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SOLUTION OF LOOP EQUATIONS BY ADJUNCTION

R. ARTZY

Solutions of integral equations over groups by means of adjunction
of new elements have been studied by B. H. Neumann [3] and F. Levin
[2]. Here an analogous question for loops will be dealt with, and the
results will prove to be useful also for groups.

Let (L, .) be a loop with neutral element e, x an indeterminate.
Let w be a word whose letters are x and elements of L. Let n be the
number of times that x appears in w. Form f(x) from w by inserting
parentheses between its letters so as to make it into a uniquely defined
expression if juxtaposition means loop multiplication. The equation
f{x) — r, r in L, will be called an integral loop equation in x of degree n.

An integral loop equation f(x) = r is monic if f(x) is a product
of two factors both containing x. Every integral loop equation can
be made monic by a finite number of left or right divisions by elements
of L.

Not every integral loop equation has a solution as indicated by the
monic example x2 — r, r Φ e, L the four-group. Our aim is finding a
loop E in which L is embedded and in which f(x) = r has a solution.
The loop E used here will be an extension loop [1] of L by (Cn, +),
the cyclic group of order n. The construction follows the

Extension Rule. The elements of E are ordered couples (c, a) where
ceCn,aeL. Equality of couples is componentwise. The multiplication
in E is defined by (clf ax) (c2f α2) — (cx + c2, axa2'h{cx, c2)), where h(clf c2)

is an element of L depending on cx and ca, assuming the value e except
in the case when cx + c2 = 0 and cx Φ 0.

THEOREM 1. A monic integral loop equation f(x) = r of degree n
over a loop L has a solution in an extension loop E = (Cn, L) constructed
according to the Extension Rule, with f(e)h(cf n — c) = r whenever
cφ 0.

Proof. If the element b of L is represented in E by (0, 6), L is
mapped isomorphically into E. Let x be represented in E by (1, e),
where 1 is a generator of Cn. All elements of Cn will be written as
integers. Then f(x) can be constructed by stages. For every x entering
into the successive multiplication one summand 1 appears in the first
component. In the second component only the loop elements of f(x)
will appear as factors because x has the second component e. The h'&
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362 R. ARTZY

do not enter the picture until the last step because they depend on
the first components, and all multiplications but the last yield h(c19 c2) =
e in view of 0 ̂  cλ + c2 < n. Thus, at first, the construction of the
second component of f(x) in E follows exactly the pattern of the
successive multiplication which yielded f(x), with the exception of the
factor x. The result is, therefore, the same as though x had been
replaced by β, namely f(e). However, the last product, one of whose
factors contains by definition at least one x, requires a factor h(c, n—c),
0 < c < n. Thus the final result is (n, f(e)h(c, n — c)) = (0, r) and
consequently f(e)h(c, n — c) = r, c Φ 0.

THEOREM 2. An integral loop equation of degree n has in E at
least φ(n) solutions, φ being Euler's function. For each two of these
solutions, x and y, there exists an automorphism of E carrying x
into y and leaving L unchanged elementwise.

Proof. Let again x = (1, e). If k and n are relatively prime, (k, e)
is another solution because nk = 0 and h(m, q) — h(km, kq) since m = 0
or Φ0 according to km = 0 or = 0̂. There are φ{n) distinct k's with
the properties 0 < k < n and {k, n) — 1. This proves the first part of
the theorem. Now, 1 —> k is an automorphism of Cn preserving the
0-element and hence also the fc's. The loop L is unaffected by these
automorphisms, because they act only on the first components.

DEFINITION. An abelian integral identity over a loop L is an
equation u(w) = v(w'), where (i) w and wf are words using the same
set of elements of L, but not necessarily in the same order, (ii) u(w)
and v(wf) are formed from w and w', respectively, by inserting parenthe-
ses between the letters of the words so as to make them into uniquely
defined expressions if juxtaposition means loop multiplication, (iii) the
equality is preserved when the loop elements forming w and w' are
replaced by arbitrary elements of L.

In general the validity of abelian integral identities in L, like
associativity or the Moufang property, does not carry over into E.
However, in the case of degree 2 we are able to obtain the following
result.

THEOREM 3. Let an integral equation of degree 2 over a loop L
have the monic form f(x) = r. Every abelian integral identity valid
in L will hold also in the extension loop E, constructed as in Theorem
1, provided h(l, 1) = [f(e)]\r lies in the center of L.

Proof. The first component of the elements of E is 1 or 0. Moreover,
λ(0,1) = h(l, 0) = h(0, 0) = 1; write h(l, 1) = h, for short. We have
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then h(p, q) — hpq, where pq is the product of p and q in GF(2), and
h° = e, h1 = h. The addition in C2 = {0,1} is the addition of GF(2).
The loop elements h° and h1 multiply according to the rule hphq — hp+q,
and, by the hypothesis of the theorem, they lie in the center of L.

Now, the abelian integral identity u(w) = v{wf) in E would surely
be satisfied for the first components since they behave as elements of
C2, an abelian group. If in the second components the h's are disregarded,
the abelian integral identity over E yields an exact replica of the same
identity over L. But, as center elements of L, the h's appearing in
u and v can indeed be pulled out and shifted to the right of each side.
We denote the product of the h's of u by hΉ{u\ In the degenerate
case where u consists of one letter only, we define H(u) = 0. We have
to prove for the second components that u(w)hH{u) ~ v(w')H{v). Since
u(w) = v{wf) it will be sufficient to prove H{u) = H{v).

Let the first components of the elements of w be p19 , pm. We
claim now that H{u) — ̂ jTj=i.i<jPiPst independent of the order of the
p'a, and that therefore H{u) = H{v). For m = 2 we have trivially
H{u) = p,p2. F o r m = 3, hmu) = hp'p%{Pί+P2)P3 = hPlP*+PlP*+p*p*. Suppose

H{n) = Σi!ί=i.i<j PiPj has been proved for every word length m' < m.
If the last multiplication of u(w) is u'u", where vf is a product of
Piy , Pk and u" of pk+19 , pm, then the induction hypothesis yields
H{W) = Σ*ϊ >=ι.i<i PiPs and H{u") - ΣΓi=*+i.i<i 2>*PJ.

 T h e n

= Σ * i=i.*o Λ Pi + ΣΠi=*+i.i<i PiPi

+ (Pi+ -•- + pk) (pk+ι + + pm) = ΣΠi=i.i<i P<2>i

This completes the proof.

COROLLARY. Tfce equation xax — r over a group G has a solution
in an extension group E — (C2, G) constructed as in Theorem 1, provided
a~λr lies in the center of G. In particular the equation has always a
solution in E if G is abelian.
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A CHARACTERIZATION OF SCALAR TYPE
OPERATORS ON REFLEXIVE BANACH SPACES

EARL BERKSON

Introduction. The main purpose of this paper is to characterize
scalar operators on reflexive Banach spaces. This is accomplished in
4.2 and 4.4. However, most of the results are not limited to re-
flexive spaces.

We give a fundamental decomposition theorem for scalar operators
in § 2, and show in § 3 that this decomposition is unique.

In what follows, all spaces are over the complex field, all Banach
algebras have an identity of norm 1, and an operator will be a bounded
linear transformation with range contained in its domain. This under-
standing will also cover material quoted from other sources.

l Preliminaries. In this section we reproduce some machinery
from [4] and [7] which will be needed in the sequel.

The definitions and results of this paragraph are taken from [4].

DEFINITION. Let X be a vector space. A semi-inner-product on
X is a mapping [, ] of X x X into the field of complex numbers such
that:

( i ) [x + y, z] = [x, z] + [y, z] for x,y,ze X.

(ii) [Xx, y] = X[x, y] for x,yeX,X complex.

(Hi) [x, x]>0 for xφO.

(iv) I [x, y] |2 ^ [x, x][y, y].

We then call X a semi-inner-product space (abbreviated s.i.p.s). If X
is a s.i.p.s., then [x, xf'2 is a norm on X. On the other hand, every
normed linear space can be made into a s.i.p.s. (in general, in infinitely
many ways) so that the semi-innner-product is consistent with the
norm—i.e., [x,x]112 = \\x\\, for each xeX. By virtue of the Hahn-
Banach theorem this can be accomplished by choosing for each xeX
•exactly one bounded linear functional fx such that \\fx || = ||α?|| and
fx(x) = || x ||2y and then setting [x, y] = fy(x), for arbitrary x,yeX.

DEFINITION. Given a linear transformation T on a s.i.p.s., we
denote by W(T) the set, {[Tx, x] | [x, x] = 1}, and call this set the
numerical range of T.
An important fact concerning the notion of numerical range is the
following:
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366 EARL BERKSON

1.1 Let X be a Banch space and T an operator on X. Although
in principle there may be many different semi-inner-products consistent
with the norm of X, nonetheless if the numerical range of T relative
to one such semi-inner-product is real, then the numerical range rela-
tive to any such semi-inner-product is real. If this is the case, we
call T a hermitian operator.
Also important is the result:

1.2 If X is a s.i.p.s., complete with respect to the induced norm
on X, and T is a linear transformation on X, bounded with respect
to the induced norm, then | W(T) | ^ || T\\ ̂  4 | W(T) |, where | W(T) \,
denotes the quantity sup { |λ | |λe W(T)}.

In [7], I. Vidav introduces the following notion of hermiticity:

DEFINITION. An element h of a Banach algebra A with identity
e will be called hermitian if and only if for a real, ||β + ίah\\ =
1 + o(a) as a —» 0.
It is shown in [4; § 9] that an operator T on a Banach space X is a
hermitian operator if and only if it is hermitian in the sense of
Vidav's definition—i.e., if and only if || / + iaT\\ = 1 + o(a) for a real,
where / is the identity operator. Thus we have at our disposal two
equivalent formulations of the notion of hermiticity for operators on
Banach spaces.

