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Introduction. The aim of this paper is to show how some of
the methods useful in studying normal extensions of groups can be
used in a problem of more general extensions. The present approach
(which might be compared with that of Szep [5]) is made possible
because we consider classes of extensions which are still relatively
restricted.

If G is an arbitrary subgroup of a group H then the set of all
right cosets of G in H forms a mixed group under a naturally defined
operation (Loewy [3]). In particular, when G is normal in H then
the corresponding mixed group is the ordinary quotient group H/G.
This paper is concerned with examining properties of the class of
those extensions H of a given group G for which the corresponding
mixed group is isomorphic to a given mixed group /I'. As an example
of the results, Theorems 2.2 and 2.3 represent analogues of the cor-
responding theorems of Schreier on factor sets for normal extensions.

The author wishes to record his appreciation to Professor H.
Schwerdtfeger for suggesting this problem and encouraging the work.

Mixed groups.

1.1 DEFINITION. A mixed group is a set I” on which a product
af e I' is defined for certain pairs «, 8e " such that

(i) a nonempty subset 4 of I forms a group under the given
product and is called the nucleus of I';

(ii) for all Se ', aB is defined if and only if o € 4; furthermore,
aB = £ if and only if @ = 1, the identity of 4;

(iii) if a,Be 4 and ve ' then a(BYy) = (aB)r. (See Loewy [3]
and Bruck [2; page 35]. The general properties of mixed groups are
derived in Baer [1].)

In particular, if H is a group with a subgroup G then the set
of all right cosets of G in H forms a mixed group when the product
of two elements is defined by (Gz)(Gy) = Gxy whenever z e N(G; H),
the normaliser of G in H. In this case we denote the mixed group
by H/G and note that its nucleus is the quotient group N(G; H)/G
(See Baer [1]).

1.2 DEFINITION. Two mixed groups I" and /" with nueclei 4 and
4’ respectively are isomorphic under a mapping 7 if = is a one-to-one
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mapping of I" onto I such that (a7)(B7) is defined in /™ if and only
if @B is defined in 7" and that in that case (aB)r = (a7)(B7).

Because of part (ii) of Definition 1.1, and isomorphism 7 of I”
onto /" induces on the nucleus 4 of I" a (group) isomorphism onto
the nucleus 4' of 1.

As an example, suppose that H is a group with a subgroup G and
let ¢ be a homomorphism of H onto a group H*. If G* is the image of
G under ¢ and ker ¢ & G then it is easy to show that the mixed
group H/G is isomorphic to H*/G*. The notation H/G = H*/G* will
be used to imply the existence of a homomorphism of H onto H*
with this property.

1.3 DEFINITION. If H is a group with subgroup G and H|G is
isomorphic to a mixed group I” then H|G is a representation of I’
and H is an extension of G by I".

Baer [1; Theorem 3] proves that, except in the case that the
mixed group I” is of order 2 and has unit nucleus, every mixed group
I" has a representation H/G for some groups H and G. (The ex-
ceptional case arises because no subgroup G of index 2 in a group H
can be its own normaliser.)

1.4. Contrary to the case of normal extensions, not every group
G has an extension H by a given mixed group I". From the example
of 1.2, when H*|/G* is chosen to be minimal under the quasi-ordering
defined there, G* contains no nontrivial normal subgroup of H*. In
such a case we call H*/G* a cardinal representation of I"'. (If |I'}
= n is finite, and H*/G* is a cardinal representation of I, then H*
ig isomorphic to a permutation group of degree n and G* corresponds
to a subgroup fixing one letter.) Thus a necessary condition that G
should have an extension H by [I” is that, for some cardinal repre-
sentation H*/G* of I', G* should be a homomorphic image of G.
Examples show, however, that this condition is not sufficient.

2. Extension functions. As a generalisation of the Schreier factor
set used in the theory of normal extensions we consider the extension

of a group by a mixed group through the medium of a skew product
(cf. Redei [4], Szep [5]).

2.1. Let G be a group and I" be a mixed group with nucleus 4.
We define the skew product (G, I") to be the set {a,a>|acG,aecl}
on which a binary operation is defined by

{a, b, B = {af(a,b, B), s(a, b, B)>
with a, b, f(a, b, 8)€ G and «, B, ¢(a, b, B)e ' for some functions f
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and ¢ respectively.

We shall denote the identities of G, I" and <{G, ") by 1,1 and
<1,1> respectively. Furthermore we write <G, @) = Kz, a>|z e G},
a, ) ={a, E|Ec '} and identify G with <G, 1> and I" with {1, I")
under the natural mappings.

2.2 THEOREM. The skew product H = <G, Iy is a group with
identity {1,1> if and only if the following conditions on f and ¢
hold for all b,ceG and a, B, ve "

1 f(@1,5,8) =band ¢(1,b,8) =5;
(2) fla, b, B)f(p(a, b, B), ¢, ) = f(a, bf (B, ¢, V), 8(B, ¢, 7)) ;
(3) ¢(s(a, b, B), c,7) = ¢(a, bf (B, ¢, V), 8(8, ¢, 7)) ;

(4) for all aeI there exists £cI” such that ¢(£,1, a) = 1.

