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SCATTERING FOR NON-LINEAR WAVE

EQUATIONS

FELIX E. BROWDER AND WALTER A. STRAUSS

Introduction* Let H be a Hubert space, A a positive densely-
defined self-adjoint linear operator in H (i.e. A ^ col > 0), Mt(u) a
family of (possibly) non-linear operators with domain and range in
H and depending on the real parameter t, — co < £ < + co.

Consider the generalized "wave equation"

( l ) % { t ) + {Au){t)

where solutions are functions u(t) from the real line E1 to H. The
equation (1) may obviously be regarded as a perturbation of the
simpler equation

(2) £

The scattering problem for the perturbed equation (1) consists
of the following:

( I ) . Let uQ(t) be any solution of equation (2). For any real
number s, prove the existence of a solution u3(t) of the perturbed
equation (1) such that

( 3 )

(II). Show that as s—>±co, us(t) converges in some suitable
sense to solutions u±oo(t) of equation (2). In this case, we define
W-{uQ) = u-JJ) W+(u0) = u+Jf).

(III). Study the properties of the operators W~ and W+ defined
in (II), show the existence of W^W- = S, and study the properties
of the scattering operator S.

In a preceding paper [5], the second-named author has solved
the scattering problem for equation (1) under the hypothesis that
there exist a summable function θ(t) on Eι such that

(4) || A^[Mt(u) - Mt(v)] || ^ θ(t) \\ Au - Av \\
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for any pair of elements u and v in D(A). This result was applied
in [5] to the classical case of a perturbed wave equation in the
Lorentz-invariant Klein-Gordon Hubert space. A basic limitation of
these results is the restricted non-linearity of Mt(u), which for each
t must satisfy the uniform Lipschitz condition (4) in u.

In another preceding paper [2], the first-named author has given
a study of the Cauchy initial value problem for the abstract wave
equation (1) with Mt(u) independent of t, and obtained therefrom a
generalization of results of K. Jorgens [3] on the equation

(5) u" - Δu + m2u + ku* = 0 , fc^O, m > 0

in E*, as well as more general equations of the form

(6) u" - Δu + F'{\ u \2)u = 0

in En. Here the non-linearity in M(u) = Mt(u) was much less rest-
ricted but at the cost of definiteness assumptions to insure the posi-
tivity of the " energy" for solutions of (1) for all time.1

It is our purpose in the present paper to use the methods of
[2] to study the scattering problem for more strongly nonlinear per-
turbations Mt(u) under appropriate positivity assumptions on Mt(u).
The prototype equation which we have in mind is the following modi-
fication of (5) on E\

(5) ' u" - Δu + m2u + k{t)u* = 0

with k(t) summable and non-negative on E1. We might equally as
well think of

(6 y u" - Δu + m?u + k{t)F'{\ u \2)u = 0

on En with conditions depending upon n imposed upon F'. In gene-
ral, the uniform Lipschitz condition (4) is replaced by the following:

Assumption I. For each C > 0, there exists a summable func-
tion ko(t) such that for every pair of elements u and v of D(AΦ)
with IIA1'2^!! ^ C, || A1/2^|| ^ C, we have for all t in E1:

(7) \\Mt(u)\\^k0(t),

(8) || Mt(u) - Mt{v) || ^ M « ) II A^(u - v) \\ .

The other assumption which we shall make guarantees that to
some degree the solutions of equation (1) behave as if they conserve
a positive energy expression. Some such condition is necessary to

1 Added in proof. Results like those of [2] have also been obtained by I. E. Segal
in a paper entitled "non-linear semigroups," to appear.
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obtain solutions of nonlinear wave equations with significant non-
linearity in the potential as shown by the examples given by J. S.
Keller in [4], The condition which we shall impose in the present
paper is the following:

Assumption II. There exist constants a, To > 0, a summdble non-
negative numerical function h(t) on E1, and a nonnegative numerical
function Gt(u), defined for u in D(A112) and bounded on bounded
subsets of D(A112) in the graph norm, such that:

(1) For every continuously differentiate function u(t) from
E1 to D(A112) and every s in E1,

(9) 4r {QMt))) I... = 2Re(M8(u(s)) , *£ (s)) .
v 7 at at

4r
at

(2) The function Ht(u) = djdt{Gt{u)} exists for each fixed u in
D(A112) and satisfies the conditions

(10)

and
Ht(u) £ 0 , ί ^ - To

Ht(u) ^ 0 , t ^ To

(where we note explicitly that To is independent of u in D(A112)).

(3) There exists a continuous function c(t) on E1 which is
independent of u and such that for all 1e E1, u e D(A112)

\Ht{u)\^c{t)\Gt{u)\.

Our basic result in the present paper is that the scattering prob-
lem in the sense described above, with a suitable definition of the
solutions of our differential equations as well as the topology on these
solutions, always has a solution under the assumptions (I) and (II).
To obtain such a solution, we consider weak solutions of equations
(1) and (2) rather than strict solutions. By choosing a different
Hubert space, however, each such weak solution can be considered
as a strict solution in the new space. By making such a transforma-
tion, we identify our results with those of [5], where however, the
corresponding results were obtained under different hypotheses and
by a different argument.