The result of [7] very important for our considerations is the
following:

1.3 Suppose A is a Banach algebra with identity e. Let H be
the set of hermitian elements of A (i.e., H — {he A | || e + iah || =
1 + o(a), for a real}). We assume that: (a) every aeA has a rep-
resentation a = u + iv, u, ve H (b) if he H, then there is a rep-
resentation h2 = u + iv such that u, v e H and uv = vu. Then there is
an involution on A and a new norm equivalent to the given norm such
that in terms of this involution and the new norm A is a C*-algebra.
It is well known that the Gelfand representation of a commutative
C*-algebra with identity is an isometry onto C(^^), the algebra
of all continuous complex-valued functions on the maximal ideal space
^ (see, for example, [3; §26A]). Hence we can state:

1.4 Let A be a commutative Banach algebra with identity, and
let H be the set of hermitian elements of A. If every aeA has
a representation in the form a = u + iv, where u, v e H, then the
Gelfand representation of A is a bicontinuous isomorphism of A onto

2. A fundamental decomposition. Throughout the rest of this
paper X will be a fixed Banace space with norm || ||, and X* will be
its dual. Throughout this section S will be a fixed scalar operator
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on X, and E will be its resolution of the identity (see [1] for this
terminology). For given xeX, $*eX*, we shall denote by var
x*E( )x the quantity sup Σ \ x*E(σi)x |, where the supremum is taken
over all finite sequences {σj of disjoint Borel sets in the complex
plane p.

It is shown in [1; see proof of Theorem 17] that there is a con-
stant K such that

2.1 v a r x*E{ )x<LK\\x\\ || a?*||, x e X , x* e X* .

We now show:

2.2 LEMMA. For each xe X, define \x\ by

\x\ = sup var x*E( )x .

Then I \ is a norm on X equivalent to \\ \\.

Proof. It is straightforward to verify that | | is a seminorm.
With K as in 2.1 we have that | x \ S K \\ x ||, for x e X. Given xe X,
choose # * e X * so that ||a?*|| = l and x*(x) = \\x\\. Then \\x\\ =
\x*(x)\ = I x*E(p)x I £ I x |. This completes the proof.

2.3 LEMMA. Relative to the norm | | defined in 2.2, E(σ) is a
hermitian operator, for each Borel set σ.

Proof. We shall also use the symbol | | to denote the norm of
an operator relative to | |. We shall show that if σ is a Borel set,
and E(σ)Φ0, then

2.4 I / + iaE(σ) | = 11 + ia |, for a real .

For arbitrary x e X, x* e X*, with || x* || = 1, real a, and arbitrary finite
sequence σu σ2, -- ,σn of disjoint Borel sets, we have:

Σ I x*E{σ3){I + iaE{σ))x \

= Σ I x*E(σd)[E(σ')x + (1 + ia)E(σ)x]\,

where σr is the complement of σ.

^ έ I x*E(σί)E(σ')x \ + 11 + ia \ Σ I xi"E{σj)E{σ)x \

g 11 + ia I var x*E( )x, since the sets σΎC\σ\ , σn Π σ\

Oiΐλ o, " ' , ^ [ 1 ^ are disjoint.

g 11 + ia I I a? I .
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Hence

I (7 + iaE(σ))x | ^ 11 + ia \ \ x \ .

So

I I + iaE{σ) I S 11 + ia \ .

On the other hand, if y is in the range of E(σ), with | y \ = 1, then
I (I + iaE{σ))y \ — \ y + iay \ = | 1 + ia |. Thus 2.4 is established.
Since 11 + ia | = 1 + o(a), the desired conclusion follows.

2.5 THEOREM. There are operators R and J such that:
(1) S = R+iJ.
( 2 ) RJ= JR.
(3) Relative to some norm on X equivalent to \\ ||, RmJn are

hermitian operators for m, n — 0,1, 2, .

Proof. We write

2.6 S = ί Re\dE{\) + i f /mλcZE'ίλ), where "Λβ" and l4/mM denote

"real part of" and "imaginary part of," respectively .

We now set R=[ ReλdE(X) and J = ί ImXdE(X). Clearly (1) and

(2) hold. For the proof of (3) we use the norm | |, as defined in
2.2. By (2.3), E(σ) is a hermitian operator relative to | |, for each
Borel set σ. It is clear from the definition in 1.1 that a sum of real
multiples of hermitian operators is a hermitian operator, and so is a
limit in the uniform operator topology of hermitian operators. The
conclusion in (3) is now clear from the fact that for arbitrary positive
integers m, n,

R™ = f (ReX)mdE(X)

Jn = [ (ImX)ndE(X)

RmJn = [ (ReX)m(ImX)ndE(X) .

REMARK 1. It is not known, in general, if a product of com-
muting hermitian operators is hermitian, or even if the powers of a
hermitian operator are hermitian. Consequently it is not known if part
of property (3) of 2.5 is superflous.1

REMARK 2. We shall show in § 3 that the decomposition described
1 See note added in proofreading.
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in 2.5 is unique. Thus the representation of S given by 2.6 is characte-
rized by properties (1), (2), and (3) of 2.5. In [2; § 5], Foguel has
introduced the representation 2.6, but has characterized it differently,
without the notion of hermitian operator. In accordance with his
terminology, we call t ReXdE(X) and \ ImXdE(X) the real and imagi-
nary parts of S, respectively.

3 Uniqueness of the decomposition in 2 5 In this section we
show that the decomposition given in the statement of 2.5 is unique.
At first glance it might seem that uniqueness is immediate from 1.2;
however, given two pairs of operators, each pair satisfying (l)-(3)
of 2.5, we do not assume that the norms given in (3) are the same
for the two pairs.

Some additional items will be needed. Given an element a of a
Banach algebra A, we shall denote by spA(a) the spectrum of a in A.
We shall denote by [X] the Banach algebra of all operators mapping
X into itself. We shall use the fact that if x is a hermitian element
of the Banach algebra A, then spA(x) is real. This is shown in [7;
Lemma 2].

3.1 THEOREM. Let R and J be any two operators on X satisfy-
ing conditions (2) and (3) of 2.5, and let A be the Banach sub-
algebra of [X] generated by R, J, and I. Further, let T — R + iJ,
and define the functions fx and f2 on spίxΛ(T) by

/i(λ) = ReX, f2(X) = ImX .

Then there is a bicontinuous isomorphism of C(spίJn(T)) onto A such
that the image of fx is R and the image of f2 is J.

Proof. We shall assume throughout the proof that X has been
renormed with an equivalent norm, ||| |||, chosen according to con-
dition (3) of 2.5, and likewise that [X] and A have been renormed
with the corresponding operator norm, which we also denote by ||| |||.
We shall also introduce a semi-inner-product on X (denoted by [, ])
consistent with ||| |||. We first show that A satisfies the hypotheses
of 1.4. It is clear that if QeA, then Q is the limit in the uniform
operator topology of a sequence {Pn} of polynomials in R and J with
complex coefficients. For each n, Pn can be written in the form
Pn = Un + iVn. where Un and Vn are polynomials in R and J with
real coefficients. Thus Un and Vn belong to A and are hermitian
operators on X. For arbitrary positive integers m and n, and for
arbitrary xe X with ||| x \\\ = 1,

\[(Um - Un)x, x] + i[(Vm - Vn)x, x]\ - |[(Pm - P J s , x] I ̂  \\\Pm~Pn\\\.
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Since [(Um — Un)x, x] a n d [(Vm — Vn)x, x] a r e r e a l ,

\[(Um- Un)x,x]\ ^ | | | P m - P J | | a n d | [ ( F w - Vn)x, x]\ ^\\\Pm-Pn\\\ ,

Hence by 1.2,

| | | £ / w - £ 7 J | | ^ 4 | | | P m - P J | | and ||| Vm - F J | | ^ 4 || | Pm - P J | | .

It follows that {Un} and {Vn} converge to hermitian operators U and
V, respectively, which belong to A. Therefore Q = U + iV. Since
U and V are hermitian operators lying in A, they are (by § 1, para-
graph 3) hermitian elements of the algebra A. Thus 1.4 holds.

To complete the proof we show that there is a one-to-one map-
ping ψ of ^?, the maximal ideal space of A, onto spm{T) such that
if R and J denote the Gelf and representatives of R and J, respectively,
then R (ψ-\\)) = ReX and /(^"'(λ)) = 7mλ, for each λ e sp m (T). To
accomplish this, we identify ^£ with the space of all homomorphisms-
of A onto the complex numbers. We then define ψ as follows:

3.2 ψ{h) = h(R) + ih(J), for each homomorphism h e ^£,

Since spA(R) and spA(J) are real, and since R, J, and / generate Ar

it is clear that ψ is one-to-one. The range of ψ is obviously the
range of the Gelf and representative of T, and hence is spA(T). Since
the Gelfand representation of A is a one-to-one map of A onto C(^#),
it is clear that the commutative Banach algebra A is semi-simple and
completely regular. Hence (see [6; Corollary (3.7.6)]), spA(T) = spίxl(T).
The desired conclusions about R and J are obvious by virtue of 3.2.

3.3 THEOREM. Let S be a scalar operator on X. The operators
R and J of 2.5 are uniquely determined by (l)-(3).

Proof. Let R and J satisfy (l)-(3) of 2.5. Then (in the notation
of 3.1) there is a bicontinuous isomorphism Φ of C(spLxl(S)) onto A
such that Φ(fi) = R and Φ(f2) = J. Let ^ be the class of Borel sets
in 8pίxl(S). By [1; Theorem 18], the adjoint of every operator in A
is a scalar type operator of class X, and there is a spectral measure
G in X* of class (&,X) such that

3.4 φ{fγ = \ /(λ)dG(λ), for each / e C(spίxl(S)) .
JsP[χ](S)

r
In particular, S* = \ λcίG(λ). By [1; Lemma 6], the resolution

of the identity for S* (call the resolution of the identity F) is given
by

F(σ) = G(spm(S) Π σ) .
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Thus, using 3.4, we have

R* = [ Re\dF{\) and J* = [ ImXdF{\) ,

where F is the resolution of the identity for S*.

So the adjoints of R and J are uniquely determined, and hence so
are R and J.

4. Characterization of scalar type operators on reflexive spaces.
The first theorem of this section is the converse of 2.5 under the
additional hypothesis that X is reflexive. The second theorem con-
tains a summary of preceding results for the special case when X
is reflexive.

