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1. Introduction. Let I', be the Hilbert space of analytic differenti-
als of finite Dirichlet norm on an open Riemann surface. We shall
consider analytic singularities which are finite linear combinations of
elements of the type

g, < cidz didz
SR e

Let
N N
sdz = 3is;dz, S\di=0.,
i=1 i=1

To a given singularity sdz there correspond Bergman kernels
k(z,8)dz and k(2 £)dz
for the space [,.

We now consider various subspaces I', < I",, and show that linear
combinations of the kernels for I, of the form

hdz + Nk dz ,

where A is complex, extremalize an explicity given functional.
We proved in our thesis [2] that, for the space I',, of analytic ex-
act differentials on a planar Riemann surface,

kdz = —;——6%(1)1 — Pz

hdz = =2 (p, + p)dz

2 oz

where p;, and p, are Sario’s principal functions with the corresponding
singularities [1, Chapter III].

Here we show that the right hand sides still enjoy the same pro-
perties on an arbitrary Riemann surface, for the subspace 7", N I',,,, where
r,,. ={adz: adze I, S adz = 0, ¥ any dividing cycle} , and ", is gene-

Y
rated over the complex numbers by {I',} = {adz: adz = 0p[0z, p a sin-
gle-valued harmonic function on W, with finite Dirichlet integral.}
" Received August 21, 1961.
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2. Inner products and singular differentials. We shall be con-
cerned here with the Hilbert space I', of analytic differentials on a given
Riemann surface W. The inner product of two analytic differentials
adz = adx + Bdy and a,dz = a,dx + B,dy is defined as:

(adz, a,dz)y, = — iga?zldzcﬁ = S(azc‘z1 + B B)dxdy .
w w

If we now consider differentials analytic on W, except for a singularity
of the type dz/(z — O)™**, m = 0, we delete a disk 0 of radius = about
2z = ¢ and define for differentials bdz and b, dz analytic except for a
singularity of the above type, the inner product

(bdz, b,dz), = lim (bdz, b.dz),_s ,

which amounts to considering the Cauchy principal value for the inner
product. In the case of a singularity dz/(z — &) — dz[(z — &,), we re-
place ¢ by disks about z = ¢; and 2z =¢,, plus a narrow strip along a
cut joining z = ¢, to 2 = ¢, and define in the same fashion the inner
product by a Cauchy limit.

The previous remarks may be extended to finite linear combinations
of singularities of the type

> dz didz
dz = Cl ,
TR Tt

provided >, d? = 0.

3. Extremal properties of the kernels. Let sdz = 3\, s;dz be a
singularity differential and k.dz, h,dz be the Bergman kernels corre-
spond to that singularity. We shall consider linear combinations

(h, + \e,)dz

which are normalized in the sense that they all exhibit the same sin-
gularity.

We recall that for l(z)dze I",, the Bergman kernels corresponding
to a singularity sdz, enjoy the following properties:

@ _ 2nlm(e)
for sdz = rrr m=0 (ldz, kdz) = TS
(ldz, h,dz) = 0
for sdz = — 9% 42 (dz, kdz) = — (dz, hsdz)j=;2ng ldz
g — Zl 2 — é’z c

where ¢ is a path from ¢, to &,.
For sdz = as,dz + bs,dz, (a,b constant),
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kdz = ak,dz -+ bk, dz
h,dz = ah,dz + bhdz .

Such a linear property is a consequence of the uniqueness of the ker-
nels. Notice that in particular: (ldz, k.d2) = a(ldz, k,dz) + b(ldz, k.dz).
Let now a,dz be a differential, analytic except for the singularity sdz.
We form

la.dz — (b, + Ne)dz || * = || a.d2l|” — || hodz ||* + [N [*]] Bodzl?

1 _
(1) + 2Re((h, — a,)dz, hdz) + 2Rex((h, — a)dz, k.d7) .