Section 1 is devoted to the definition and study of weak solutions
of equations (1) and (2), and contains the proof of the existence and
uniqueness of weak solutions of the Cauchy initial value problem for
equation (1). In §2, we apply these results to the solution of the
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scattering problem. In §3, we consider examples of equations (1) satis-
fying our assumptions.

Sections l Let H be a Hubert space, A a positive densely
defined self-adjoint linear operator in H. Set B = A112, the positive
square root of A. If u(t) is a function from E1 to H, we shall denote
its first and second ί-derivatives by ur{t) and u"{t), respectively.

Consider the differential equation

(i.i)

with

(1.2)

the initial

u" -

conditions

\-Au=f(t)

)) = φ, u'(0) = Ψ .

If Φ lies in D(A), Ψ in D{B), and if Bf(t) is defined for all t and
summable in t, there exists an unique strict solution for the equation
(1.1) with the initial conditions (1.2), i.e. a twice-continuously diίferen-
tiable solution u(t) from E1 to H with u{t) e D(A) for each t and Au(t)
continuous in t. This solution is given by

(1.3) u(t) = cos (Bt)Φ + sin (Bt)(B-ψ) + Γsin (B(t - 8))(B-γ)(8)d8 .
Jo

If we make the weaker assumptions that Φ eD(B),Ψ eH, and that
f(t) is locally summable in t, no such solution exists. However, the
formula (1.3) continues to make sense and defines a continuously dif-
ferentiable function u(t) from E1 to H with Bu(t) defined for all t
and continuous in t. Thus we may define:

DEFINITION 1.1. The weak solution u8tΦtΨ{t) of equation (1.1) with
initial conditions

(1.4) u(s) = Φ, u\s) = W,(se E\ φ 6 D(B), ψ e Hf),

is defined to be

(1.5) u8,φ,Ψ(t) = cos (B(t - 8))Φ + sin (B(t -

LEMMA 1.1 (a) Every weak solution u = 8̂,Φ,?r is once conti-
nuously differentiate from E1 to H, u(t) lies in D{B) for all t, and
Bu(t) is continuous in t. Further u(s) = Φ, u\s) = Ψ.

(b) Ifu = u8tΦtΨ is the weak solution of equation (1.1) with
initial conditions (1.4), then for any T > s, we have

(1.6) s u p . M r { | | ^ ( t ) | | + \\Bu(t)\\} ^ 2\\\BΦ\\ + \\Ψ\\ + j J | / ( r ) || dή
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(c) If 8 < su then uSιΦιΨ(t) is the weak solution of equation (1.1)
with initial conditions uis^ == u9tΦtΨ(8-), u'{s^) — u'StΦtΨ(s^.

(ά) For any real numbers t <.tx and u — uSiΦtΨ, we have

(1.7) \\

+ || Bu(t) ||2 + 2Re\\f(r), u\r))dr .

Proof of Lemma 1.1. Proof of {a). From formula (1.5), we have

(1.8) u'{t) = - sin (B(t - s))BΦ + cos (B(t - s)Ψ

and

(1.9) Bu(t) = cos (B(t - s))BΦ + sin (B(t - s))Ψ + Γ sin(J5(ί - r))f(r)dr .

Since/ is locally summable, Φ e D{B), and Ψ e H, it follows from (1.8)
and (1.9) that u' and Bu are continuous functions of t. The fact
that u(s) = Φ, u'(s) = y follows by substitution in (1.5) and (1.8).

Proof of (6). From equation (1.8), we have

(1.10) I) u\t) \\ rg || BΦ I) + 1) Ψ \\ + £ \\f{r) \\ dr ,

because ||cos(2?ί)||, | |sin(J?ί)|| ^ 1 . Similarly, we obtain from equa-
tion (1.9),

(1.11)

The inequality of (b) follows obviously from the inequalities (1.10)
and (1.11).

Proof of (c). It follows from the inequality (1.6) together with
the obvious linearity of the weak solution us>ΦιΨ in terms of Φ, ¥,
and /, that if uω is the weak solution of the equation u" + Au = fa){t)
with initial data [Φ{1\ Ψ{1)], then

(1.12) s u p 8 ^ Γ || u\t) - u™'(t) 11 + 11 Bu(t)
^ 2 {|| BΦ - BΦω' || + || Ψ - ||

+ \T

8\\f(r)-f{1)(r)\\dr}.

In qualitative terms, inequality (1.12) expresses the continuous depen-
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dence of the weak solutions upon the triples [Φ, Φ, f(r)]. Suppose
now that we choose a sequence of triples [Φk, y^/^r)] such that

as fc—>oo. Then for the corresponding weak solutions uk(t),' uk(t) and
Buk(t) will converge uniformly in if-norm as k —• oo to u\t) and Bu(t),
respectively. Suppose further that Φk e D(A), Ψk e D(B), and that
fk{t) e D(B) for t e [s, T] and that Bfk(t) is summable on [s, T]. (We can
always obtain such an approximating sequence since D(B) is dense in
H, D(A) is dense in D(B) in the graph-norm of B, and we can approximate
f(t) by a step function in L\[s, T],H) and then approximate the steps
with arbitrary precision by elements of D(B).) It follows from our
provious remarks and from equation (1.5) that the corresponding weak
solutions uk(t) are actually strict solutions of the given problem.
Hence uk(t) is also the strict solution of the initial value problem for
the equation u"(t) + Au(t) = fk(t) on the interval [slf T] with initial
conditions u{s^) = uk(s^), u'{s^) = nr

k(s^. However, uk(sj —• %(*i), uk(s^) —>

u'(s^ by the inequality (1.12) as k —> oo. Hence uk(t), u'k(t), and Buk(t)
converge uniformly on [slf T] to the corresponding terms for the
weak solution v of the equation v"(t) + Av = f(t) with initial data
[̂ (sO, u'isj] at 8lβ But uk(t) —> u(t) on [s, T], so that u(t) = v(ί) and
(c) is proved.