4.1 THEOREM. Let X be reflexive, and let T be an operator on
X. Then T is a scalar type operator of class X* if there exist
operators R and J satisfying

(1) T= R + iJ.
( 2 ) RJ= JR.
(3) Relative to some norm on X equivalent to \\ \\, RmJn are

hermitian operators for m, n — 0,1, 2,

Proof. By 3.1 the Banach subalgebra of [X] generated by R, J,
and / is equivalent to C(sp[x](T)). The desired conclusion is now
immediate from [1; conclusion (iv) of Theorem 18], which states that
if an algebra of operators on a reflexive Banach space F is equivalent
to the algebra of all continuous complex-valued functions on some
compact Hausdorff space, then this algebra of operators consists en-
tirely of scalar type operators of class Y*.

REMARK 3. It is a consequence of 2.5 and 4.1 that a spectral
operator on a reflexive Banach space Y is automatically of class F*.
This is also easy to see directly, since, in the reflexive case, it follows
from the Hahn-Banach theorem that a total linear manifold in F*
is dense in the norm topology of F*. Thus for a reflexive space F,
the terms "spectral operator'' and "spectral operator of class F*"
are equivalent.

4.2 THEOREM. Let X be reflexive, and let T be an operator on
X. Then T is a scalar type operator if and only if there exist
operators R and J satisfying conditions (l)-(3) of 4.1 If this is
the case, R and J are uniquely determined.

It is desirable to replace condition (3) occurring above by a con-
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dition which involves only the original norm on X rather than some
equivalent norm. The author wishes to express his appreciation to
G. Lumer for communicating to him the essence of the next theorem,
which accomplishes this purpose.

4.3 THEOREM. Let X be an arbitrary Banach space with norm
|| ||, and let R and J be commuting operators on X. Further, let
Sf be the set of all polynomials in R and J with real coefficients.
In order that there exist a norm on X equivalent to \\ || and relative
to which RmJn are hermitian operators for m, n = 0, 1, 2, , it is
necessary and sufficient that the set {eίP \ P e s/} be a bounded subset
of [X].

Proof. Suppose that X can be renormed with an equivalent norm,
III HI, relative to which the operators RmJn are hermitian. Then
each Pejy is clearly a hermitian operator relative to ||| |||, and so
by [7; Lemma 1] | | | e < p | | | = 1. Since the renorming is an equivalent
one, {|| eiP \\ \ Pessf} is bounded.

Conversely, suppose that the positive number K is an upper bound
for {|| eip || | Pe s/}. Define ||| ||| on X as follows:

HI x HI — s u p || eiPx || .

Clearly HI α? HI ^ # 1 1 a ||. Also ||α;|| = \\e~iPeiPx\\ ̂  K\\\x\\\. Since ||| |||
is obviously a seminorm, we can conclude that it is a norm equivalent
to || ||. For arbitrary QeJϊf and arbitrary xeX, we have:

I eiQx HI =suv\\e
i{p+Q)

Since s*f is obviously a real algebra, it is clear that as P ranges
through sf, so does P + Q. Hence |||βίρa?|ll = III # III, and each oper-
ator eiq, for Q 6 j ^ , is an isometry relative to ||| |||. Thus if Q e sf\
the operators eitQ> for real t, form a one-parameter group of isometries
(relative to ||| | | |). Since the families {eitQ} and {e~ίtQ}, with t > 0,
are (in particular) semi-groups of contraction operators, we have by
[5; Theorem 3.1] that the generators iQ and — iQ are dissipative;
hence Q is a hermitian operator relative to ||| |||. In particular, each
operator of the form RmJn> where m and n are nonnegative integers,
belongs to Sz? and so is a hermitian operator relative to ||| |||.

Using 4.2 and 4.3, we have:

4.4 THEOREM. Let X be reflexive, and let T be an operator on
X. Then T is a scalar type operator if and only if there exist
operators R and J such that:
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(2) RJ=JR.
(3) If sf denotes the set of all polynomials in R and J with

real coefficients, then {eiF \Pe sf] is a hounded subset of [X].
If this is the case, R and J are uniquely determined.

Note Added in Proofreading. G. Lumer has recently shown that
the powers of a hermitian operator are not in general all hermitian,
even on a reflexive space. This and other matters of interest to
readers of this paper will be found in his forth-coming paper, Spectral
operators, hermitian operators, and bounded groups, to appear in
Acta Sci. Math., (Szeged).
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DIVISORIAL VARIETIES

MARIO BORELLI

Introduction* The purpose of the present work is to introduce a
new type of algebraic varieties, called Divisorial varieties. The name
comes from the fact that the topology of these varieties is determined
by their positive divisors. See §3 for a more detailed discussion of
the above statement.

In the first two sections we lay the groundwork for our study.
The result obtained in Proposition 2.2 is new, and constitutes a natural
generalization of a well known result of Serre. (See [3], page 235,
and Lemma 2, page 98 of [5]).

Section 3 is devoted to the study of the categorical properties of
divisorial varieties. We prove that locally closed sub varieties of divi-
sorial varieties are divisorial, and that products and direct sums of
divisorial varieties are divisorial. Furthermore we give a characteri-
zation of divisorial varieties which shows how such varieties are a
natural generalization of the notion of protective varieties.

We show in §4 that all quasi-projective, and all nonsingular
varieties are divisorial. A procedure is also given for constructing a
large class of divisorial varieties which are neither quasi-projective
nor nonsingular, both reducible and irreducible ones.

In §5 we study the additive group of equivalence classes (under
linear equivalence) of locally linearly equivalent to zero divisors of a
divisorial variety. We show that such group is generated by the
semigroup of those classes which contain some positive members. As
a matter of fact the statement of Corollary 5.1 is more general than
the one above, but we omit the details here for brevity's sake. The
results of §5 are a generalization of the operation of "adding hyper-
surface sections," well known to the Italian geometers for projective
varieties.

Finally, in §6, we give one instance of a theorem which is known
to be true for either quasi-projective or irreducible and nonsingular
varieties, and show that it holds for divisorial varieties. The theorem
considered, which we refer to as the polynomial theorem of Snapper,
is Theorem 9.1 of [6], generalized by Cartier (See [1]) to either quasi-
projective or irreducible and nonsingular varieties.

We believe that the notion of divisorial varieties represents a
natural extension of the notion of quasi-projective varieties.

Our notation and terminology are essentially those of [3]. The
word sheaf always means, unless other-wise specified, algebraic coherent
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sheaf. The symbol ^2 is used to denote all sorts of isomorphisms, and
the type has not been specified, unless there is danger of confusion.
Whenever the expression a ® a ® (&a9m times, is meaningful,
we shall denote it by α(m). When we refer to, say, Theorem 3.2,
without any further designation, we mean Theorem 3.2 of the present
work, to be found as the second theorem of the third section.

1. We wish to review briefly some of the ideas and theorems
concerning the functorial properties of line classes; for a more detailed
treatment see [6], §§1 to 5, and [7].

Let X denote an abstract algebraic variety, defined over an
algebraically closed groundfield k. Let & x denote the sheaf of local
rings of X, and &x the sheaf (not algebraic) of units of &z. The
elements of the (multiplicative) first cohomology group H\X9 έ7\) are
called the line classes of X.

Let fe H\X, <^\) and let <%s = (Uit I) be an indexed open cover-
ing of X which admits a 1-cocycle b with values in d7\ which repre-
sents /. We shall briefly say that the system ( ^ , b) represents /.

If F is an algebraic sheaf over X, there exists a uniquely defined
(up to ^^-isomorphisms) algebraic sheaf K, and local isomorphisms
Uii K\ Ui~^F\ Uif such that, for every α?e Z7<Π U3 and aeFx,

The sheaf K depends only upon F and /, while, of course, the
local isomorphisms ut depend upon the choice of the system (^/, 6).
We denote the sheaf K by f(F).

In this way / can be looked upon as a functor from the category
of (classes of ^Visomorphic) algebraic sheaves and (classes of equi-
valent) ^jrhomomorphisms into the same category. Such functor is
covariant and exact. Furthemore, if F and G are two algebraic
sheaves over X, and / and g are two line classes of X, then

f(F) <g> σxg{G) -fg{F®σxG) ,

where fg denotes the product in the group of line classes.
Since F and f(F) are locally isomorphic sheaves, if F is of finite

type or coherent so is f(F), and conversely. Furthermore the stalk
of f(έ?χ) over any point x e X has a unique maximal submodule,
which we shall denote by nz, corresponding to the unique maximal
ideal mx of ^x,x.

2. Sections of f{^x)i We shall keep the same notation as in
the previous section. Furthermore, for every sheaf F over X, and
any subset U of X, we shall denote by Γ{ U, F) the set of sections
of F over U.
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PROPOSITION 2.1. Let X be an abstract algebraic variety, / a
line class of X, and se Γ[X,f(έ?x)]. Then the set

is an open subset of X.

Proof. L e t ( ^ , b) be a system representing /, where ^ = (Ui9 I).
Let n{: f(tfz) | t/* —• & x \ Ut be the local isomorphisms as in §1.
If xeUi then, by the definition of nx,xeXsf) U{ if, and only if,

(Uios)(x) ί m,

or, equivalently, if, and only if, (Uios)(x)e έ?x, X. Since &x is open
in έ? x, and since the u{ is a local homeomorphism, Xs Π ZTi is open in
t/i. This proves the proposition.

The following proposition generalizes Proposition 5 of §43 of [3],
as well as Lemma 2, page 98 of [5].

PROPOSITION 2.2. Let X be an abstract algebraic variety, / and
g two line classes of X, U an open subset of X. Let s e Γ[X, g(^x)]
and t £ Γ[U,f(έ?x)] be given, such that Xsd U. Then, for a sufficient-
ly high integer n, there exists a section s * e Γ [ I , / f ( ^ I ) ] , such that
s* = ί(g)s(w) on X8.

