Pacific Journal of
Mathematics

LEVEL SETS ON SPHERES

LEE MEYERS SONNEBORN




LEVEL SETS ON SPHERES

L. M. SONNEBORN

The purpose of this paper is to prove that corresponding to any
continuous real-valued function whose domain is the #n-dimensional
sphere (n = 2), there is a connected set on the sphere which contains
a pair of antipodal points and on which the funection is constant. While
this constant need not be unique, a stronger property is found which
ensures uniqueness and gives continuity to the constant over homotopies
of the function.

The weaker theorem was stated in abstract by R. D. Johnson, Jr.
[2]. The proof which follows constitutes a portion of the author’s
dissertation, [4].

Throughout this paper, # will be used to denote any integer not
less than 2. The usual n-dimensional measure on the n-sphere will
be taken to be normalized so that the total measure of the sphere
is one. Each time the measure of a set is mentioned, the set will be
either open or closed, and therefore measurable. Everytime the
components of a set are listed, the set will be open, and will therefore
have a countable number of components. A subset of S™ (r = 2) will
be said to be “too big” if it has measure greater than one-half. A
subset of the sphere is said to “cut up” the sphere if no component
of its complement is too big.

The fundamental tool to be used here is the following:

THEOREM. If O is an open set on the n-sphere, then either O or
its complement S™ — O has a component which cuts up the sphere.

The method of proof is to assume that O has no such component
and to prove that then its complement does.

LemMMA 1. If A is a connected subset of S™ (n > 1), and if B s
a component of S™ — A, then S™ — B 1is connected, and F(B), the
boundary of B, is also connected.

Proof. S™ is connected. The connectedness of S* — B follows
from [3], page 78. F(B) is connected since F'(B) = BNS* — B and
since S™ is unicoherent. See [5] pages 47-60.

Henceforth, let O denote an open subset of S”, no component of
which cuts up S*. Corresponding to any component, O,, of O, there
is, then, a (unique-consider the measure) component, T, of its component,
S™ — O;, which is too big.
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LeEmMMA 2. For ¢+ j, either
(i) T T;

(i) T, 7T,

(i) T,UT; =8S".

Proof. ByLemmal, T;, T;, S® — T;, and S™ — T are all connected
as is the boundary of each. O; and O; are connected and disjoint.
Each lies in a single component of the complement of the component
of the other. Hence, either O, S T; or O; < S" — T;. In the first
case, S® — O; contains the connected set S*— T, and S* — T; is
contained in a component of S™ — O,. Either this component is T or
not. If it is T;, then S* — T, = T; and T;UT; = S". If not, then
S,— T;NT;=¢, and T; S T;. In the second case O, = S* — T, and
T; < S® — 0,, so that T; being connected lies in a single component
of S* — O,. But this component must be T;, for it is the only one
big enough to contain 7T; which is also too big. In this case, then
T, =T,

COROLLARY. For 1 =+ j, either

(i) S"—T, 28— T}

(i) S*"—T;28"— T,

(i) (S"—=T)NES*"—Ty)=9¢.

Now, let O’ = J;(S® — T;). Clearly O’ 2 O since for each 7,0; =
S* — T,, and the O, are the components of O. O’ is the union of open
sets and is, therefore, open. Let X;,j =1,2, --- (possibly finite) be
the components of O’. Since for any %, S® — T is connected, it must
lie entirely in one of the X;’s, and any X; is the union of all the
S® — T,s contained in it.

LEMMA 8. If S*— T, and S — T, are disjoint but are both
contained in the same component, Y., of O', then there is an integer
l such that S* — T, = S*— T, and S*— T, =S~ — T,.

Proof. Assume there is no such integer I. Let T be the union
of all S* — T,, which contain S® — T;. Clearly none of these intersects
S* — T; by the corollary to Lemma 2. Let S be an arc in X, connecting
xeS*—T;toyeS"— T;. (X, is open and connected and hence arcwise
connected). S must intersect F(7). Let pe SNF(T). peS*— T,
for some ¢ such that S® — T,e X,. Some neighborhood of p also is
in S* — T, which is open. But this neighborhood of p contains a point
z€ T since pe F(T). Hence ze S™ — T, for some m such that S* —
T.2S8*— T, Since S*— T, and S® — T, intersect, one contains the
other by the corollary to Lemma 2. In either case, however, S* —T, =
T. But then peT,p being a boundary point of the open set T.



LEVEL SETS ON SPHERES 299

This contradiction establishes the lemma.

LeMMA 4. FEach Y, can be written as a countable expanding
unton of sets S™ — T; (i.e. a union in which each set contains the
Previous).