Proof of (d). Arguing as in the proof of (c), we know that any
weak solution is the limit of strict solutions in the sense that we
have a sequence uk(t) of twice continuously differentiate functions
into H satisfying the equations

u'i(t) + Auk(t)=fk(t)

with uk(t) converging uniformly in norm to u(t) on [t, t±]9 fk converging
t o / in L\[tu t],H), u&t) coverging uniformly to u'{t), and Buk(t) con-
verging uniformly to Bu(t). It suffices then to prove the equality
(1.7) for each of the uk since the values of both sides of that equation
for uk will converge as k —• oo to the corresponding values of u.

We may thus assume without loss of generality that our weak
solution u is actually a strict solution. Taking the inner product of
both sides of the equation

u"{t) + Au(t) = f(t)

with u'(t), we obtain

(1.13) \ ^ {(u'ir), u\r)) + (Bu(r), Bu(r))} = Re(f(r), u\r)) ,



SCATTERING FOR NON-LINEAR WAVE EQUATIONS 29

Integrating (1.13) from t to tlf we obtain

- II u'{t) II2 + II Bu{tλ) ||2 - II Bu(t) ||2

This last equation is trivially equivalent to (1.7). Q.E.D.

REMARK. Consider the Hubert space H' = HQ)D(B), with the
norm \\Bu\\ on D(B). For s,teE\ and a fixed locally summable
function / from E1 to H, we may define Γ(ί, α)[<P, ?Γ] = [%.(«), %;(*)],
for [Φ, Ψ] e H'. Then Lemma (l.l)(b) states that T(t, s) is a bounded
linear mapping of H' into H', while Lemma (l.l)(c) gives us the
equation of evolution

It follows that T(t, s) = {T(s, ί)}"1 since T(s, s) is the identity map.

DEFINITION 1.2. Lβί Mt(u) δe α (possibly) nonlinear operator
from D(B) into H for each t in E1. Suppose that u is a function
in C\[s, T], H) with u(t) e D(B) for all ί, Bu e C\[s, Γ], H). Sup-
pose further that M(u(t)) e L\[s, T], H). Then u is said to be a
weak solution of

(1.14) u"(t) + Au(t) + M(u(t)) = 0 , s ^ t ^ T,

with initial conditions

(1.15) u(β) = Φ, u'(s) = ?Γ

/or given elements Φ e D(B), Ψ e H, provided that

u(t) = cos (B(ί - s))Φ + sin (B(r - s))(B~Ψ)

(1.16) - Γ Msin (B(t - r)){B-λMr{u(r)))dr

for t e [s, T].
In other terms, we have replaced our original differential equa-

tion with boundary conditions (1.15) by the single integral equation
(1.16). We might ask about the relation of these weak solutions to
the ordinary or strict solutions of equation (1.14), and an interesting
remark in this direction is provided by the following simple result.

PROPOSITION 1. Let A and Mt(u) be given as in Definition (1.2)
and set Tt(u) = B^M^u), Φx = B~λΦ, Ψλ = B~Ψ. Then u(t) is a
weak solution of equation (1.14) with initial conditions (1.15) if and
only if v(t) = B^uζt) is a strict solution of the equation
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(1.17) v"(t) + Av(t) + Tt(v(t)) = 0 , s^t^T

with v(s) = Φu v\s) = y l e

Proof. If w is given by equation (1.16), then applying B~x to
both sides of that equation, we obtain

(1.18) v(t) = cos (B(t - 8))ΦX + sin (B(t - 8))(B-ψJ

- j* sin (B(t - rMB^TMrϊidr .

It follows immediately by inspection of (1.18) that the latter implies
that v is a strict solution of the differential equation (1.17) with the
initial data [Φl9 ¥t] at s. Suppose, on the other hand, that v(t) is a
strict solution of equation (1.17) with the initial data [Φlf uFJ at s.
It follows from the argument of the beginning of § 1 that v must
be a solution of the integral equation (1.17). Applying B to both
sides of equation (1.17), we find that u(t) — Bv(t) is a solution of
equation (1.16), i.e. u is a weak solution of the differential equation
(1.14) with initial data [BΦlf BΨλ}. Q.E.D.