Proof. Let %s = (Ui9 /), ^ ~ = (VΛ9 A) be open affine coverings
of X which admit 1-cocycles with values in ^ x representing / and g
respectively. We may assume that ^ ~ is a refinement of <%/. Let
ut and vΛ be the usual local isomorphisms. Since XscUwe have that
teΓ[X.tf(έ?z)]. Let:

tΛ = v~\l) fΛ = vβoί

^ = ^ ( l ) gt = ^os

Let F*c i7ie Observe that ^ is regular on Ui9 and that

Since FΛ is affine and /Λ is defined on X8 Π Fα, we see by Lemma 1
of §55 of [3] that there exists a sufficiently large integer mω and a
section

such that

rLoύ — J a Ui

on VaΓ\X8* Since X is compact (we do not include T2 in the defini-
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tion of compactness) we may assume all m]β to be equal, and denote
their common value by m.

Let now s'aeΓ[VΛ,fg
m(6?x)] be defined as follows:

Clearly s'Λ — s'β = 0 on VanVβnX,. Hence, since g{ is regular on
Va Π Vβ, we have that the section

(s'a — sβ) 0 s e Γ[ Va Π Vβ, fgm+1(^x)]

is 0 on VΛ Π Fβ. Therefore the system of sections si 0 s defines a
unique section s* of fgm+1(^x) over X On FαΠX s we have:

which finishes the proof.

COROLLARY 2.1. Let X be an abstract algebraic variety, g a line
class of X, se Γ[X, g(^x)], h a regular function on Xs. Then, for
a sufficiently high integer n, the section h*s{n) can be extended to X.

Proof. Let / = 1, t = h, U = Xs in the above proposition.

REMARK. Let X be an irreducible, normal algebraic variety, with
constant sheaf (not coherent) of rational functions denoted by E.
There exists a group isomorphism between the multiplicative group
H\X, έ?x) and the additive group of equivalence classes (under linear
equivalence) of locally linearly equivalent to zero divisors of X If g
is a line class of X shall denote by | g | the equivalence class of divisors
which corresponds to it. Then there exists an isomorphism between
Γ[X, g(E)] and \g\. Sections of g(^x) over X correspond to the
positive members of \g\. See [6], §5 for the proof of the above
statements.

The geometrical meaning of Proposition 2.2 is then the following:
if D is a locally linearly equivalent to zero divisor of X, such that the
variety of its negative components is contained in the variety of some
positive divisor (also locally linearly equivalent to zero), say P, then,
for a sufficiently high integer n the divisor D + nP is locally linearly
equivalent to zero and positive.

PROPOSITION 2.3. Let X be an abstract algebraic variety, Y a
locally closed subvariety of X Then there exists a homomorphism

φn: H«(X, <?%) > £Γ (Γ f ^ ? ) , n = 0,1,
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and, for every feH^X, έ?%)9 there exists a homomorphism

φf: Γ[X, f(^x)] > Γ[Y, φ1(

such that, for every se Γ[X,

Proof. There exists a unitary ring epimorphism φ: έ?'x \ Y—> έ?τ,
Tience a sheaf homomorphism φ': <^% \ Y —> £?£. This proves the exis-
tence of the homomorphisms φn.

Let now fe H\X, έ?%). Let ( ^ , b) be a system which represents
/, where ^ = (Uif I). The system (^", V), where ^ ' = (I/in Γ, /)
and 6'(i, j) = φΌb{i, j), represents φx{f). Let

) I Ut xFxlUi

{ ><<?r\ Yf] Ut

be the usual local isomorphisms. Let se Γ[X,f(έ?x)]. We define
ψf(s) by the formula:

We easily verify that φf(s)(x) does not depend on the index ί. We
now assert that <P/(s) does not depend on the particular system (g/, b)
chosen to represent /. Let therefore ( 5 ^ , c) be another such system,
where W — (V3, J). We proceed in steps.

Case 1. *W" is a refinement of ^ , the mapping t: J —+1 is such
that c = ί*(6). From [6], Case 1 of Proposition 2.1 we know that the
usual isomorphisms vό: f(έ?x) \ Vό —> ^ x | V3 can be chosen in such a
manner that ut{j) = Vy on Fy. The system (^"', c'), where W~f =
{Yf] Vj, J) and c'(j, jf) = φ'°c(j, j'), clearly represents £>i(/), hence we
can furthermore choose the isomorphisms

in such a manner that ^ί(i) = v] on Ffl
Hence, if x e Yf] Vj we have

(u'tZj\°<P°Ut{j)os)(x) = (v'j-'

which finishes the proof of Case 1.

Case 2. <fs — W* b and c cohomologous. Hence there exists a
Ό-cochain e of ^ , with values in £7%, such that b~Ύc is the coboundary
of e. We can hence choose the isomorphisms v{ in such a manner that,
if xe Uif then u{ = e(i)(x) vif on the stalk of f(^x) over x. Let
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er = φo(e). Then it is easily seen that &'~V is the coboundary of ef

r

hence, if xe F n Ui9 u\ = e'(i)(x)-v'i9 on the stalk of <px(f)(tfT) over $.
Hence we have that v'r1 = e\i)(x)*u\~1

$ and a trivial computation now
finishes the proof of Case 2.

Case 3. The systems ( ^ , 6) and (^~, c) are arbitrary. Let
be a common refinement of ^ and W~. Hence there exist two
cohomologous 1-cocycles of *Wf with values in έ?x, say g and fc, such
that the systems (^^', #) and i^r\ h) represent /, and the pairs (δ, g)
and (c, fc), with their respective coverings, fall under Case 1. Further-
more the pair (g, h) falls under Case 2, and this finishes the proof of
Case 3.

The map φf is now easily seen to be a homomorphism.
It remains to prove that Yf] X8 — Yφf{s). From the definition of φf(s)

we see immediately that, for x e Y, Ui[s(x)] g mx implies ^/(sXαOttJ-Xmi),
where m'x denotes the unique maximal ideal of ^XtY. Hence YC\X8 is
contained in Yφ {a). Conversely, if we have \u\oφf(s)\(x)$m'x, then
(<poUiθs)(x) $ mXf and since φ~\mx) = mX9 we have (Uios)(x) ί mz. There-
fore Yφ/{s)czYC)Xs, which completes the proof of the proposition.

3. Divisorial varieties* Let X be an abstract algebraic variety,.
and let Gx denote the collection of open subsets of X. We define

Bx = {Ue Gx I U = X., s G Γ[X, g(^x)l g e IP(X, έ?°x)}

DEFINITION 3.1. An abstract algebraic variety X is called divisorial
if Bx constitutes a base for the topology of X.

REMARK. Keeping in mind the remark of the previous section,,
the geometrical meaning of our definition becomes clear. If Y is
irreducible and divisorial, then, for every point xe Xand every closed
subset Y of Xy not containing x, there exists a positive divisor of X9

which is locally linearly equivalent to zero and whose variety contains
Y but not x. In other words the topology of X is entirely determined
by the positive, locally linearly equivalent to zero divisors. This justi-
fies our terminology.

We now begin the study of the categorical properties of divisorial
varieties.

THEOREM 3.1. Let X be α divisorial algebraic variety, and Y a
locally closed subvariety of X. Then Y is a divisorial algebraic
variety.

Proof. Let U' be an open subset of Y and let x e U'. Let IT
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t>e an open subset of X such that U' = Yf] U. Since X is divisorial
there exist a line class / of X and a section s e .Γ[X, / ( ^ *)] such that
x e X s c EΛ By Proposition 2.3 the section φf(s) of the sheaf <Pi(/)(^V)
over Y is such that

Yφf{s)=Yf]X8.

Hence xe Yφ/(s)czU', which proves the theorem.

THEOREM 3.2. The direct sum of divisorial varieties is divisorial.

Proof. Let X be the direct sum of Xlf X2, , Xn. It is easily
seen that

where the product on the right hand side is direct. Furthermore, if
freH\Xr,έ?°XrX and s r 6 Γ [ l r , / r ( ^ ) ] , then the rule

Mx) if xeXr

(0 otherwise

defines a section of (1 x 1 x x fr x x l)(^x) over X such
that X8 = XSr. This proves the theorem.

Before proving that the category of divisorial varieties is a category
with product, we need to prove the following very useful characteri-
zation of divisorial varieties.

THEOREM 3.3. Let X be an abstract algebraic variety. A neces-
sary and sufficient condition for X to be divisorial is the following:
there exists an open affine covering <%/ = {Uif I) of X, line classes
Qi> ft, , gm of X, and sections Sj e Γ[X, g3i<S?x)], j = 1, 2, , m,
such that the collection of open sets {XSj, j = 1, 2, , m) constitutes
a covering of X which refines <%/.

Proof. The condition is obviously necessary, as it suffices to
consider any open affine covering of X, and then use the fact that
Bx is a base for the topology of X, and that X is compact.

To prove the sufficiency, let xe X, and let Y be a closed subset
of X, not containing x. Let xeXSp and XSpczUi. Since Ut is affine,
there exists a section h of έ?'x over XSp such that

h{x)0mx h(y)emyf ye Yf]XSp .

By Corollary 2.1 there exists a sufficiently high integer n such
that the section h s{

p

n) extends to a section s* of gn

P{^x) over X.
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Since sp(x) £ nx, and h(x) &mx1 we have

s*(x) = h(x) s{

p

n)(x) g n'x

where nx denotes the unique maximal submodule of [gK&x]*. Further-
more, if ye YΓϊX8p

s*(y) = h(y)-sp

n)(y)en'y .

Finally, n can be chosen high enough so that, if y £ XSp, then s*(y) e n(

y.
Hence xeXs,dX — Y, and the proof is finished.

The above proof immediately yields the following corollary.

COROLLARY 3.1. A necessary and sufficient condition for X to
be divisorial is that there exists a finite number of line classes of
X, say glf g2, , gm, such that the collection of open sets {Xs}, where
s ranges among the sections over X of gnj(^x), j = 1, 2, , m; n =
1, 2, , form a base for the topology of X.

Proof. The condition is obviously sufficient. If X is divisorial,
the proof of the above theorem shows that the line classes given by
the criterion in the theorem satisfy the condition stated.

REMARK. Corollary 3.1 shows that the notion of divisorial variety
is an extension of the notion of quasi-projective varieties in a natural
way. In fact every quasi-projective variety satisfies the condition
stated in the Corollary, with only one line class, namely the line class
p of hyperplane sections, (sections of p\έ?x) over X correspond to
hypersurface sections) which was introduced by Serre in [3], §54, page
246.

