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Introduction. It has been shown by A. Edrei and W.H.J. Fuchs
[1], that if f is an entire function all of whose zeros lie on the negative
real axis, then f has zero as a Nevanlinna deficient value provided
only that the exponent of convergence of the zeros is finite and greater
than 1. The extension of this result to more general distributions
of the arguments of the zeros and poles of a meromorphic function
was investigated independently in [2] and [3].

In [2], Edrei, Fuchs and the present author consider entire functions
whose zeros have a finite exponent of convergence and are distributed
on a finite number of rays. The main result of that investigation is
the following:

THEOREM A. Let f(z) be entire. Assume that all its zeros {a.}
lie on the radit defined by

reteo, reiet, .. preion  (r > 0)

where the w’'s are real.
Then there exists a positive constant K, depending only on the
@’s and such that the condition

1
Z_.____.:+OO
s IafL|K
and the condition
5L <t
# ‘a’il-l

for some finite value of &, tmply
000,/ ) =zA>0

where A(>0) is an absolute constant.
In [3], A. A. Goldberg shows that given @ not an integer, such
that § < 0 < 4+ and given two arbitrary positive numbers a and g8
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then there exists a meromorphic function f(2) of order p, all of whose
zeros lie on the rays argz = a and argz = « + (7/0) and all of whose
poles lie on the rays arg z = 8 and arg z = 8 + (7/p) for which d(0, /) =
0(c0, f) = 0.

Hence, any theorem for meromorphic functions analogous to Theo-
rem A must place some restriction on the geometrical configuration
of the rays on which the zeros and poles of the function are situated.

The main purpose of this note is to show that the methods of
[2] go further and yield the following generalization of Theorem A
to meromorphic functions.

THEOREM. Let f(z) be meromorphic. Let {a,} denote the zeros
of f which lie on the radii defined by

(1) reL, reiv, « .. retm  (r > ()
and let {b,} denote the poles of f which lie on the radit defined by
(ii) rei, re:, ... re¥n  (r > 0).

Assume

(iii) that the real mumbers 2m, @,, «++, Wy, Py, *++, P,
(0 <k =< m) are linearly independent over the field of rational numbers
and

k

(IV) Wiy = a'o,n.zn' + leai,hwi (h' = 1’ 27 e, M — k)
“=

where Gy p, Gy .y, =+, Gy are rational.

Let {a}} denote the zeros of f which do not lie on the radii de-
fined by (i) and {b}} the poles of f which do not lie on the radit de-
fined by (ii).

Then, there exists a positive constant K (depending only on the
@’s and +’'s) and an absolute constant B(>0) such that the conditions

1 1
1.1 = -0
.0 Flar  PmE
(1.2) pIJRE SR e S
v |auff v by

for some finite value of &(>K) and

(1.3) s 1 4 1 g

S N S

for some 7 < B, imply
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(1.4) g N, f) + N(r, 1f) . 1
rrtes T(r,5) 1+ 4

where A(>0) is an absolute constant.

As an immediate consequence of this theorem and the definition
of deficiency, we find
COROLLARY. The assumptions of the theorem imply

A
1+A4°

A
1+4°

00, f) = 0(o0, f) =

We shall show that Lemma 4 of [2] combined with a suitable
number theoretical lemma which we state and prove in §3 are suf-
ficient to yield our theorem.

2. Statement of a known lemma. For the convenience of the
reader, we restate Lemma 4 of [2] in a form suitable for use here.

LemMA A. Let f(2) be a meromorphic functions of genus not
greater than 2.

Assume

(i) that its zeros {a.} lie in the region defined by

s
ﬁ—,
iarg2l~60

(ii) that its poles {b,} lie in the region defined by

w
argz — 1| = —,
|arg 1_60

1 1
(i) Tl TR T

Then, for all sufficiently large values of r,

2.1) T(r,f) = (1 + A){N<r, _ch-) + N(r, f)}

where A(>0) is an absolute constant.
The inequality (2.1) still holds if f(?) is replaced by F(z):

F(z) = "1 (2)

where S(z) 18 an entire function (which may reduce to a polynomial).
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3. A number theoretical lemma. In order to apply the methods
of [2], we also require the following generalization of a number theo-
retical argument used in the proof of Theorem A [2, §6].

Conventions. Before we proceed with the statement and proof
of the lemma, we make the following conventions.

In all that follows, we shall use the terms “linear dependence”
and “linear independence” to denote linear dependence and indepen-
dence over the field of rational numbers.