Assume now that in a disk about z =¢;
hdz = s;dz + Zb (2 — &)tdz
adz—sdz—l—Za (z — &;)edz .
We then compute:
2Re((h, — a)dz, hdz) = — 4 i ReJ"S (. — a,)dz

2RN(h, — a)dz, kd2) = 47 Rex[z &721_)‘% v S (h, —a,)dz
k=1 cy

using the linear property of the kernels, with respect to the coefficients
of the singularity. We now write (1) in the following form;

lade | — 4z 5 S% Re [2,0 Z“jl + O — 1)@&0 (@ — s)dz]: | hdz ||

2 2 A A Kbkck
— NP llkdz ] — x5 Re[ S + (= D@ (b, — )]
i= T=0 k 41
=+ ”a'sdz - (h’a + st)dz ”2 .
We can now study the value of the bracket in the functional, and
prove that

?’l

uMz

=[5 2

We shall summarize our results in a theorem:

75' e
WS hy — s)dz | =0
5@ () 2]
THEOREM III A. Let sdz = 3.7, s;,dz where

st idz didz
dz = C
R S R P

be an analytic singularity with 37, d? = 0.
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Let k,dz, h,dz be the Bergman kernels corresponding to sdz, and
let » be a complex parameter.
Then the linear combination (&, + \k,)dz minimizes the functional:

N o N aimd
dz ||P — ABCE X 1)di —
ladz | — 4 3, Re[kE:j,o LA (- 1) Sc,(“s s)dz]

over the class of differentials a,dz, analytic except for the singularity
sdz. The minimum is

Iz | + 4z 3 Red? | (1, — 9)dz + |\ || kdz ]
J=1 Kl

and the deviation from the minimum is
H a’sdz - (hs + )\'ks)dz H2 .

Proof. h,dz + re®®k,dz for 6 real is a competing function; therefore;

oo Ta Xebl L«
2 __ )\, 2 kd 2 . YL — 3 p—
Iz || — M1 e |~ 4 35 Re[ 3 290 4 - 1)d gcj(hs s)dz |

N o X ,—i0Fihi
gnhdﬂw—wxPHkﬂﬂV—4”§ﬂZkﬁ%f%i

+ (e — 1)&1‘5 (hy — s)dz] :
(%)
It follows that

jZ,:R [?‘ ;;"' i xdfg ., —s)dz]

2z SRe (o] § X L 5ai | (1~ s)az|
i=1 E+1 cy

which is only possible if the bracket is real. It cannot be real fer all
) except if it is equal to zero.

4. Particular cases-applications. Assume now that adz = (0p/82)dz,
where p is a single-valued harmonic function on W, except for a sin-
gularity Re S(z) = 3\, Re S;(z), with

— i ci
ReS|@) = d'log |2 — &3] + Bo[ b ]

where d? is real. The singularity of (6p/dz)dz is then sdz = >, s;dz,
with

didz
=&

dez -

= cidz
R
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Moreover if p = Re {S;(z) + Xiv=0 Ai(z — £,)*} near z = ¢; and
0 2
Ldz=s,de + 3, aiz — )",
02 k=0

it follows that Ai., =ai/k+1 for k = 0. We notice furthermore that
[|adz ||* = 2(B(p) — A(p)), where B(p) = S pdp* (B the ideal boundary of

) and A(p) = 2x S, d¢ S (a, — s)dz . Tfle functional to be minimized
becomes: !

N oo Xaj 53‘ - .
2[B(p) — 21 Re [z MG xdfg (@, — s)dz]] .
= = k41 o

We notice that the differentials adz = (0p/62)dz with p single valued
harmonic function generate a subspace I',cI",. If k,,dz and h,,dz are
the Bergman kernels for I",, they correspond to two functions K,
harmonic and H, harmonic except for the singularity EeS(z) and such
that:

k. dz = 9K, 4o
oz

hdz = 22 g
0z

We can write the value of the minimum as:
2B(H,,) + [\l kopdz | .
We now shall prove the following theorem.