We believe that a slight modification of the condition stated in
Corollary 3.1, with only one line class, will yield a characterization
of quasi-projective varieties.

The above reasoning already shows that every quasi-projective
variety is divisorial. We shall give another proof of the same state-
ment in the next section.

Let X, Y be abstract algebraic varieties. There exists a natural
monomorphism

μ: H\X, <?%) > H\X X Y, &xxγ)

and, for every g e H\X, d?%) a monomorphism

μ9: Γ[X, g(<?x)] > Γ[X x F,

such that

(Xx Y)μ ,., = * . x Y.
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The proof of the above statements is entirely straightforward,
and we omit it here for brevity's sake. In what follows we will
identify H\Xf <?%) and Γ[X,g(έ?x)] with their images in H\Xx Y,
έ?xxγ) and Γ[X x Y, μ{g){^x^γ)\ respectively. Similarly for Y.

THEOREM 3.4. The product of divίsorial varieties is a divisorial
variety.

Proof. Let X, Y be divisorial varieties. We shall use the criterion
of Theorem 3.3. Accordingly, let <%/ = (Uif I), glf g2, , gm, sl9 s2, ,sm

and <W~ — (Vj, / ) , hlf h2, , hrf tlf t2f , tr be the affine open cover-
ings, line classes and sections satisfying the condition of Theorem 3.3
for X and Y respectively. Observe that:

(Xx Y)SpΘtq = (Xx Y)Spn(Xχ Y\

= (xSpχ η n ( i χ γtq) = x.px γtq

for all values of p from 1 to m and of q from 1 to r.
Hence the open affine covering

(ϋix VjfIxJ)

of X x Y, the line classes gphq and the sections sp 0 tq, p = 1, , m
and q = 1, # ,r, satisfy the condition of Theorem 3.3 applied to
X x Y. Hence X x Y is divisorial.

4 Existence of divisorial varieties. As we have already seen in
the previous section, all quasi-projective varieties are divisorial. We
shall show in the present section that the category of divisorial
varieties also includes all nonsingular varieties and lots more.

We call an abstract algebraic variety factorial if the local ring
of every one of its points is a unique factorization domain. As Zariski
has shown in [9], all nonsingular varieties are factorial.

In what follows, if h is a rational function on an irreducible
variety X, we shall denote by (h) the divisor of the function h on X.

THEOREM 4.1. Every irreducible factorial variety is divisorial.

Proof. Let X be an irreducible factorial variety, whose function
field we shall denote by E. For every irreducible subvariety W of
X, we denote by έ7w the local ring of W in E.

Let U be an open subset of Xy and let x e U. We proceed in
steps.

Case 1. W = X — U is an irreducible subvariety of X. Since
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x$ W, it follows that <£?\<£<?w. Let hence he E be such that he έ?x

and h 0 έ?w. Let (fe) = A — D2, where A and A denote respectively
the zeros and poles of the function h. Since h e #*,, we have
xίYar(D2), where Var(D) denotes the variety of the divisor D.
Furthermore yeW implies h £ &y, hence, since X is normal, y e Var (A).
Therefore TFcVar(A). Since X is factorial, D2 is locally linearly
equivalent to zero, i.e. there exists an open covering <gs — (Ui91) of
X and rational functions h{ e E, such that h{ is regular on U{ and
(hi) — D2 on Ui. Hence, since X is normal, (hjhj) = 0 on Z7{ Π U3

implies that the system hjhj defines a 1-cocycle of ^ with values in
έ7°Σ. Let g be the line class of X represented by the system ( ^ , hjhj),
and let u{: g(^x) \ Ui —> 0x \ Ui be the usual isomorphisms. If we
define s(y) = (u^oh^iy), for y e Uif we clearly obtain a section s of

°ver X such that

Hence a? e Xs = X - Var(A)c U.

Case 2. T7= X - U is arbitrary. Let Wi, W2, -*-,Wp be the
irreducible components of W. From Case 1 we know that there exist
line classes gl9 , gp of X and sections s{ e Γ[X, g^x)\ i — 1, ,2>,
such that C C G X S £ C X — Tfi. We easily verify that the section

8 = §! (g) S2 (g) (g) Sp G Γ[X, ^ ^ flrp(^x)]

is such that X8 = Π?=i-̂ .4» hence xeX8cU. This finishes the proof
of the theorem.

THEOREM 4.2. Every factorial variety is divisorial.

Proof. By definition, every unique factorization domain is an
integral domain. Hence every factorial variety is the direct sum of
its irreducible components, which, by Theorem 4.1, are all divisorial.
Then we apply Theorem 3.2.

THEOREM 4.3. Every quasi-projective variety is divisorial.

Proof. Protective space is nonsingular, hence divisorial. Then
we apply Theorem 3.1.

THEOREM 4.4. There exist divisorial varieties which are neither
quasi-protective nor nonsingular, of any dimension > 3.

Proof. There exist nonsingular, nonprojective varieties of any
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dimension > 2. (See [2]). We use any singular, quasi-projective variety,
and apply Theorem 3.4.

REMARK. The above theorems provide us with a large class of
divisorial varieties. It is not settled at the moment, though, whether
there are divisorial surfaces which are not protective. Such surfaces
must necessarily be singular, as it follows from the fact that every
nonsingular surface is quasi-projective (See [8]).

For an example of a normal, nonprojective surface see [2], page
492.

5 The group of line classes of a divisorial variety* Let X be an
abstract algebraic variety. As in [6], §4, we shall call regular any
line class g of X such that, for some s e Γ[X, g{^x)\ Xs Φ Φ. Let
x be a fixed point of X. A regular line class g is called free at x if,
for some s e Γ[X, g(^x)], xe Xs. The set of line classes which are
free at x is easily shown to form a subsemi-group of H\X, &%),
which we shall denote by Lx.

The following proposition generalizes the well known operation
of ''adding hypersurface sections." (See [6], Proposition 8.2.).

Let X be a divisorial algebraic variety, and let

<%S = (Uif I), glf , gmJ 819 •••,«„

be the open affine covering, line classes and sections satisfying the
criterion of Theorem 3.3.

PROPOSITION 5.1. Let X be a divisorial algebraic variety, / a
line class of I , a; a fixed point of X. Then, for a sufficiently high
integer n, and for some integer p between 1 and m, the line class
fgl is regular and free at x.

Proof. For a suitable open subset U of X, containing x, we can
find a section teΓ[U, f(έ?x)\ such that t(x)$nx. By Corollary 3.1
there exist an integer p> with 1 ^ p ^ m, and a sufficiently high
integer q such that the sheaf g%{0>

x) has a section s over X with
xeX8(zU.

Applying Proposition 2.2 to the line classes / and g%, and their
respective sections t and s, we see that, for a sufficiently high integer
q' the section t (g) s{qf) extends to a section s* of fgψi^x) over X.
We have:

8*(x) = t(x) <g) s{qn(x) $ n'x

where rix denotes the unique maximal submodule of [fglq'(^x)]x<
Hence x e X9*f which finishes the proof of the proposition.
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COROLLARY 5.1. Let X be divisorial, and xeX. The group
generated by Lx in H\X, έ?°) is H\X, 0>°x).

Proof. By the above proposition, for any / in H\X, έ?%), fgn

v G Lx*
Clearly gn

PeLx.

6 The polynomial theorem of Snapper. Let λ be an additive
sheaf function, i.e. a function defined over the category of sheaves,
with values in an arbitrary abelian group G, and such that the exact
sequence

0 > Ff -> F > F" > 0

implies \(F) - \{Ff) + \(F"). (See [5], §4, page 105, or [1], §3.).
The following theorem is an extension to divisorial varieties of the

polynomial theorem proved by Snapper in [6], Theorem 9.1, as well as.
the more general form given by Cartier in [1], §4.

THEOREM 6.1. Let λ be an additive sheaf function, and X a
divisorial algebraic variety. Then, for every sheaf F over X and
every finite set of line classes flf •••,/„ of X, the expression

is a polynomial in mu « , m Λ of degree at most d im(Supp F).

Proof. The theorem is an immediate consequence of the follow-
ing lemma, which generalizes the theorem given in §3 of [1]. The
formal algorithm used in §4 of the same paper, identically repeated,
proves our theorem. Therefore we limit ourselves to the proof of the
lemma.

LEMMA 6.1. Let X be a divisorial algebraic variety, λ an addi-
tive sheaf function, g any line class of X. If X(F) = 0 for every
sheaf F such that dim (Supp F) < r, then X{F) = X[g(F)] for every
sheaf F with dim (Supp F) ^ r.

Proof. We proceed in steps.

Case 1. We assume dim (Supp F) < r. Since F and g(F) are
locally isomorphic we have dim (Supp g{F)) < r, hence

χ(F) - 0 - X[g(F)] .

Case 2. We assume Supp FaS, where S is an irreducible closed
subset of X, and dim S ̂  r. Let x e S. Since X is divisorial, by
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Corollary 5.1 we can write g = fjf29 where fieLx, i = 1, 2. Let
therefore s^ Γ[X,fi(έ?x)] be such that x e I S i , i = l,2. We now
define

as follows:

ω(α) = α 0 s<(y) aeFy

Since α? e Xs. we see that s^x) generates the stalk of fi{έ?Σ) over x,
hence ω{ induces an isomorphism on Fx. Therefore Supp (kerα>;) and
Supp (coker ω^ are proper closed subsets of S, hence

λ (ker (ύi) = λ (coker o)i) = 0 .

Since λ is additive, the exact sequence

0 > ker ω{ > F >MF) > coker ω{ > 0

shows that X(F) = λ[/,(F)]. Let F' = g(F). Then F and Ff are
locally isomorphic, hence Supp F = Supp F\ Hence, by the above
proof applied to F', we obtain:

χ[g(F)] = λ(F') = \[fΊ(F')] - λ[/2g(F)l = λ[Λ(F)] = X(F) .