REMARK. The correspondence given by Proposition 1 between
weak solutions and strict solutions is the translation (in the linguis-
tic sense) by which we can pass from the results of the present pa-
per to results of the type given in [5]. In [5], it was assumed about
the operator Tt(u) that

| | B(Tt(u) - Tt{v)) | | g h(t) | | An - Av | |; u,ve D(A), all t,

with h(t) a fixed summable function. Setting Mt(u) = B Tt(u), we
see that this is equivalent in our present notation to assuming that

|| Mt(u) - Mt(v) || <; hit) II Bu - Bv \\ ,

a uniform Lipschitz condition on each Mt as a mapping from D(B)
to H. The hypotheses of the present paper amount to replacing the
uniform Lipschitz condition by the assumption that Mt(u) is bounded
and satisfies a Lipschitz condition on each bounded subset of D(B)
as a mapping into H.

We propose now to carry through the proof of the existence and
uniqueness of weak solutions of the equation (1.14) with the initial
conditions (1.15).

THEOREM 1. Let H be a Hilbert space, A a positive, densely
defined linear operator in H, B = A1'2. Let Mt(u) be a (possibly)
nonlinear operator from D(B) to H for t in E1 satisfying assump-
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tions (I) and (II). Then for every Φ in D{B) and Ψ in H and for
every locally summable function f from Eι to H, there exists one
and only one weak solution of the equation

u"{t) + Au + Mt(u) = 0 , ί e J3ί

in the sense of Definition (1.2) where u is a C1 function from E1

to H, and u satisfies the initial conditions

u(s) = Φ , u'(s) =Ψ

for a given s in E1.

Let us remark that for the existence and uniqueness of solutions,
we can weaken our hypotheses in the following- fashion: In Assump-
tion (I), kc(t) may be merely summable. In Assumption (II), we may
drop condition (2).

THEOREM 2. u(t) = uStΦtΨ(t) be the weak solution described in
Theorem 1 with initial data [Φ, Ψ] at s. Then we have

sup_< ί < +.{| | n'(t) IP + || Bu(t) II2} = K < + «

where kc depends only on C — | | ϊ r | | a + ||J50||2 and the data of As-
sumption I and II.

We begin the proof of Theorems 1 and 2 with the following Lemma
which implies Theorem 2 and which will be an essential tool in the
proof of Theorem 1.

LEMMA (1.2). For each C > 0, there exists a constant k0 > 0
such that for any interval \TU T2] and for any weak solution u of
the equation

(1.19) u" + Au + Mt(u) = 0

on [Ti, T2] with

(1.20) \\u'(s)\\2+ \\Bu(s)\\2SC

for a single point s of [Tlf T2], we have

(1.21) β u p P l * W l { | | Bu{t) II2 + | | u'{t) ||2} ^ k0 .

Proof of Lemma (1.2). By dividing up the interval [Tl9 T2] into
the two sub-intervals [Tlf s] and [s, Γ2], it suffices to consider sub-
intervals of the latter form. Our hypotheses on the equation (1.19)
and especially on its nonlinear part Mt(u) are invariant under a time-
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reversal, so that it suffices to consider only intervals of the form
[s, Γ2], i.e. replace 2\ by s.

By Lemma (1.1) (d), since u is a weak solution of equation (1.19),
we know that for each t in [s, ΓJ,

(1.22) || u'(t) ||2 + || Bu(t) ||2 ^ C - 2Re\* {Mr{u{r))y u'{r))dr .

By assumption (II) on Mt(u), we know that for every r

(1.23) 2Re(Mr(u(r)), n\r)) = JL {Gr(u(r))} - Hr(u(r))

where the functions G and H satisfy the conditions of Assumption
(II). Therefore, we obtain from equation (1.22) the following:

(1.24) \\u\t) ||2 + ||Bu(t) ||2 + Gr(u(t)) ^ C + Gs(u(s))

Since Gr(u) is uniformly bounded on bounded subsets of D(B), it
follows that C + G8(u(s)) ^ C, the latter being a constant which
depends only on C and the function G.

Let

E(t) = || u\t) ||2 + || Bu(t) ||2 + Gt(u(t)) .

It follows from (1.24) that

(1.25) E(t) S C + j # Hr(u(r))dr .

From Assumption (II), we know three inequalities on the nonlinear
functional Hr(u). We know that for r ^ To, Hr(u(r)) ^ 0. We know
also that

(1.26) I Hr(u(r)) I ̂  β(r) | Gr(u(r)) | ^ c

with a continuous function c(r) independent of u, while

(1.27) I Hr(u(r)) \ ̂  h(r) \\ Bu(r) \\2a ^ h(r)[E(r)]a .

From the first of these inequalities and inequality (1.25), it fol-
lows that for t ^ TO,

(1.28) E(t) S C" +\T°Hr(u(r))dr .

Hence it suffices to bound E(t) on the interval [s, To], i.e. to assume
that T2 — To. Choose an arbitrary point p within the interval [s, To],
with the choice of p to be restricted later, and estimate the right-
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hand side of (1.25) by using (1.27) on the interval [s, p] and (1.27)
on the complementary sub-interval [p, To].

Consider the interval [s, p] first. Using inequality (1.27) we have

(1.28) E{t) St C" + Γ h(r)[E(r)]adr , s ^ t ^ p .

Set

v(t) = Γ /*,(r)[£;(r)]αώr . s ^ ί ^ p .

It follows from (1.28) that

(1.29) v'(t) S h{t)[C + v{t)f , v(s) = 0 .

while

(1.30) E(t) ^ C + v(t) .