Proof. If X, contains only a finite number of S* — T, it contains
a biggest one (repeated application of Lemma 3.) Suppose then, that
X, = U2 (S* — T;). We choose a subunion of this union as follows:
Let I, =S"—T,; for m > 1, let L, =S — T,,, where t(m) is the
smallest number for which S* — T, 2 S™ — Ty if there is such
a number i(m). If, at some stage, there is no such number, the union
will be finite; otherwise it will be countably infinite. It remains to
be shown that U, ([,) = X,. Let zeX,. If zel,xcU.,.), so
suppose x ¢ I,. xe€S" — T, for some p. There is, therefore, a smallest
integer ¢ for which xe S* — T, and S — T, 2 I, (Lemma 3). There
is a largest integer s for which s = i(k) for some A, and s <gq. It
follows that ¢ = i(h + 1) for (S* — T)N(S* — T,) +# ¢ and x € S" — T,
while x ¢ S* — T',. Hence xe U, (L.).

LEMMA 5. For each k, the measure of X, does not exceed one-half.

Proof. Each T; has measure greater than one-half, so that each
S™ — T, has measure less than one-half. The expanding union of open
sets measuring less than one-half cannot have measure greater than
one-half. [1].

LEMMA 6. S™ — O’ s connected.

Proof. Each S* — X, is either one of the T, or is expressible ag
the decreasing intersection of a countable number which are closed
and connected. By Lemma 3.8 of page 80 of Wilder [5], S* — X, is
connected. Since X; is also connected, it follows from Lemma 1 that
F(X;) is connected. Now suppose S™ — O’ is not connected. Then
S* — 0" = AU B where A and B are disjoint, nonempty, and relatively
closed in S — O" and hence closed in S”. Since each X; has a connected
boundary, each X, has its boundary entirely in A or entirely in B,
Then consider S = A’UB’ where A’ = AU(U.e; X)), [ = 1| F (X)) = A}
and B’ = BU(Ujes X)), J = {j|F(X;) < B). A’ and B’ are easily seen
to be closed, nonempty and disjoint. Hence S™ is not connected. This
contradiction establishes the lemma.

THEOREM 1. If O is an open set of S"(n > 1), then either O or
S — O has a component which cuts up the sphere (i,e. a component
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whose complement consists of components with measures no than
greater one-half).

Proof. All the previous lemmas except the first were based on
the assumption that O had no such component. Since O’ 2 O it follows
that S*— 0’ S*—0. But S*—O0’ is connected and lies in a component,
A,of S*— 0. Since A28S"—0,8S"— A< 0, and every component
of S — A is contained in a component of O'. But the components of
O’ all have measure no greater than one-half, and so also do the
components of S™ — A.

LEMMA 7. If A and B are both connected, closed sets on S™ which
cut up S™, then ANB is not empty.

Proof. Suppose A and B are disjoint. A being connected, lies in
a single component, say B;, of S — B. S™ — B, is connected (Lemma 1)
and lies in a single component, say A, of S — A. Now the measure
of the open set A, is strictly greater than the measure of the closed
set S* — B, contained in it. However, M(B,) < 1/2 by assumption, so
that M(S™ — B)) = 1/2 and M(A,) > 1/2 contrary to the assumption
that A cuts up S*. This contradiction establishes the theorem.

COROLLARY. If g:S"—S"1s a measure-preserving homeomorphism,
and if A is a connected, closed subset of S™ which cuts up S™, then
there is a point xe€ A for which g(x)e A. In particular, any such
set A, contains a pair of antipodal poimts of S™.

THEOREM 2. Let F:. 8" x I— E", be continuous, (n > 1), and define
Sfi: S*— K" for each t, O <t <1, by fi(x) = F(x,t) for each xcS",
Then for each t, O <t <1, there exists an unique real number k,
such that f;*(k,) contains a closed conmected subset which cuts up S™.
This subset contains a pair of antipodal points of S™. Further, k,
18 a continuous function of t on O <t < 1.

Proof. The uniqueness of k, and the fact that the subset contains
a pair of antipodal points follow from Lemma 7 and its corollary. The
continuity of k, follows in the usual way from the compactness of
S™x I and the resulting uniform continuity of . The existence of
k, remains to be proved, that is it must be shown that for every
function f: S*— E*, there exists a real number %k, such that f(k)
contains a closed connected subset which cuts up S”. For each positive
integer m, there exists an open subset, O, of E' with the property
that all components of both O, and of E* — O, have diameter less
than 1/m. For each m, f~(0,,) is an open subset of S*, so that according
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to Theorem 1, there is a component of either f~*0,) or of S™ —
f0,) =f(E* — 0,) which cuts up S*. Denote by A, one such
component. Then the diameter of f(A,) which is connected and which
is either in O, or in E* — O,, is less than 1/m. For each m, pick a
point z, € 4,,. Since S™ is compact, the sequence {x,} has a limit point.
Let « be such a limit point, and set k = f(x). Alsolet B, = {s|k — 1/r <
s<k+ 1/r} and let C, be that component of f~(B,) which contains «.
Then each of the sets C, contains at least one of the sets A4,. For,
there is a number ¢ > 0 for which |y — x| < 0 implies | f(y) — k| < 1/2r,
and there exists m(6) > 2 for which |2, — 2| < 0. Now A,s & Cy
for, since |z, — x| < 0, the segment of great circle connecting x to
2.5 also satisfies this property so that for every point ¥ on this segment
|f(y) — k| <1/2r and 2, € C,. Also for any point z€ A4,.s,, | f(R) — k| =
| f(2) — f( @) + | (@) — k| <1/2r +1/2r =1/r. Thus the connected
set consisting of the segment and A, is all mapped into B,, so that
C, contains A4, and hence C, cuts up S™ for each 7.