Case 3. We only assume dim (Supp F) g r. Let Si be the irre-
ducible components of Supp F, and let T be the union of the closed
sets Si ΓΊ Sj, for i Φ j. We have dim S< ̂  r, and dim T < r. From
[4], page 11, we know that there exist sheaves Fif G, such that
S u p p l e S ^ and SuppGcΓ, and that there exists an exact sequence

0 >G > F > Σ Ft > 0,

where the sum at right is direct. Applying Case 2 to each pair
(Fi9 S^ we get λ(i^) = X[g(Fi)], and from the exact sequence

0 > g(G) > g(F) > g(Σ Ft) > 0

we get X[g{F)] = λ[ff(Σ Fi)l Hence:

This finishes the proof of the lemma.

Final Remark. We wish to point out the following question,
which stems from the above study of divisorial varieties:

If a divisorial variety X has a line class g such that, for any
finite set of points Pl9 , Pn of X, there exists an open affine subset
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Xs, seΓ[X, g(^χ)], containing them, is then X quasi projective?
The above question is more restrictive, in a natural way, than

the original one asked by Chevalley, (See [2], footnote to Introduction),
and we believe the answer to be in the affirmative.
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STRONGLY REGULAR GRAPHS, PARTIAL GEOMETRIES
AND PARTIALLY BALANCED DESIGNS

R. C. BOSE

O* Summary* This paper introduces the concept of a partial
geometry, which serves to unify and generalize certain theorems on
embedding of nets, and uniqueness of association schemes of partially
balanced designs, by Bruck, Connor, Shrikhande and others. Certain
lemmas and theorems are direct generalizations of those proved by
Bruck [5], for the case of nets, which are a special class of partial
geometries.

1. Introduction, We use graph theoretic methods for the study
of association schemes of partially balanced incomplete block (PBIB)
designs. For this purpose it is convenient to switch from graph
theoretic language to the language of designs and vice versa as
necessary.

As we shall be concerned with finite graphs only, we shall use
the word graph in the sense of finite graphs.

A graph G with v vertices is said to be regular if each vertex is
joined to nγ other vertices, and unjoined to n2 other vertices. Clearly

(1.1) v — 1 — nx + n2 .

If further any two joined vertices of G, are both joined to
exactly pι

n other vertices, and any two unjoined vertices are both
joined to exactly p\x other vertices, then the graph G is defined to
be strongly regular, with parameters

(1.2) n l f n 2 , p ι

n , p2

n .

The concept of strongly regular graphs is isomorphic with the
concept of association schemes of PBIB designs (with two associate
classes), which was first introduced by Bose and Shimamoto [4].
Such a scheme they defined as a scheme of relations between v
treatements such that

( i ) any two objects are either first associates or second as-
sociates
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Air Force under grant no. AF AFOSR-60-21, monitered by the Office of Scientific Research.
The author also wishes to acknowledge, that some of the ideas on which the present paper
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(ii) each treatement has n{ ith associates (i = 1, 2)
(iii) If two treatments are ith associates, then the number of

treatments common to the ith associates of the first and kth associ-
ates of the second is p)k and is independent of the pair of treatments
with which we start. Also p)k = p\5.

Bose and Clatworthy [1] showed that it is unnecessary to assume
the constancy of all the p%9&. If we assume that nl9 ni9 p\x and p2

n

are constant, then the constancy of the p\\, p\2, p\2, p\19 p\2 follows and
Pn = P\i, P2i2 = Pli.

If we now identify the v treatments of the association scheme
with the v vertices of a graph G, and consider two vertices as joined
or unjoined according as the corresponding treatments are first or
second associates, it is clear that a strongly regular graph G with
the parameters (1.2) is isomorphic with an association scheme with
the same parameters.

We have introduced for the first time in this paper the concept
of a partial geometry.

A partial geometry (r, kf t) is a system of undefined points and
lines, and an undefined relation incidence satisfying the axioms
Al - A4. To avoid cumbersome expression we may use standard
geometric language. Thus a point incident with a line may be said
to lie on it and the line may be said to pass through the point. If
two lines are incident with the same point, we say that they in-
tersect.

Al. Any two points are incident with not more than one line.
A2. Each point is incident with r lines.
A3. Each line is incident with k points.
A4. If the point P is not incident with the line Z, there pass

through P exactly t lines (t ^ 1) intersecting I.
We show that the number of points v and the number of lines

b in the partial geometry (r, k, t) are given by

(1.3) v = k[(r - l)(k - 1) + t]/t ,

(1.4) b = r[(r - l)(fc - 1) + t]/t .

The graph G of a partial geometry is defined as a graph whose
vertices correspond to the points of the geometry, and in which two
vertices are joined or unjoined according as the corresponding points
are incident or non-incident with a common line. We then prove:

THEOREM. The graph G of a partial geometry (r, k, t) is strongly
regular with parameters.

(1.5) n, = r(k - 1), n2 = (r - l)(fc - l)(fc - t)/t ,

(1.6) pi, = (t - l ) ( r - 1) + k - 2 , pii = rt.
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where

{1.7) l ^ t ^ r , l ^ t ^ k .

Using certain theorems of Bose and Mesner [3] relating to as-
sociation schemes, we derive:

THEOREM. A necessary condition for the existence of a partial
geometry (r, k, t) is that the number

α.8)
ί(fc + r - t - 1)

is integral.
A strongly regular graph with parameters (1.5), (1.6) and for

which (1.7) is satisfied will be defined to be a pseudo-geometric graph
with characteristics (r, k, t). Such a graph may or may not be the
graph of a partial geometry (r, k, t). It is therefore of interest to
study the conditions under which a strongly regular graph, and in
particular a pseudo-geometric graph with characteristic (r, fc, t) is the
graph of a partial geometry (r, fc, ί).

A subset of vertices of a graph G, any two of which are joined
is called a clique of G. When G is the graph of a partial geometry
{r, fc, £) there will exist in G a set Σ of distinct cliques, Ku K2, ,
if6 corresponding to the lines of the geometry satisfying the following
axioms

A*l. Any two joined vertices of G are contained in one and
only one clique of Σ.

A*2. Each vertex of G is contained in r cliques of Σ.
A*3. Each clique of Σ contains k vertices of G.
A*4. If P is a vertex of G not contained in a clique K{ of Σ

there are exactly t vertices in Kif which are joined to P(i = 1,
2 , • . , * ) •

Hence any graph G in which there exists a set Σ of cliques i£i,
iΓ2, ---,Kb, satisfying axioms A*l to A*4, is the graph of a partial
geometry (r, k, t). In fact G together with the cliques of Σ is iso-
morphic to a partial geometry (r, k, t) the vertices of G corresponding
to the points and the cliques of Σ corresponding to the lines of the
geometry. Such a graph will be called geometrisable (r, k, t).

One may consider graphs in which there exists a set of cliques
Klf K2, , Kb satisfying one or more but not all of the axioms A*l,
A*2, A*3, A*4. Thus a previous result due to Bose and Clatworthy [1],
is equivalent to the following:

THEOREM. If in a strongly regular graph G, there exists a set
Σ of cliques Ku K2, , Kb, satisfying the axioms A*l, A*2, A*3, and
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if k > r, then the graph is geometrisable (r, k, t), the vertices of G,
and the cliques of Σ being the points and lines of the corresponding
geometry.

We further prove

THEOREM. // in a pseudo-geometric graph with characteristics
(r,k,t)9 there exists a set Σ of cliques Klf K2, , Kb, satisfying
axioms A*l and A*2, and if k > r, then G is geometrisable (r, k, t),
the vertices of G, and the cliques of Σ being the points and lines of
the corresponding geometry.

There are many interesting examples of partial geometries some
of which are given in § 7. In particular the partial geometry (r, k91)
becomes a net of degree r and order k when t = r — 1. A pseudo-
geometric graph with characteristics (r, k, r — 1) may be defined to
be a pseudo-net graph, of degree r and order k. Bruck [5] has
proved a series of lemmas for pseudo-net graphs and in particular
has shown that a pseudo-net graph of degree r and order k is geo-
metrisable (r, k, r — 1) if

(1.9) k > i (r - l)(r3 - r2 + r + 2) .

The special case r = 2, was proved by Shrikhande [19]. In this
paper we give the following generalization of Brack's result.

THEOREM. A pseudo-geometric graph with characteristics (r, k,
t) is geometrisable (r, k, t) if

(1.10) k > i [r(r - 1) + t(r + l)(r2 - 2r + 2)] .

We have proved a series of Lemmas which are direct genera-
lizations of the lemmas used by Bruck for his proof. In fact it is
surprising how smoothly the technique devised by Bruck for the spe-
cial case of nets, works in the general case.

In particular the concept of grand cliques introduced by Bruck
for the case of nets is capable of easy generalization. If G is a
pseudo-geometric graph with characteristics (r, k, t), then a major
clique of G is defined as a clique which contains at least k — (r — I)2

(t — 1) points. A major clique which is also maximal is defined as a
grand clique.

Given a pseudo-geometric graph G with characteristics (r, k, t)
the set of grand cliques is unambiguously defined. We may take
this set to be the set Σ and enquire under what circumstances, the
axioms A*l-A*4 will be satisfied. We then show that (1.10) is a
sufficient condition for this.
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A pseudo-geometric graph with characteristics (r, k, t) has the
same parmeters as the triangular association scheme if we take r =
t = 2, k = n — 1. Substituting these values in (1.10) we get n > 8.
Thus for these special values of r, k, t our result is equivalent to the
uniqueness of the triangular scheme for n > 8, a result first proved
by Connor [9]. In fact our result may be interpreted as a generalized
uniqueness theorem as explained in § 12.

A net of degree r and order k is defined to have deficiency d =
r + 1 — k. Bruck [5] showed that a net of order k and deficiency d
can be completed to an affine plane by the addition of new lines, if

k > i (d - l)(d3 - d2 + d + 2) .

We generalize Brack's result to the following:

THEOREM. Given a partially balanced incomplete block (PBIB)
design (r, k, \lf λ2), λx > λ2, based on an association scheme with
parameters

- t)lt , n2 = d(k - 1) ,

p\t - [(d - l)(fe - 1)(& - t) - d(k - t - 1) - ί]/ί ,

Pl = (d - l)(k - t)(k - ί - l)/ί ,

extend the design by adding new blocks, containing the same
treatments, in such a way that the extended design is a balanced
incomplete block (BIB) design, with r0 = r + d(X1 — λ2) replications,
block size k and in which every pair of treatments occur together in
λi blocks.