To bound E(t) on [s, p], it thus suffices to bound v(t). To do this,
we shall apply the following elementary analytical result:

LEMMA 1.3. Let v(t) be a nonnegative continuously differentia-
ble function on the interval [s, p] with v(s) = 0 which satisfies the
inequality

(1.29) v'(t) ^ h(t)[c, + v(t)]a , s^t^p .

with cQ and h a summable function on E1 given constants. Then:

( i ) If a SI,

v{t) ^ k(c0, a) , s ^t g p .

with k(c0, a) independent of v, s, or p.
(ii) If a > 1, then for each cQ > 0, there exists p{c0) independent

of s such that

v(t) ^ k(c0, α), 8 S t ^ V ^ Vic*)

Proof of Lemma (1.3). Proof of (i). We consider the case a < 1
first. Then setting w(t) = v(t) + c0, we have

[w(t)]~aw'(t) S h(t) ,

or integrating from s to t,

D^)] 1 -" - cj"α ^ (1 - α)Γ λ(r)dr ^ (1 - a) [+°°h(r)dr ,

from which the sought conclusion follows for w(t) and hence for v(t).
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If a = 1, we have

and integrating,

w(t) g c0 exp (\ h(r)dr) .

which again justifies the conclusion.

Proof of (ii). If a > 1, it follows from the inequality

w'(t)[w(t)]-a ̂  h(t)

that

[* h(r)dr .
J—oo

By an elementary calculation, we have

[wit)]"-1 S [cϊ- -(a- 1)Γ h{r)dr\-λ .
J-oo

If we choose p(cQ) such that

\p{C0) h(r)dr ^ (2α - 2)-1c\ra ,

we then have

[w{t)f-1 S 2ca

0-
1 , s ^ t ^ p ^ p(c0) ,

i . e .

w(t) g w1"-1*"1 ,

and the conclusion of Lemma (1.3) is established.

Proof of Lemma (1.2) continued. We apply Lemma (1.3) to the
function v(t) defined in terms of E(t) above. By Lemma (1.3) (ii),
there exists pQ, depending only upon co = C and hence ultimately
only upon C and not upon s, or u, such that for p ^p0, v(t) is uni-
formly bounded by k(c, a) on the interval [s, p] by virtue of (1.28)
or (1.29). (If s is greater than p0, we choose p = s. If s is less
than Po, we choose p = p0.) On the interval [p, Γo], we know that
the function Hr(u(r)) satisfies the inequality (1.26) where the function
c(r) being continuous is bounded from above by a constant Co. This
constant Co may be taken as maxP o ί ί W o c(r), and hence depends only
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upon C. Therefore, we have the inequality for p0 < t S TQ,

(1.31) E(t) ^ C" +C0 Γ E(r)dr , (C" - E{p)) .
JP

Setting

v(t) = C" + Co Γ E(r)dr .
JP

we have

v'{t) S CQv(t), ( p ^ t ^ T Q ) ; v(p) = C" .

Hence

v(t) ^ C" exp (C0(ί - p)) S C" exp (C0(Γ0 - p0)), p^t^T0.

Thus we have obtained uniform bounds (depending on C but not on
s or u) for the function v(t) on the interval [s, To] from which a
uniform bound for E(t) on [s, Γ2] for any Γ2 ^ To follows by our pre-
vious remarks. Since Gr(u(r)) is assumed nonnegative by Assumption
(II), E(t) dominates || u'(t) ||2 + || Bu(t) ||2 and the proof of Lemma (1.2)
is complete.

LEMMA 1.4. For each C > 0, there exists k0 > 0 such that if
u(t) and uλ(t) are weak solutions of u"(t) + Mt(u(t)) = 0 on any inter-
val [Tlf Γ2], s any point of [Tu T2], then

provided that

|| u'{s) ||2 + || Bu(s) ||2 ^ C , || u[(s) ||2 + || Buλ{s) \\^C.

Proof of Lemma (1.4). Since time reversal preserves our hypo-
theses, we may reduce the general case as before to the case of the
interval [s, T2], i.e. take Tx — s. By Lemma (1.2), there exists a
constant k'o such that

Let w = u — UL Then w(t) is a weak solution of the equation

(1.32) w"(t) + Aw(t) = f(t)

with
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(1.33)

By Assumption (I) on Mt(u) together with the bounds established
on Bu(t) and Bu^t), there exists a summable function ho(t) such that

(1.34) ||/(ί) || «£ hoit) || Biφ) - Bu(t) || = ho(t) \\ Bw{t) \\ .

Applying the inequality (1.6) of Lemma (1.1) (b) to w(t) on the inter-
val [s, t], t ^ Γ2, we find from (1.34) that if we set

(1.35) F(t) = \\w'(t)\\ + \\Bw(t)\\,

then

(1.36) Fit) ^ Cx + 2Ϊ' ho(r)Fir)dr .

Setting v(t) = d + 2Γ ho(r)F(t)dr, we find that v(t) satisfies the dif-

ferential inequality

(1.37) v\t) ^ 2hc(t)v(t)

with v(s) = d Hence for all t ^ s for which (1.37) holds, and in
particular on [s, T2], we have

(1.38) v(t) ^ d exp (2Γ Λ(r)dr) ^ d exp

The constant d depends only on C, and therefore so does C2. From
(1.36), we know that F(t) ^ v(t) g C2, and since it follows trivially
that F(t) bounds a fixed multiple of | |w'(£)| |2+ \\Bw{t)\\\ the proof
of Lemma (1.4) is complete.

