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Let X be a Lebesgue measurable subset of the real line and let
L be the set of all real valued measurable functions on X, two functions
being identified if they are equal almost everywhere. S. Banach and
M. M. Day have provided the following real topological vector spaces
which have no nonzero continuous linear functionals (see [1] and [3]).

EXAMPLE OF BANACH. Let V consist of all functions f in L
for which S| FlA+fD < o and define the distance between two
Sunctions f and g in V to be Slf— gl +|f—g)* Then this

distance function is a metric on V, and under the metric topology
V 18 a real topological vector space on which there 18 mo mnonzero
continuous linear functional.

ExAMPLE OF DAY. Let p be a real number for which 0 < p <1
and let 'V consist of all functions f in L for which glf |? < oo,
Define the distance between two. functions f and g in V to be
S[ f—91?. Then this distance function is a metric on V, and under

the metric topology V is a real topological wvector space on which
there is mo monzero continuous linear functional.

On the other hand if p = 1 in Day’s problem then ( If [")“" is a
norm on V which gives rise to the well known Banach space L (X, m),
and of course a Banach space has nonzero continuous linear functionals
by the Hahn-Banach Theorem. Observe that the Banach space L, (X, m)
and the examples of Banach and Day have this in common; each is a
real topological vector space, V, for which there is a nondecreasing
function ¢ mapping the nonnegative real axis into itself such that a
complete neighborhood system of 6 in V (where 6 denotes the zero

function) is given by sets of the form { feV; S¢(| < s}. The purpose

of the present paper is to provide a theorem on abstract measure
spaces which unifies all these results and reveals other topological
vector spaces on which there exists no nonzero continuous linear
functional.

Let (X, m) be a measure space as defined by Halmos in [5, p. 73]
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and let L be the set of all measurable functions on X, two functions
being identified if they are equal almost everywhere. By a simple
function on X we mean a linear combination of characteristic functions
of subsets of X having finite measure. By an atom we mean a sub-
set U of finite positive measure such that given any measurable sub-
set B of U, either m(E) = 0 or m(E) = m(U). The atoms U, and U,
are identified if m(U, A U,) = 0; equivalently, the atoms U, and U,
are regarded as the same if m(U, N U,) = m(U) or m(U, N U,) = m(U,).
If U is an atom note that m(EN U) = m(U) or m(EN U) =0 for
any measurable set E. If fe L, then f is constant almost everywhere
on U; we denote this constant f(U). If E is a measurable set for
which m(E N U) = 0 for every atom U, we say that E is nonatomic.
In particular, if there are no atoms in X we say that (X,m) is a
nonatomic measure space.

THEOREM. Let V be a wvector subspace of L wunder the usual
operations of scalar multiplication and addition of wvectors which
contains all the simple functions on X. Let V be endowed with a
Hausdorff topology for which V 1s a topological vector space such
that there exists a mondecreasing function ¢ mapping the nonnegative
real axis into itself so that a complete neighborhood system of 6 in
V is given by sets of the form {fe V;¢(|f]) <ce}). Then

(1) if liminf n'¢(n) > 0, then given any two linearly independent
Junctions f and g in V there is a continuous linear functional T
on V for which Tf +0 and Tg = 0.

(ii) 4f lim inf n~'¢(n) =0 and {U,} is the (possibly vacuous) family
of all atoms in X, then given any continuous linear functional T on
V we have Tf = X, f(U)T (X U,) for all fe V; in particular, if (X, m)
18 monatomic there are no nonzero continuous linear functionals on V.

Since lim inf n'¢(n) = 0, statements (i) and (ii) exhaust all possi-
bilities. Before developing a proof we note that the Banach space
L,(X, m) and the examples of Banach and Day are all special cases
of our Theorem. In Banach’s example ¢(x) = x(1 + %)™ (we can show
that ¢ is nondecreasing by differentiating ¢) and plainly case (ii)
applies. In the Banach space L, (X, m) and in Day’s example ¢(x) =
2?; in the former problem case (i) applies and in the latter, case (ii)
applies. (Completeness is employed in the proof of Day’s example in
[3]; however completeness will not enter into the argument presented
here.)

Proof. We can assume without loss of generality that V= (0),
i.e., there is a function f in V for which f # 6. We claim that there
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is a measurable set £ for which 0 < m(E) < . To prove this observe
that there is an integer n» so large that qu(l n7'f|) < 1. Since V is
Hausdorff Sgﬁ(l 7' f1]) > 0 and there must be a real number ¢ > 0 for
which 0 < mX(¢(| n7f|) = ¢) < oo.