2, Strongly regular graphs. A finite graph G consists of a finite
set of v vertices, and a relation adjacency such that any two distinct
vertices of G may be either adjacent or non-adjacent. Adjacent
vertices may be said to be joined and non-adjacent vertices to be
unjoined. We shall be concerned with finite graphs only, and use
the word graph in the sense of finite graphs.

The graph G is said to be regular (of degree nλ) if each vertex
of G is joined to exactly nx other vertices. In this case each vertex
will be unjoined to exactly n2 other vertices, where

(2.1) n1 + n2 = v — l .

A regular graph G will be said to be strongly regular if (i) any
two vertices which are joined in G, are both simultaneously joined
to exactly p\x other vertices (ii) any two pairs of vertices which are
unjoined in Gf are both simultaneously joined to exactly p2

n vertices.
A strongly regular graph G thus depends on four parameters
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Wi, ni9 Pn and p2

n, the number of vertices being given by (2.1).
Let two vertices of a strongly regular graph G be called first

associates if they are joined, and second associates if they are un-
joined. If the vertices θ and Φ of G are ίth associates, we shall
denote by p)k(θ, Φ) the number of vertices which are jth associates
of θ and kth associates of φ. From definition the number pdfi, Φ) is
independent of the pair θ, Φ so long as they are ith associates. Thus

Pΐi(θ, Φ) = Pii i = 1, 2 .

We shall show that a similar situation prevails with respect to
all the numbers p]k(θ, Φ), so that we can write

PUV, Φ) = Pi* i, 3, fc = 1, 2

and that

(2.2) p)k = plj .

This follows from the following theorems proved by Bose and
Clatworthy [l], in connection with partially balanced incomplete block
(PBIB) designs (if we identify treatments with vertices).

THEOREM 2.1. Let there exist a relationship of association be-
tween every pair among v treatments satisfying the conditions:

(a) Any two treatments are either first associates or second
associates (b) Each treatment has nx first and n2 second associates (c)
For any pair of treatments which are first associates the number
Pn of treatments common to the first associates of the first and the
first associates of the second is independent of the pair of treatments
with which we start.

Then, for every pair of first associates among the v treatments
the number p\2, p\\ and p]2 are constants, and p\2 — p\\.

THEOREM 2.2. Let there exist a relationship of association be-
tween every pair among v treatments satisfying the conditions:

(a) Any two treatments are either first associates (b) Each
treatment has nx first associates and n2 second associates (c) For
any pair of treatments which are second associates, the number p2

n

of treatments common to the first associates of the first and the
first associates of the second is independent of the pair of treatments
with which we start.

Then, for every pair of second associates among the v treatments
the numbers p\2, p\λ and p\2 are constants, and p\2 = p\λ.
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It appears from the proof of Bose and Clatworthy that

+ pι

n + 1 ,<2.3)

{2.4)

PΪ2 = n

P\2 = Ύi

h — Pϊi — l

w _ p*n = ^ oj ,
= n2 -
= n2-

Actually the relations (2.3), (2.4) were obtained much earlier by
Bose and Nair [3], but in their formulation they started with the
constancy of all the numbers p]k (ί, j, k = 1, 2). It is also easy to
prove as shown by Bose and Nair [3], that

<2.5) nλp\2 = n2p
2

n , nxp\2 = n2p\2 .

The concept of a strongly regular graph is isomorphic with the
concept of an association scheme with two associate classes, as in-
troduced by Bose and Shimamoto [4], in connection with the theory
of partially balanced designs, if treatments are identified with vertices,
a pair of first associates with a pair of joined vertices, and a pair
of second associates with a pair of unjoined vertices. Thus strongly
regular graphs first arose in connection with the theory of partially
balanced designs.

The numbers v, n19 n2 p)k are called the parameters of the regular
graph G. They are connected by the relations (2.1)-(2.5), and only
four are linearly independent. These may be conveniently chosen as
nl9 n2j p\x a n d p 2

n .

3. Partial geometries. Consider two undefined classes of objects
called points and lines, together with a relation incidence, such that
a point and a line, may or may not be incident. Then the points
and lines are said to form a partial geometry (r, fc, t) provided that
the following axioms are satisfied:

Al. A pair of distinct points is not incident with more than
one line.

A2. Each point is incident with exactly r lines.
A3. Each line is incident with exactly k points.
A4. Given a point P not incident with a line i, there are exactly

t lines (t ^ 1) which are incident with P, and also incident with some
point incident with I.

If there were two distinct lines I and m each incident with two
distinct points Px and P2, then Al would be contradicted. Hence we
have,

AΊ. A pair of distinct lines is not incident with more than one
point.

For convenience we will use the ordinary geometric language.
Thus if a point is incident with a line, we shall say that the point
]ies on the line or is contained in the line, and that the line passes
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through the point. If two points are incident with the line, then
we speak of the line as joining the two points. By Al there cannot
be more than one line joining two points. Thus either two points
are unjoined or joined by a unique line. If two lines are incident
with a common point, they are said to intersect, and the common
point is said to be their point of intersection. By AΊ two lines
cannot intersect in more than one point. Hence two lines are either
non-intersecting or intersect in a unique point.

THEOREM 3.1. Given a partial geometry (r, k, t) there exists a
dual partial geometry (fc, r, t) obtained by calling points of the
first, the lines of the second) and the lines of the first the points of
the second.

This follows by noting the duality Al and AΊ, the duality A2
and A3 and the self dual nature of A4. In fact A4 can be re-
phrased as

A'4. Given a line I not incident with a point P there are exactly
t points which are incident with I and also incident with some line
incident with P.

In terms of the alternative geometric language introduced we
may write A4 and A'4 as

A4. Through any point P not lying on a line I there pass ex-
actly t lines intersecting I.

A'4. On any line I not passing through a point P, there lie ex-
actly t points, joined to P.

The equivalence of A4 and A'4 is now obvious.

4* Graph of a partial geometry. The graph G of a partial
geometry (r, k, t) is defined as follows: The vertices of G are the
points of the partial geometry. Two vertices of G are joined
(adjacent) if the corresponding points of the geometry are joined
(incident with the same line). Two vertices of G are unjoined (non-
adjacent) if the corresponding points of the partial geometry are
unjoined (i.e. there exists no line incident with both the points).

THEOREM 4.1. The graph G of partial geometry (r, k, t) is
strongly regular with parameters

(4.1) nx = r(k - 1) , na = (r - l)(k - ΐ)(k - t)\t ,

(4.2) p\Ύ = (ί - l)(r - 1) + fc - 2 , p2

n - rt ,

(4.3) l . ^ ί ^ r , l ^ t ^ k .

Let there be v points and b lines in the partial geometry. Since
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the points of the geometry have been identified with the vertices of
the graph G, we can call two points of the geometry first associates
if they are joined by a line, and second associates if they are not
joined by a line. Now through any point P of the geometry there
pass r lines, each of which contains k — 1 other points besides P.
Hence P has exactly r(k — 1) first associates. Hence

(4.4) nx - r(k - 1) .

This shows that G is a regular graph. Consider the b — r lines not
passing through P. From A4 each of these lines contains exactly t
first associates of P. Any particular first associate Q of P, lies on
r — 1 such lines, since one of the r lines passing through Q joins it
to P. Hence the number of first associates is

(4.5) . nλ = t(b - r)l(r - 1) .

Comparing (4.4) and (4.5) we have

(4.6) b - r[(r - l)(k - 1) + t]/t .

Again each of the b — r lines not passing through P contains
exactly k — t second associates of P. Any particular second associate
R of P lies on r such lines. Hence the number of second associates
of P is

n2 = (k — t)(b — r)jr .

Substituting for b from (4.6) we have

(4.7) n2 = (r - l)(fc - l)(fc - t)jt .

Consider any two points P and Q which are first associates.
They are joined by a line I. We shall count the number of points
which are first associates to each of P and Q. The k — 2 points on
I other than P and Q are first associates of both P and Q. Now
there pass (r — 1) lines through P, other than I. By A4 each of
these contains t — 1 first associates of Q other than P. Thus these
(ί — l)(r — 1) points are first associates of both P and Q. It is easy
to see that there are no other first associates of both P and Q.
Hence

{4.8) V\, = (ί ~ l)(r - 1) + & - 2 .

Consider two points P and i? which are second associates. There
is no line joining them. Each of the r lines passing through P
contains t first associates of R. Hence

{4.9) Vn = rt .
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We have now verified the formulae (4.1) and (4.2), showing that
G is a strongly regular graph. The values of the other parameters
p)k follow from the identities (2.3) and (2.4). The inequality (4.3)
clearly follows from axiom A4.

COROLLARY. The number of points v and the number of lines
b in a partial geometry (r, k, t) is given by

(4.10) v = k[(r - l)(fc - 1) + ί]/ί ,

(4.11) b = r[(r - l)(fc - 1) + t]/ί .

In view of the isomorphism of association schemes with two^
associate classes, and strongly regular graphs, the definition of par-
tially balanced incomplete block (PBIB) designs given by Bose and
Shimamoto [4], may now be rephrased as follows:

Given a strongly regular graph G with parameters nlf n2, p\l9 p\l9

we may identify its v vertices with v treatments. Then a PBIB
design is an arrangement of the v treatments into b sets (called
blocks) such that.

(a) Each treatment is contained in exactly r blocks
(β) Each block contains k distinct treatments
(7) Any two treatments which are first associates (joined in G}

occur together in exactly λx blocks. Any two treatments which are
second associates (unjoined in G) occur together in λ2 blooks

The design may be called a PBIB design (r, k, Xu λ2) based on the
strongly regular graph G.