Corollary to Lemma (1.4). Any weak solution u(t) of u" +
An + Mt(u) = 0 on an interval [T19 T2] is uniquely determined by
the pair [u(s), u'(s)] for any single point s in [I\, T2],

LEMMA 1.5. It suffices in order to prove Theorem 1 to show
that for each C > 0, there exists d0 > 0 such that for any real T
and any pair [Φ, Ψ] with Φ e D(B), ΨzH with \\BΦ ||2 + || Ψ ||2 ^ C,
there exists a weak solution of the equation

(1.37) u"(t) + Au(t) + Mt(u(t)) = 0

on the interval [T, T + d0] with the initial data

u(T) = Φ , u\T) = Ψ .

Proof of Lemma (1.5). Let Φ and Ψ be given with Φ e D(B),
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Ψ e H, and set C = \\ B ||2 + || Ψ \\\ Let s be a given real number. By
symmetry under time-reversal, it suffices to show that there exists
a solution of equation (1.37) with u(s) = Φ, u'(s) = Ψ on the infinite
half-line [s, oo]. By the Corollary to Lemma (1.4), it suffices to show
that for every T > s, there exists a solution of (1.37) on [s, T] with
the given initial values at s. Indeed for Tλ > T, the two solutions
obtained on the intervals [s, T] and [s, 2\], respectively, must coin-
cide on [s, T]. We may therefore amalgamate all the solutions on
the various intervals starting at s to form a single weak solution
over the interval [s, co].

Suppose that Theorem 1 were false. Then there would have to
exist a real number T > s such that no weak solution existed on the
interval [s, T], We shall deduce a contradiction. By the hypothesis
of Lemma (1.5), there would exist a solution on some interval [s, s+d0]
with d0 > 0. Consider all weak solutions u{t) of equation (1.37) on
intervals of the form [s, ΓJ, Tx > s, with u(s) = Φ, u'(s) = r , for the
given <P and ?Γ. By the uniqueness Corollary to Lemma (1.4), all
such solutions would coincide on the overlap of their intervals of
definition. Taking the union of the intervals of definition, we obtain
a weak solution u(t) of equation (1.37) on a half-open interval [s, Γo],
TQ ^ Ty with the property that u is not continuable as a weak solu-
tion beyond To. By Lemma (1.2), however, there exists a constant
k0 independent of u or To such that

s*Vs^τβu'(t)\\> + \\Bu(t)\\>} S h .

Consider k0 = CΊ as the constant C of the hypothesis of Lemma (1.5).
Then there exists d > 0 such that for every Γ2 < To a weak solution
ux{t) of equation (1.37) exists with initial conditions

on the interval [Γ2, Γ2 + d]. Taking T2 in the interval (Γo - d, Γo),
we have a weak solution ^χ(ί) of (1.37) on an interval [T2, To + ε]
with ε > 0 having the same Cauchy data at T2 as u(t) itself. By
the uniqueness theorem, nx{t) = u(t), u(t) is continuable beyond To,
and we have a contradiction establishing the conclusion of Lemma
(1.5).

Proof of Theorem 1. It suffices by Lemma (1.5) to prove the
existance on a small interval [s, s + d0] of a weak solution u(t) of

(1.37) u"(t) + Au(t) + Mt(u(t)) = 0

with initial values u(s) = Φ, u'(s) = ?P\ under the assumption

(1.38)
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To carry through the local existence proof, we fix s, Φ and Ψ
and, choosing d > 0, we construct a complete metric space X depend-
ing on s, Φ, Ψ, and d as follows: X consists of all functions u from
the interval [s, s + d] into H having the following properties:

(a) u is once continuously differentiate from [s, s + d] into H.
(b) Bu(t) is defined for all t in [s, s + d] and the function Bu

is continuous from [s, s + d] into iϊ,
(c) ^(s) = Φ, u'(8) = y.
The distance function on X is given by

(u, O - || u - nx \\x - sup.s«.+d{|| Bw(ί) - Biφ) || + || u'(t) -

The completeness of X in this metric follows by standard argu-
ments.

Once X is given as above, we construct a mapping S of X into
itself whose fixed points (if any) will be the desired weak solutions
u of equation (1.37) with the given initial condition. If v e X, w = S(v)
is defined by

(1.39) w(t) - cos (B{t - s))Φ + sin (B(t - 8))(B~Ψ) - Γ sin (B(t - r))

, (s^t^s + d) .

Thus w = S(v) is the weak solution on [s, s + d] of the equation

(1.40) w"(ί) + Aw{t) = -

with initial values w(s) = Φ, wf(s) = ?Γ.
We shall show that for a suitable CΊ > C, and for c£ sufficiently

small, the mapping S maps the nonempty closed set \\v\\x ^ d into
itself and that on that set, S is a contraction mapping with constant
less than one, i.e.

\\Sυ-Sv1\\z£c\\v-v1\\xc<l; \\v\\x , I K I U ^ d .