In addition, given a set S of real numbers we shall use the term
“S* is a maximal linearly independent subset of S” to mean the
following:

(i) the elements of S* are linearly independent over the field
of rational numbers,
and

(ii) any element of S is a linear combination with rational coef-
ficients of the elements of S*.

LEMMA 1. Let S, be the set of real numbers
277:; Wy, Wy, =+, W,
and S, the set consisting of the real numbers

”llfl,”'{'fz, v"/f‘n

Assume

(i) that the set of real numbers 2r, ®, -+, ®,, (0 = k < m) is
a maximal linearly independent subset of S,

(ii) that the real numbers

277'.70)1’ Wyy *+ -y Wy, '\lrlr "#27 Tty "I'/‘n

are linearly imdependent.

Then
given &(>0) there exists an increasing sequence of positive integers
{L)z, and sequences of positive integers {M, )}z, (¢ =1,2, -+, m);

N, e =1,2, ---,n); such that for s =1,2,3, -

(3'1) !Lsa)i - 27TMs.i| < g, (1: = 1; 27 Sty m) ’
(3'2) ILs'\["j — (2Ns.f + 1)ﬂ:i < g, (.7 - 1; 2; tt Yy n) ’

and all s = s,

(3.3) L g
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Proof. We assume k < m and prove the lemma for this case only.
If £ =m, it will be clear that one part of our argument yields the
desired result.

By assumption (i), @;., (h=1,2, .-+, m — k) is a linear combination
with rational coefficients of 27, w,, ®,, -+, w,. Hence, there exist a
positive integer T and integers A,;, (h=1,2,---,m —k), (+=0,1,.--,k),
such that

(B4)  Top = 2ths, + 3 Ar0; (h=1,2 -, m—k).
Set

(3.5) A =31 Ansl (h=1,2 -, m—Fk),

(3'6) Q = max {T7 Aly ZZ; tt ey Am—k}

and

3.7) T = 227 + 1)

where I and J are nonnegative integers.

Assumption (ii) of our lemma and the equidistribution theorem of
H. Weyl [4] imply that there exists a positive increasing sequence of
integers {B,}:,, and sequences of integers {C, )=, (+=1,2,---, k),
and {D,;}>, (1 =1,2, ---,n), such that for each s =1,2, «--

(3.8) | Bw, — 27C,;| < % (i=1,2,-+, k),

T e .
(3.9) Bs’l//‘j'—Zﬂ'Ds,j—? <—1—_,- (321,2,-..,70),

and {B,}=, has a positive density; that is

(3.10) lim2 =d>0.

— 400
s>+ s

From (3.8) and (38.7) we have for each s=1,2,8, ---

(3.11) | B,Tw; — 22TC, ;| < %’l <e¢.

From (3.4), (3.8), (3.5), and (3.6), we deduce that fors=1,2,3, ---

)Bska+h - ansAh,O - 271' zic: Ah,ics,i

(3.12) = [ max {Bo,—22C.0 1] 3140

1=1,2,.0,

<%-Q=s (h=1,2,38, -, m—k).
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Furthermore, (3.7) and (3.9) imply that for each s =1,2,83, ---

(8.13) | BT; — 2nTD, ; — (2] + 1), < ¢.
We now show that for s = s,,
(3.14) B < 9,
B,

If this were not so, we would have for infinitely many values of s:

1 1 1

—_ = > ,

2 8 Bs+1

1.5 s+l s

2 B, By, s+1’

and by (3.10)

which is impossible.

We set L, = B,T. The inequalities (3.11), (3.12), (3.13) and (3.14)
show that the sequence {L,}z, satisfies all the assertions of our lemma
(with an obvious choice of the corresponding sequences {M, ;}, and {N, ;}).

4. Proof of the theorem. From the hypotheses of our theorem,
it follows that if we set ¢ = 7/60 in Lemma 1, there exist sequences
{Ls}?:u {Ms.i}.:;ly ('L =1,2,---,m), {Ns,j}:;h (.7. =1,2+,m) such that
(3.1), (3.2) and (3.3) hold with ¢ = 7/60.

Now choose K = L, and note that L, depends only on the ’s
and +’s. Since the zeros {a.} and poles {b} of f satisfy conditions
(1.1) and (1.2), it follows that there exists an integer ¢ = K such that

b SIFATRE TN
and
4.2) sl v 1 .o
R A T
Define & by the inequalities
(4.3) Ly=q< Ly .
Clearly
h=K=1L

and in view of (3.3)
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q<2Lh .