We claim that ¢(0) = 0 and lim, .+ ¢(y) = 0. To see this observe
that ¢ is in every neighborhood of itself; consequently 0 = Eg&(ﬁ) and

#(0) = 0. Let E be a measurable set for which 0 < m(F) < . Be-
cause V is a topological vector space n'y, converges in V to 0 as
n — oo and

o) = m(Bypn) 0 as m— o

Since ¢ is nondecreasing we have lim,_ .+ ¢(y) = 0.
We claim that ¥y = 0 and ¢(y) = 0 imply ¥y = 0. For if ¥y > 0 then

(because V is Hausdorff) m(E)¢(y) = S¢(?/XE) >0 and ¢(y) >0 where

FE is a set for which 0 < m(E) < oo,

We claim that given any ¢ > 0 there is a 6 > 0 such that y = 0
and ¢(y) < 0 imply y < e. If this were not true there would be a
sequence of numbers y,=¢ for which lim,.. ¢(y,) = 0; but then
#(¢) = 0 which is impossible.

Let V' be the vector subspace of V composed of all the simple
functions. We claim that V' is dense in V. To prove this let f be

an arbitrary function in V. There is an integer m such that
Scp(l n7'f]) < 1. On any set of the form X(K, = |f| = K, > 0) f can

be uniformly approximated by functions in V’ and it follows from
the Dominated Convergence Theorem that »'f and f are in the closure
of V7 in V (recall that lim,_ .+ ¢(y) = 0).

To prove (i) suppose that lim inf n~'¢(n) > 0 and let f, g be linearly
independent functions in V. Hence there is a number ¢ > 0 for which
Az and gy, are linearly independent where £ = X(|f|=¢) U X(lg| = ¢);
otherwise there would exist scalars a,b for which a*+ b* >0 and
afys + bgxz = 0 almost everywhere for all ¢ >0, and hence af +
bg = 0 almost everywhere on X which is impossible. Note that 0 <
m(E) < oo,

We have lim inf, .. ¥ '¢(y) = lim inf n'¢(n) because ¢ is nondecreas-
ing. Then there are positive numbers 6 and K such that if y > K,
then y7'¢(y) = 0 and 07'¢(y) = y. There is an integer n so large that

S¢(|n_1f|) < 1. For n*|f(x)| > K it follows that

|f(@)]| = né~¢(|n=f () |)

and consequently fx, is in L,(E, m) where E is the set given in the
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preceding paragraph. Likewise hy, is in L.,(E, m) for any % in V.

But L,(FE, m) is a Banach space and by the Hahn-Banach Theorem
there is a continuous linear functional S on L,(E, m) for which
S(fxz) = 0 and S(g9xs) = 0. Define the linear functional 7' on V as
follows; Th = S(hy) for all A in V.

To complete the proof of (i) it suffices to show that T is con-
tinuous on V. Now V is evidently first countable. We need only
show that if {,} is a sequence of functions in V converging to ¢ in
V, then {h,xs} converges to ¢ in L,(F, m). Let {k,} be such a sequence;

then lim Sg&([ h,)) =0 and ¢(/h,|) converges to ¢ in measure on X,
But given any € > 0 there is a § >0 such that y =0 and 4(y) < ¢

imply ¥ < e. Hence {,} converges to ¢ in measure on X. But by
an argument above

| Ba(%) | = 676(] ha(®) )

if |k (x)] > K for certain fixed numbers 6 and K; it follows that.
lim, .\ | 2. z| = 0 and (i) is proved.

To i)rove (ii) suppose lim inf n'¢(n) = 0 and let T be a continuous.
linear functional on V. We claim that if F is a nonatomic measur-
able set for which 0 < m(E) < o, then Ty;=0. To prove this.
suppose Ty # 0 and select any integer » > 0. It is well known that.
the set {m(S); S E} is the closed interval [0, m(Z)] (see [4, pp. 308-9]
for a proof that this set is dense in the interval, and the rest of the
argument is routine). By induction there exists mutually disjoint.
subsets K, E,, ---, E, of E for which m(E;) = n7*m(E) for all i. Then

AR S

< 3| T2,

and plainly there exists an index j for which |Typ,|=n"|TYsl.-
Hence

[ 601) = | o(m) = p(uym(1) = - glmym(E)
but on the other hand
| T@s)| = | Ty, | 2 nn [ Tas| = | Tts| > 0.