By the Picard contraction principle, S will have a fixed point in that
set, but a fixed point v of S is precisely a weak solution of equation
(1.37) on the interval [s, s + d] with the prescribed initial conditions.
Since, moreover, the restriction on the size of d will depend only
upon the constant C, the conclusion of Theorem 1 will then follow
from Lemma (1.5).

To establish the facts cited in the preceding argument, we apply
the conclusions of Lemma (1.1). We know that w = S(v) is a weak
solution of w" + Aw — f(t), where f(t) = — Mt(v(t)). Since
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we obtain from Lemma (1.1) (b),

where d and the function of d written as o(d) may be chosen inde-
pendent of s and v, and d depends upon C. If \\v\\x ^ Clf then
|| w \\x ^ d + oΛ(l)d> a n d if d is chosen initially so that d ^ 2d» we
may choose d so small that for d <Ξ d0> ||S(ι;) | | z ^ d Thus we have
for small enough d > 0, a nonempty closed set || i; | | x ^ d mapped by
S into itself.

Now let v and vx be two elements of the set \\v\\x ^ d in X,
and let w = S(v), w1 = SivJ. We wish to estimate \\w — w1\\x in
terms of || v — vt \\x. Let y(t) = w(£) — ^ ^ ί ) . Then ?/ is a weak solu-
tion of the equation

y"{t) + Ay(t) = -M"*(vi(ί)) — Jlίi(v(ί)) = ^(ί) ,

with y(s) = 0, t/'(s) = 0.
By Lemma (1.1) (b), we know therefore that

I I » l l χ ^ 2 ( β + * || ff(r) || d r f
Js

while

| | g(r) 11 = 11 Mr(yλ{r)) — Λfy(ι;(r)) | | ^ kOl(r) \\ Bv^r) — Bv(r) \\

where the second inequality follows from Assumption (I) on the non-
linear operator Mt(u). Cx is now fixed, and kOl(r) is therefore a pre-
scribed summable function of r independent of s or v but depending
only upon d We have then

I I y ||. ^ 2 | | t ; - vx\\x

Choosing d ^ d0 (dependent only upon d and hence upon C), we may
ensure that 0 (̂1) ^ 1/2, and thereby the proof of Theorem 1 is com-
plete. '

As we have remarked ealier, Theorem 2 is an immediate conse-
quence of Lemma (1.2) so that our discussion of the existence and
uniqueness of weak solution of the nonlinear wave equation (1) is
therefore complete.

Sections 2. The scattering problem. As it was stated in the
Introduction, the scattering problem for the nonlinear wave equation
(1) has three parts, (I), (II), and (III), We have completed part (I)
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in the preceding section. Let us now carry through a discussion of
parts (II) and (III), at least to the extent of showing the existence
of the wave operators W- and W+ under our given hypotheses and
of the scattering operator S. We leave the more detailed discussion
of the properties of S to another place.

Let Ho be the set of weak solutions on E1 of the equation

(2) u"{t) + Au(t) = 0 ,

and HM the set of weak solutions on E1 of the nonlinear equation

(1) u"{t) + Au(t) + Mt{n{t)) = 0 .

By Lemma (1.2) and Theorem 2, we know that for every u in HM9

we have

suvt{\\Bu(t)\\> + \\u'(t)\\>} < + ™ ,

and the same fact is obviously true for elements u0 of Ho.

DEFINITION 2.1. Ho and HM are made into metric spaces where
the metric is given by

p(u, O = s u P ί [ | | B(u - iθ(«) II2 + II *'(*) - wί(«) IIT/2

DEFINITION 2.2. For any real s, W8 is the mapping of Ho into
HM defined by Ws(u0) = u,if and only if u is the solution of equation
(1) with u(s) = uo(s), u'(s) = u'0(s).

As observed in [5], for a suitable choice of the Hubert space H
in the case where A is (—Δ) + m2, Ho is the so called Klein-Gorden
Hubert space of quantum field theory.

LEMMA 2.1. (a) Ho and HM are complete metric spaces. Each
Ws maps Ho onto HM.

(b) Given C > 0 and ε > 0, there exists t0 independent of s such
that if\\u0 |U0 ̂  C, then \\ W8(u0) - WSl(u0) \\BM<e for 8,8^- t0 (or
for s, sx ^ t0).

(c) Given C > 0, there exists k0 > 0 such that for u0, v0 in Ho

with \\UO\\HQ^C, then

II Ws(u0) - Ws(v0) \\SM ^ k0 || u0 - v0 | U 0 .

(d) Let Wr1 = Ts, be the inverse mapping of HM into Ho. Then
the assertions of (b) and (c) hold with W8 replaced by T8 and Ho

replaced by HM.

(c) If\\uo\\πo£c, then || W8(u0)\\HM^ko for alls, If\\u\\aM^C,
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\\T.(u)\\Bo£kc.

Proof of Lemma (2.1). Proof of (α). The compleness of Ho and
HM follows immediately from the definition of weak solution together
with Theorems 1 and 2. Since a weak solution u of either equation
(1) or equation (2) exists for any Φ in D(B) and Ψ in H with u(s) = Φ
and u'(s) = Ψ and is uniquely determined by the pair [Φ, Ψ], it fol-
lows that Ws maps all weak solutions of equation (2) onto all weak
solutions of equation (1), i.e. each Ws maps Ho onto HM.