Consider the auxiliary function

4.4) f(z) — gS@ 7,(2)
7y(2)

where S(z) is an arbitrary entire function,

@5  m@=T(1- 2 )exp(Zt Lot ok 2

i a. Q. 2a;, qal,

and

2

(4.6) nz(z):IvI<1—Zi>exp<bzv +éib3—+---+;;3>;

where in view of (4.1) and (4.2), at least one of the two products
(4.5) and (4.6) is canonical.

We show next that (4.4) holds for a function of the form f, and
finally that this implies the validity of (4.4) for f.

Put L, = L and consider the function

(4.7) F(z) = f(2) f(@z) - - - F(@*2)

where w = e*V/L,
It is an easy consequence of the relations (4.4)-(4.7) that

(-5 (5)

48)  F() = G@E) = e g(") = enV I(1- "2‘) exp (‘i‘)

where R is entire and g is a meromorphic function of genus not greater
than one. In fact, our assumptions imply that the genus of g is
actually one. In order to see this we observe first that for all p
and v

ab + bk .
For, if this were not so, we would have for some ¢t and v

L _ KL
all-—bv,

l a”. [L eiLwJ —_ ] bv |L eiinﬁk .
Hence, for some integer N
Ly, = Lw; + 2N7

which, in view of conditions (iii) and (iv) of the theorem, is impossible,
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Therefore, cancellation of zeros and poles of g cannot occur. It
follows then from (4.1), (4.2) and the inequality L < q < 2L, that the
genus of ¢ is indeed one.

Setting 22 = ¢

(1= p) e ()

T T

v

But L = L, was so chosen that there exist positive integers M,
t¢t=1,2,---,m) and N;, (j=1,2, -+, n) so that

(4.10) | Lw; — 21 M, | <éf—0 (G=1,2 -, m)
and
(4.11) lL«/fj—(zNj+1)n|<g) (=12 --,m).

Hence G(¢) is a meromorphic function satisfying the hypotheses
of Lemma A, and consequently

@12)  T0,60) =+ AN(rzm) + NGO} Gz

We observe now, that the fundamental definitions of the theory
imply [2, p. 147] that for any meromorphic function W(z)

(4.13) N(r, W(zH) = N(r*, W(2))
and
(4.14) T(r, W(2F) = T(r%, W(2)) .

Since G(¢) = G(2*) = F(z), we deduce from (4.12), (4.13) and (4.14)
that

@15) T(r, FR) =1+ A){N(v ) + N(r, F(z))} r=r).

1
"F(2)

Now, the definition of ®, conditions (i)-(iv) of the hypothesis and
the definitions (4.4)-(4.6) prevent the possibility of cancellation between
the zeros of one of the functions f(a)"z) (7=0,1,2,---, L — 1) and
the poles of another of these functions.

Hence, by (4.7) and the bagic definitions of Nevanlinna’s theory,
it follows that

(4.16) N(r, F(2)) = LN(r, f(2)) ,
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1) 1
(4.17) N<¢, F(z—)> _ LN(r, f(z)>
and
(4.18) T(r, F(2)) = LT(r, 7 (2)) .

From (4.15), (4.16), (4.17) and (4.18) we readily deduce
P 1 A
@19 Te,FE) = 0+ HN(r, 25) + N FE)

The inequality (4.19) together with the definition of deficiency
imply

A
1+4°

PN A ~
(4.20) 90, /) = Tr A’ (e, f) =

Hence, by Theorem 4 of [1], it follows that the lower order \ of
f(z) satisfies

A2
1 [1 4
gt 1+2A]

log [1 + ——4(11‘ A)z]

(4.21) A

v

=B>0.

Since A(>0) is an absolute constant, the same is true of B.

We now return to f(2). Assume that (1.3) holds for some 7 < B;
B defined by (4.21).

Then, in view of the assumptions of the theorem, we may repre-
sent f(z) in the form

(4.22) @) = h(z)fiz)

where h(z) is a meromorphic function of order less than B and fo(z)
is defined by (4.4) with a suitable choice of S(z), (4.5) and (4.6).
Hence it follows that (4.19) holds with f replaced by F,; moreover,
the lower order of f, exceeds the order of h.

Then, by elementary inequalities of Nevanlinna’s theory

T(r, hf) ~ T(r, f) ,
(4.23) N(r, hf) _ N, J) o)
T'(r, bty T(r, 1)

and

N<r, %) N{r, é
(4.24) My Jo
) T(/ry fO) T(Ir9 fo)

+0(1) .
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The inequality (1.4) is now an immediate consequence of (4.19)
applied to f(z), together with the relations (4.22), (4.23) and (4.24).
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