Now let C = N=.C,. C is then the intersection of a decreasing
sequence of closed, connected sets in a compact space and is thus closed,
connected and nonempty. ([3] page 81.) Quite clearly, x € C and f(C) =
k. Suppose now that C does not cut up S”. Then there is a component,
say D, of S® — C, with measure more than one-half. Let we D. For
all sufficiently large », w¢ C.. Let D, be that component of S* — C,
which contains w. {D,} is an increasing sequence of open connected
sets. D = Uy, D, for otherwise there would be a point »e D not in
any D,. D being open and connected contains an arc joining w to v.
If v¢ UD,, there is a first point % along this arc such that v ¢ UD,.
But since we D, u¢ NC, so for some », u¢ C,. For this value of »,
% and some neighborhood of it are S® — C,. Also for some ¢ > r, points
of this neighborhood are in D;, and so must 4 be. Thus we UD, and
this contradiction establishes that D =UD,. But now each D, is a
component of the complement of C, and each C, contains some A,,.
Hence, since each A, cuts up S*, each D, has measure not greater
than one-half. However, the expanding union of sets with measure
not greater than one-half cannot have measure greater than one-half,
so that D has measure no greater than one-half contrary to the
hypothesis above, and C does cut up S*. This concludes the proof of
Theorem 2.

FExtensions and related topics. The only property of the real
numbers used in the foregoing is that fact that for every ¢ > 0, there
exists an open subset of them with the property that every component
of the open set and of its complement has diameter less than . Thus
the reals could be replaced by any (metric) space with this property.
Hence, since E* cannot be replaced by E? in Theorem 2, we conclude
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that E? does not have this property. The theorems which follow are
easily deducible from this fact.

THEOREM. If O is an open subset of the unit square I x I, then
etther some component of O or some component of (I x I) — O contains
a pair of points belonging to opposite faces of Ix I.

THEOREM. If f:Ix I— E* is continuous, there is a connected
subset of Ix I which contains a patr of points on opposite faces of
Ix I and on which f is a constant.

THEOREM. If f: S*'x S*— E' is continuous, and if p: E*— S* x
S is the usual projection map of E* as the universal covering space
of S*x S, then there is a connected subset A of K*® such that diam
A= o and fp|A is a constant.

THEOREM. If f: S'x S*'— E* is continuous, there is a connected
subset B of S*x S' such that f|B is a constant and such that B
carries a montrivial one-dimensional Cech cycle of S*x S*.

The proofs of all these theorems are straightforward and are given
in the author’s dissertation [4].
A different extension is given by the following theorems.

THEOREM. If n=2m + 1 and f: S*— E™ 1is continuous, there
exists a conmected subset of S™ which contains a pair of antipodal
points and on which f is constant. (This theorem follows easily
Jrom Yang [6].)

THEOREM. If n <2m—1, m=1, there exists a continuous function
f: S*— E™ such that on no connected subset of S™ containing a pair
of antipodal points is f a comstant.

Proof. Consider the case n =2m —1. S™ ' ={T = (@1, %5y ***, Tom) |
S () =1}, For 1l =1 < m, define A, B; and C;, by A, = {&|2y_, =
Or PLa; z O}, Bz:—{f ‘ Lgi = — Lgi—1y Lai—1 g O} and Ci = {E | La; = Lai—1y La—1 é O}-
Let D, =A,UB;UC;,1<i<m. Let f;: S™'— E' be given by
f{y) = d(y, D,). Since every closed connected set containing a pair
of antipodal points of S?*~! intersects D,;, the points which are con-
nected to their antipodal points by a level set of f; consist of those
points for which #; = z;.,, =0. Thus f: S *'— E™ given by f =
(f1, far =+ +, fw) satisfies the conditions of the theorem. Forn < 2m —
1 one can take a great wm-sphere on the 2m — 1 sphere and use the
restriction of the above example.
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I can give no information in the case f: S — E™, m = 2.
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