THEOREM IV A: Let (8,,/02)dz and (8,,/02)dz be the analytic dif-
ferentials with singularity sdz, corresponding to the principal functions
P, and p,. Then

$0/dz(p, — p)dz = k,,dz
%a/dz(pl + po)dz = hspdz ’

where h,,dz and k,,dz are the orthogonal and reproducing kernels for
r,nr,,., corresponding to the singularity sdz.

Proof. First, we know from the definition of p, and p,, that
(0,0/02)dz and (0,,/02)dz are elements of I, N I',,. Second, from (1.
Chapter III. Theorem 9E where only the notation is different), (6,,/02)dz
minimizes the same functional as h,,dz — k,,dz (which corresponds to
X = — 1), and (0,,/02)dz minimizes the same functional as (h,,dz + k,,)dz,
(which corresponds to M = 1). The theorem follows.

We shall consider here a family of functions P harmonie, except



1464 G. G. WEILL

for a singularity of the type ReS(z); the periods of P vanish along all
dividing cycles. It follows that the differentials (0P/dz)dz are elements
of I'n.NTI,,, except for a singularity s(z)dz.

We shall call H, the function corresponding to %,,dz, and K, the
one corresponding to k,,dz. The following results are consequences of
the main Theorem.

THEOREM IV B: Among all functions P with singularity 1/(z — &),
H, + \K, minimizes the functional B(P) — 2rRe)A,.

THEOREM IV C: Among all functions P with singularity log|(z—&,)/
(z—¢)|, H, + MK, minimizes B(P) — 2w Rex(4} — AJ).

THEOREM IV D: Among all functions P with singularity ReS(z),
H, minimizes the functional B(P).

We shall now consider exact differentials, analytic except for some
singularity s(z)dz = 3.7, s;(2)dz, which may be written f'(2)dz = df(z),
where f is a function analytic except for a singularity S(z) = >2., s,(2)
such that S'(z)dz = s(z)dz; then f=S;(z) + S,z — £;)* near z = ¢,.
We proved [II] the existence of a non-zero reproducing kernel if W¢O0,,.
We shall now find a sufficient condition for the existence of an ortho-
gonal kernel. We recall that in the case of a planar Riemann surface

ry=r,+rsnrg.
We shall consider here Riemann surfaces on which
ry=r+ 15,
We call such surfaces type Wy. On a surface of type Wy
NI =1+ T3] =0.
We then get the following lemma:

LEMMA IV E: On a surface of type Wy, given a singularity
s(z)dz = dz[(z — &)™, m = 0, there exists a differential analytic eract,
except for the corresponding singularity.

Proof. Let 6 be constructed as in [1, Chapter V. 18.19]. The
differential & — i6* is square integrable and hence has the decomposi-
tion?.

@—“7;@*:wh+a)eo+w;=whe+wz‘e+wea+w;-
It follows that

77=@—weo—whe:i@*+a):e+w:>
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is harmonic exact except for the singularity and so is 7»*. We may
write 7 = ¢ + ¥ where + is analytic and ¢ is analytic except for the
singularity. It follows that ¢ is the differential mentioned in the lemma;
¢ = dF, where F, is an analytic function except for the singularity

—1
(m + 1)z — )"+

and from [2] there exists an orthogonal kernel dH, for I",, on W;.

Note. An analogous proof works for differentials with s(z)dz=
dz|(z — &) — dz/(z — &,); we have only to disecard the periods about
z2=2¢, and 2 = ¢,

From the existence of orthogonal kernels for I7,, we can state the
following theorems; here B(f) = %;g fdf; H, and K, are analytic func-

tions whose differentials are respectively the orthogonal and reproduc-
ing kernels for I',,, corresponding to the singularity.

THEOREM IV F: Among all functions f analytic except for a
simple pale at z = & with expansion f =¢,/(z — &) + a(z — &) ++++ in
a neighborhood of z =¢, H, + \K, minimizes the functional B(f) +
21 Rexc,a,.

THEOREM IV G: Among all functions f(2) analytic except for the
singularity
cj
bz — )=k =1

M

S@) = 3,

)=1

S
il

the function H, minimizes B(f).
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