Proof. (1) is equivalent to <1, 1)Xb, B> =<b, 8>, that is that
<1,1) is a left identity.
(2) and (8) are together equivalent to the associative law

{Ka, a><b, B} e, 1) = <a, &) (Kb, B><e, 7} .

(4) is equivalent to {1, @) having a left inverse <z, £ (with # =
f( 1, )™). However, in that case <a,a)> =<a, 1><1, a) has a left
inverse <{z, £><a™*, 1> for all <{a,a> e H.

Thus the stated conditions are necessary and sufficient.

2.3 THEOREM. If the skew product H = <G, I") is a group with
identity {1, 1> then a mecessary and suficient condition that <G, I/
{G, 1> = H|G should be isomorphic to I" under the natural mapping

7:{G, 1D, a) =G, a) — «a (xel)

is that
5) #(a, b,1) = a for all be G of and only if aed;
6) #a, 1,8) = aB when acd.

Proof. Since it is clear that = is a one-to-one mapping onto I"
the theorem follows from Definition 1.2 when we note:

(5) is equivalent to <G, a)>re 4 if and only if ac 4;
(6) 1is equivalent to <G, a><{G, B> = LG, aB)> for ac 4.

2.4. A skew product H = {G, I"> which satisfies the conditions
(1)-(6) will be called an extension of G by I" with functions f and
#. TFor such an extension it is easily shown that f and ¢ have the
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following properties:

(M fle,1,1) =1 and ¢(a,1,1) = ;

(8) for all {a, > e H there exists a unique & € I"such that ¢(§, ¢, @) = 1;
(9) the mapping 7— ¢(7, @, @) permutes the elements of I7;

(10) #(a, b, B) = @B when ae 4.

2.5 DEFINITION. Two extensions H, = <G, ), and H, =<G, I,
with functions fi, ¢, and f,, ¢, respectively are called equivalent if
there is an isomorphism of H, onto H, which leaves each element of
G fixed. If, moreover, the coset <G, a), is mapped onto the coset
{G, a), for each ae " then H, is said to be biequivalent to H,.

Thus if ¢ is a one-to-one mapping of H, onto H, then in order
for this mapping to be a biequivalence we must have

(i) <a, 1>10 = {a, L;

(i) {<a" a>1<b; /8>1}0 = <a’r C¥>10<b, /8>10

(iii) Q, a),0 =<z, o, for some z,€G.

2.6 THEOREM. If H, = <G, I, and H, =<G, "), are two exten-
stons of G by I' with functions f,, ¢, and f,, ¢, respectively then H,
18 biequivalent to H, if and only if there is a function «— %, of
I into G such that

(11) ®o S, bxg, B) = Sfila, b, B)x(bl(w,b,ﬁ) ’
(12) ¢2(0(, bxﬁ; B) = ¢1(0(, br B) .

Proof. If 6 is a biequivalence of H, onto H, then define z, by
2.5 (iii). Then <a, @),0 = {ax,, a>,. Therefore

{Ka, a>Lb, B)}0 = <afia, b, B, 100,85 $:(a, b, B,

and <a, 3,0, B30 = {awafua, b, B), $.(a, by, B, and so (11) and
(12) are together implied by 2.5(ii).

Conversely, if we are given (11) and (12) and define ¢ as the
one-to-one mapping of H, onto H, given by <a, )0 = {ax,, &), then
2.5 (i), (ii) and (iii) follow, so ¢ is the required biequivalence.

2.7. Let H=<G, I be an extension of G by a mixed group I”
with functions f and ¢. The kernel 4 of I” is isomorphic to N(G; H)/G
(by 1.1). Therefore G = <{G,1> is a normal subgroup (and H is a
normal extension of @) if and only if 4 =171, and I" is a group.
Alternatively, using (5) and (6) we have that ¢(«,b,1) =« (for all
ael',beG) as a necessary and sufficient condition that H be a normal
extension of G.

A second important case is when H is a splitting extension (i.e.



GENERAL GROUP EXTENSIONS v

I' ={,I> is a subgroup of H) so that H=GI"and GNI =1, In
terms of the extension functions, H is a splitting extension if and
only if f(a,1,8) =1 for all @, 8eI’. To prove this we note that,
since <1, >, B> = {f(a, 1, B), é(a, 1, B)>, the condition is certainly
necessary. It is also sufficient because when it holds we also have

A, a7 =LfE L™ =<1,8erl

where £ is defined as in Theorem 2.2.

2.8 THEOREM. An extension H =<G, Iy of G by I' with func-
tions f and ¢ is a splitting extension if and only if for some func-
tion a— x, of I" into G we have

(13) Sa, L, B) = x;lxé(w,m,ﬁ) .

Proof. Apply Theorem 2.6 with fi(a, 1, 8) = 1.

COROLLARY. If the conditions of the theorem are satisfied then
I'* =y, 0> |ae I} is a subgroup of H such that H = GI* and
GNnr*=1.
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