Because lim inf n~'¢(n) = 0 it follows that in every neighborhood of ¢
in V there is a function f for which |Tf|=|Tys| contrary to the
hypothesis that T is continuous.

Observe that Tf = 0 for any simple function f with nonatomic
support.

To conclude the proof of (ii) let f be any function in V for which
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Sgb(lf [) < 1. There is a sequence of simple functions {,} such that
fim ngi((f— ho)=0. Put E=X—U,U. Now f(U)+#0 for at
most countably many U,; say U, U, U,, --- are these atoms enumerated.
Clearly f)z and h,), are measurable and limgqé(lfxg — h,)z]) =0. Put

9n = hYn + 230 F(Ud)y,. Now 57 6[f(U) [Im(T;) §S¢(lfl) < . Con-
sequently

005 = 0. = 60515 = s ) + S 11U Im( T

and g, converges to f in V. But

Ty, = T(hts) + 3 FUIT () = 2FUIT (L) -

Because T is continuous

If = SFUNT () = SFUIT (L) -
This holds for any function f in V (because we can always consider
n~'f where SQS(I n7f|) < 1). The proof of (ii) is complete.

In our Theorem (ii) suggests the possibility of constructing several
topological vector spaces which have no nonzero continuous linear
functionals. We present one explicitly by employing the following

INEQUALITY. For any nonnegative numbers x and y

@ + = Y > x+y
log (9 + x) log(9+vy) ~ log(9+ 2+

and equality holds if and only 1f x =0 or y =0.

Proof. Set ¢(x) = x/log (9 + =) and observe that

—18log (9 + «) — «x[log (9 + =) — 2]

#"() = @ + @)log O + )

and ¢"(x) < 0 for all = 0 because 9 > ¢. We can suppose without
loss of generality that © =% > 0. Then ¢'(x) is strongly decreasing
and by the Mean Value Theorem

P(x + y) — o(x) < 9(y) — ¢(0)

and the conclusion follows. Observe also that ¢'(x) =0 and ¢ is
strongly inereasing for x = 0.
To construct our example let (X, m) be a nonatomic measure space
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and let V be the subset of L composed of all functions f for which
qu(l Fl) < o where ¢(y) =y [log (9 + »)|". That V is closed under

addition follows from the Inequality. To show that V is closed under
scalar multiplication observe that

lef | [log (9 + [ef D] = |f|[log (9 + [£ D]
if |[¢] =1 and

lef | [log (9 + [ef DI = [el|f | [log (O + [f D]
if [e] > 1. And in either event

lef|Tlog O + [ef D7 = (M + [e]) | f | Llog O + [/ D] .

Thus V is a vector subspace of L under the usual operations of
addition and scalar multiplication of véctors. Define a metric p on V

as follows; o(f, 9) = Sqﬁ(l f—g]). That g is a metric follows from our

Inequality and trivial verifications.

We claim that V is a topological vector space under the metric
topology. That (f, 9) —f + g is continuous in f and g simultaneously
follows from the Inequality. To show that (¢, f) —¢f is continuous
in ¢ and f simultaneously we observe that

p(cf, eufo)
_ S| of — cofo| [log 9 + |ef — eofo D™

= {lef — ofillog @ + lof — ofi I

+ {Ief = eufo og ® + I fs — cof DI
= @+ Je|if = £ulllog @ + 17 — £, DI
+ (e = el og @ + e = e 1£u] -

In the preceding paragraph fix ¢, and f, and let ¢ and f vary.
Now if |¢ — ¢,| < 1 then

le — ¢l folllog (O + e — ¢l | /o DI = [fol [log 9 + [fo D] .

By the Dominated Convergence Theorem we can make p(cf, ¢.f,) as
small as we please by making |c¢ — ¢,| and p(f,f,) small enough.
Hence V is a topological vector space satisfying (ii) in our Theorem
and there is no nonzero continuous linear functional on V. (By an
argument paralleling the proof that L,(X, m) is complete for p = 1
one can also show that V is complete; the details are left to the
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reader.)

The interested reader can also show that the set of functions f
in L for which Slog 1+ |f]) < « endowed with the metric o(f, g) =
Slog 1+ ]f—gl is a topological vector space under the metric
topology which has no nonzero continuous linear functional.
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