andrew Michael Bruckner and E. Ostrow, <i>Some function classes related to the</i>			
class of convex functions	1203		
J. H. Curtiss, <i>Limits and bounds for divided differences on a Jordan curve in the complex domain</i>	1217		
P. H. Doyle, III and John Gilbert Hocking, <i>Dimensional invertibility</i>	1235		
David G. Feingold and Richard Steven Varga, <i>Block diagonally dominant matrices</i>			
and generalizations of the Gerschgorin circle theorem	1241		
Leonard Dubois Fountain and Llovd Kenneth Jackson. A generalized solution of the			
boundary value problem for $y'' = f(x, y, y')$	1251		
Robert William Gilmer, Jr., <i>Rings in which semi-primary ideals are primary</i>	1273		
Ruth Goodman <i>K</i> -nolar polynomials	1277		
Israel Halperin and Maria Wonenburger. On the additivity of lattice	1277		
completeness	1289		
Robert Winship Heath Arc-wise connectedness in semi-metric spaces	1301		
Isidore Heller and Alan Jerome Hoffman. On unimodular matrices	1321		
Pohert C. Haynomen, Duality in conord anodia theory	1220		
Charles Dev Hohm, <i>Duality in general ergoaic ineory</i>	1329		
Charles Ray Hobby, Abertan subgroups of p-groups	1545		
Kenneth Myron Hoffman and Hugo Rossi, <i>The minimum boundary for an analytic</i>	1247		
polynearon	1347		
Adam Koranyi, The Bergman kernel function for tubes over convex cones	1355		
Pesi Rustom Masani and Jack Max Robertson, The time-domain analysis of a	12(1		
continuous parameter weakly stationary stochastic process	1301		
William Schumacher Massey, Non-existence of almost-complex structures on	1270		
quaternionic projective spaces	13/9		
Deane Montgomery and Chung-Tao Yang, A theorem on the action of SO(3)	1385		
Ronald John Nunke, A note on Abelian group extensions	1401		
Carl Mark Pearcy, A complete set of unitary invariants for operators generating finite W*-algebras of type I	1405		
Edward C. Posner, Integral closure of rings of solutions of linear differential	1417		
Puere Sother Assure taking III. Station and the family a sure of the state of the s	141/		
Duane Sather, Asymptotics. III. Stationary phase for two parameters with an	1422		
application to Bessel functions	1423		
J. Sladkowska, Bounds of analytic functions of two complex variables in domains with the Bergman-Shilov boundary	1435		
Joseph Gail Stampfli, <i>Hyponormal operators</i>	1453		
George Gustave Weill, Some extremal properties of linear combinations of kernels			
on Riemann surfaces	1459		
Edward Takashi Kobayashi, Errata: "A remark on the Nijenhuis tensor"	1467		