Proof of (b). Since | | ^ 0 | | f f ^ C, it follows from Theorem 2 that
for all s, || Ws(u0) \\HM ^ Jc0. Let s and s± be given, and let u = TFS(^O),
^ = W8l(u0). Let w = %! — uQ. Suppose s < slβ On the interval [s, s],
w is a weak solution of the equation

w"{b) + Aw(t) = - Af«(Wi(ί)) .

At 819 w satisfies the initial conditions w(sj = 0, wr(Sj) = 0. Hence
by Lemma (1.1) (b), on the whole interval [s, s j and in particular at
s, w satisfies the inequality

II Bw(t) | | + || w'(t) | | ^ 2 | | MXίφ)) | | dr .

By Assumption (I) on Mt(u) and by the bound on the norm of ult

we know that

I n/ϊ (u (r 1111 <^ JΊ (r\ I \ IJ "^ n* JΊ (r\

where hc is a summable function dependent upon C but independent
of s and slm Hence

\\Bw(8)\\ + \\n'(s)\\£Wo

By choosing both s and 8χ sufficiently negative (or sufficiently positive)
we can therefore insure that

\\BW(8)W+\\W'(8)\\*<8

for any given δ > 0. But w(s) = ^ ( 8 ) — ^ 0(s),

lί '(s) = uj(s) — u'0(s) , Bw(s) — Bu^s) — JB^ 0(S) .

Applying Lemma (1.4) and choosing S sufficiently small, we can there-
fore insure t h a t \\u1-u\\HM = \\WSl(u0) - WS(UQ)\\HM < ε.

Proof of (c). The conclusion of (c) follows from Lemma (1.4)
together with the fact that || Ws(u0) \\SM is uniformly bounded for
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all 8.

Proof of (d). The conclusions of (d) follows by the same argu-
ments as those of (b) and (c) if one replaces equation (1) by equa-
tion (2).

Proof of (e). We have already observed these facts in the course
of the preceding argument.

THEOREM 3. As s—> +co9 W8 as a sequence of operators from
HQ to HH converges uniformly on bounded subsets of Ho to an opera-
tors W± mapping Ho one-to-one and onto HM which satisfies a Lips-
chitz condition on bounded sets of Ho and maps bounded sets into
bounded sets. Similarly W8 converges to an operator W- α s s - ^ - ω ,
where W- maps Ho one-to-one and onto HM, satisfies a Lipschitz
condition on each bounded set of Ho, and maps bounded sets of HM.
Both W+ and W- have inverse T+ and T- defined on HM which
satisfy Lipschitz conditions on bounded sets and map bounded sets
into bounded sets.

COROLLARY TO THEOREM 3. IfS= W+1Ί(V-, S is a one-to-one
continuous mapping of Ho onto itself such that S and its inverse
map bounded sets into bounded sets and satisfy a Lipschitz condi-
tion on each bounded subset of Ho.

Proof of Theorem 3. It follows from Lemma (2.1) (b) that Ws

converges uniformly on bounded subsets of HQ as s —> + oo, or — oo.
By Lemma (2.1) (c), the limits W+ and W- satisfy Lipschitz condi-
tions on each bounded set of Ho. By Lemma (2.1) (e), they map
bounded subsets of Ho into bounded subsets of HM. By Lemma (2.1)
(d), T8 = W71 converges similarly to T+ and Γ_ as s—> +oo or - c o ,
respectively. For each s,

(W8T8)(u) = u, ueHM

(T8Ws)(u0) - u0 ,

It follows immediately that W-T- and W+T+ are the identity on HMf

and that Γ_ W- and T+ W+ are the identity on Ho. The conclusion of
the theorem is then complete.

Since Ts W± converges strongly to the identity operator on Ho as
s—> ± oo, the wave operators exist in the sense of [5],

Section 3* Examples and remarks* To obtain examples of opera-
tors A and Mt{u) for which the Assumptions (I) and (II) hold, we



SCATERING FOR NON-LINEAR WAVE EQUATIONS 43

let H — L\En) where En is the ^-dimensional Euclidean space, and
let A be the unique self-adjoint realization of a uniformly eliptic dif-
ferential self-adjoint operator of order 2m with coefficients uniformly
continuous on E*. (cf. [1]). We assume that A is positive. Let
Mt(u) = g{t)F\\ u \2)u, where F(r) is a twice-continuously differentiate
function on E\ Then Assumptions (I) and (II) will be verified under
the following conditions:

(a) F(0) = 0, F(r) ^ 0, g(t) is continuously differentiate. For
r > 1, F'(r) ^ r?, where q = m(n — 2m)"1 (or any finite number if
n ^ 2m), F"(r) S rq~x for r ^ 1.

(b) g(t) > 0 for all ί; flr'(ί) ̂ 0 for t ^ - To and flr'(ί) ^ 0 for
ί ^ To- Further, flr lies in L 1 ^ 1 ) .

The essential parts of the verification are given in §2 of [2],
Slight variants of the above condition (b) may be given and in par-
ticular, one in which h(t) is nonnegative and vanishes outside a bounded
interval. (In this last case the second part of the scattering problem
is trivial).

Theorem 1, 2 and 3 may be generalized under suitable hypo-
theses to the case where A is not self-adjoint or depends upon the
time parameter t.
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