Given a partial geometry (r, k, t), with graph G, it is clearly a.
PBIB design (r. k, 1, 0) based on G, and this PBIB design is a con-
nected design. This follows because two first associates always occur
together in a block, and if two treatments θ0 and θ2 are second
associates, we can find a treament θx in p2

n = rt > 0 ways, such that
θ0 and θλ are first associates, and θx and θ2 are first associates. The
incidence matrix of a partial geometry may be defined as the matrix
N — (nij) where niά = 1 if the ίth point is incident with the ith line
and 0 otherwise. Then N is also the incidence matrix of the cor-
responding PBIB design. Now Connor and Clatworthy [11] and Bose
and Mesner [2], have shown that for a connected PBIB design, with
two associate classes, NN' has only three distinct characteristic roots,
whose multiplicites are 1, a and β where

(4.12) a,β= Ul + %2 =F (^i

and

7 = p2

12 - p\2 , Δ - 72 + 2(p\2 + p\2)
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Now these multiplicities are necessarily integral. Using the formulae
(4.1), (4.2), (2.3) and (2.4) we find that

(4.13) a = rfc(r - l)(fc - 1)
t(k + r - t - 1)

Hence we have the theorem

THEOREM (4.2). A necessary condition for the existence of a
partial geometry (r, fc, t) is that the number

a__ rk(r
a

t(k + r - t - 1)
is a positive integer.

5. Partially balanced designs, which are partial geometries. We
have already shown that a partial geometry (r, k, t) is isomorphic to
a PBIB design (r, k, 1, 0) based on the graph (association scheme) of
the geometry. However a PBIB design based on a strongly regular
graph need not necessarily be a partial geometry. It would there-
fore be of interest to find sufficient conditions under which a PBIB
design (r, k, 1, 0) based on a strongly regular graph is isomorphic to
a partial geometry.

Now Bose and Clatworthy [1] have shown that if there exists a
PBIB design (r, k, 1, 0) based on a strongly regular graph G for which
r < fc, then the parameters of G are given by the formulae (4.1),
(4.2) i.e. are the same as the parameters of the graph of some par-
tial geometry (r, k, t). We shall show that the design is indeed a
partial geometry and thus establish the following theorem:

THEOREM (5.1). If there exists a PBIB design (r, fc, 1, 0) based on
a strongly regular graph G, then if r < k, the design must be a
partial geometry (r, k, t) for some t ^ r. The parameters of G are
given by the formulae (4.1), (4.2).

The parameters of G are given by (4.1), (4.2) in view of the
result of Bose and Clatworthy already cited. Also the axioms Al,
A2, A3 for a partial geometry are implicit in the definition of a PBIB
design (r, fc, 1, 0). It therefore only remains to prove axiom A4 which
amounts to saying that each block of the design contains exactly t
treatments which are first associates of a given treatment not con-
tained in the block.

Let K be the set of k treatments contained in a particular block,
and let K be the set of the remaining v — k treatments. Let g(x)
denote the number of treatments in K which have exactly x first
associates in K. Then
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(5.1) Σ g(x) = v-k = k(k-

Let us count the number of pairs (P, Q), where P is a treatment
in if, ζ) is a treatment in if, and P and Q are first associates. Now
each treatment in K has k — 1 first associates in if, and consequently
n1 — k + 1 first associates in K. Hence the required number is
k{yix — k + 1). Again there are g(x) treatments in K, which have
exactly x treatments in K. These treatments contribute xg(x) to
our count. Hence

(5.2) Σ XΦ) = H^ - A; + 1) = fc(r

Again let us count the number of triplets (PiP2, Q) where PXP2 is
an ordered pair of distinct treaments in if, and Q is a treatment in
K which is a first associate of both Px and P2. Since Pi and P2 have
fc — 2 common first associates in if, they have p\x — k + 2 common
first associates in K. Hence the required number of triplets like
(PiPif Q) is k(k — l)(2>ίi — k + 2). Now each of the g(x) treatments
in K, which have x first associates in K contribute x(x — 1)<7($) to
our count. Hence we have the equation

(5.3) Σ Φ - 1)9(P) = Kk ~ l)(Pn ~ k + 2)

=±= k(k - l)(ί - l)(r - 1) .

Using (5.1), (5.2) and (5.3) a simple calculation shows that

x = Σxg(x)IΣg(x) = t ,

i.e. the average value of # (the number of first associates in K of
any treatment of K is ί. Also

which shows that x must always have the value ί. This proves our
theorem.

6* Geometrisable and pseudo-geometric graphs A strongly re-
gular graph G which has parmeters (4.1) and (4.2) and for which
the inequality (4.3) is satisfied, is defined to be a pseudo-geometric
graph with characteristics (r, k, t). Thus a pseudo-geometric graph
with characteristics (r, k, t) has the same parameters as the graph
of a partial geometry (r, k, t). However a graph may be pseudo-
geometric without being the graph of a partial geometry.

A subset of vertices of a graph G, any two of which are joined
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is called a clique of G. When G is the graph of a partial geometry
there will exist in G a set Σ of distinct cliques Klf K2, •• , Kb,
corresponding to the lines of the geometry satisfying the following
axioms;

A*l. Any two joined vertices of G are contained in one and
only one clique of Σ.

A*2. Each vertex of G is contained in r cliques of Σ.
A*3. Each clique of Σ contains ft vertices of G.
A*4. If P is a vertex of G not contained in a clique K{ of Σ,

there are exactly t vertices in K{ which are joined to P (i = 1,
2 , • • - , & ) .

Hence any graph G in which there exists a set Σ of cliques
Kl9 K2f , ifδ, satisfying axioms A*l — A*4 is the graph of a par-
tial geometry (r, ft, t). In fact G together with the cliques of Σ is
isomorphic to a partial geometry (r, ft, £), the vertices of G corre-
sponding to the points, and cliques of Σ to the lines of the geometry.
Such a graph will be said to be geometrisable (r, ft, t).

One may consider graphs in which there exist a set Σ of cliques
Klf K29 , Kh satisfying one or more but not all of the axioms A*l,
A*2, A*3, A*4, and investigate under what additional conditions the
graph will be geometrisable. Thus theorem (5.1) may be rephrased as

•6THEOREM (6.1). If there esists a set Σ of cliques Klf K2, , KL

in a strongly regular graph G, satisfying axioms A*l, A*2, A*3
and if k > r, then G is geometrisable (r, ft, t).

THEOREM (6.2). Let G be a pseudo-geometric graph with charac-
teristics (r, ft, ί). // it is possible to find in G a set Σ of cliques
Klf K2, , Kϋ, satisfying axioms A*l and A*2, and if ft > r, then
G is geometrisable (r, ft, t).

We shall prove that each of the cliques Kl9 K2, , Kb contains
exactly ft vertices, and that if Q is any vertex not contained in any
clique K{ (1 ^ i ^ 6), then there are exactly t vertices in K{ which
are first associates of (joined to) Q. This will show that if the
vertices of G are taken as points, and the cliques Kl9 K2, , Kb as
lines, then we have a partial geometry (r, ft, t).

Let P be any vertex. Without loss of generality we can take
Klf K2y , Kr to contain P. Now the sets Kx — P, K2 — P, , Kr —
P are disjoint and must contain between them all the r(fc — 1) first
associates of P. From this it follows that the average number of
vertices in the r cliques of the set Klf K2, , Kr is ft. Hence
there exists a clique containing at least ft vertices. Let Kj be such
a clique. Let us take a subset K of Kjf such that K contains ex-
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actly k vertices. Let K be the of vertices not contained in K. Let
g(x) be the number of vertices in K which have exactly x first as-
sociates in K. Then it follows exactly as in the proof of Theorem
(5.1) that

Σ g(x) = k(k - l
x = 0

and

Σ *0θ*O = k(r -

Hence the average value of x is t. Also as before

Σ (x ~ tγg(x) = 0 ,

which is only possible if x is constant and equal to t. Hence every
point of K has exactly t first associates in K.

If Kj contains any vertex Q other than those already contained
in K, then Q belongs to K, and therefore has .exactly t first associ-
ates in K. But each point of if is a first associate of Q hence
t = k, which contradicts 1 g t S r < k. This shows that none of the
cliques Kό containing P, contains more than k vertices. Thus each
contains exactly k vertices. Since each clique contains at least one
vertex, each of the clique Kl9 K2, , Kb contains exactly k vertices.
Also if Q is a point not contained in K{ (1 ^ i ^ 6), then there are
exactly t vertices in K{ which are first associates of Q{. This com-
pletes the proof of the theorem.

N. B. Compare Theorems (6.1) and (6.2).

7 Examples of partial geometries, (a) A net (r, k) of degree r
and order Λ; is a system of undefined points and lines together with
an incidence relation subject to the following axioms (i) There is at
least one point (ii) The lines of the net can be partitioned into r
disjoint, nonempty, "parallel classes" such that each point of the net
is incident with exactly one line of each class and given two lines
belonging to distinct classes there is exactly one point of the net
which is incident with both lines.

For convenience we can use phrases such as "point is on a line"
istead of speaking of incidence. Then it can be readily proved (see
for example Bruck [5]) that

(1) Each line of the net contains exactly k distinct points where
k^ 1.

(2) Each point of the net lies on exactly r distinct lines where
r ^ 1.
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(3) The net has exactly rk distinct lines. These lines fall into
r parallel classes of k lines each. Distinct lines of the same parallel
class have no common points. Two lines of different classes have
one common point.

(4) The net has exactly ¥ distinct points.
We shall show that a net (r, k) of degree r and order k is a

partial geometry (r, fc, r — 1). The properties (1) and (2) above show
that axioms A3 and A2 of a partial geometry hold.

Two lines cannot intersect in more than one point, for they
either belong to the same parallel class and have no common point,
or different parallel classes in which they have one common point.
Form this follows the fact two distinct points cannot be incident
with more then one line. Hence axiom Al for a partial geometry
holds.

Again given a point P not incident with the line ί. There are
exactly r lines through P, one belonging to each parallel class. One
of these is parallel to I (i.e. belongs to the same parallel class as I),
and ones not intersect I. The other r — 1 lines through P each in-
tersects I in one point, these points being all distinct. Hence axiom
A4 for a partial geometry holds with t — r — 1. This completes the
proof of our statement.

It follows from Theorem 4.1, that the parameters of the graph
GN of a net (r, k) are given by

(7.1) nλ = r(k - 1) , n2 = (k - l)(k - r + 1) ,

(7.2) p\λ - (r - 2)(r - 1) + (k - 2) , pi = r(r - 1) .

If a strongly regular graph has parameters (7.1), (7.2) we shall
call it a pseudo-net graph with characteristic (r, k). A pseudo-net
graph with characteristics (r, k) is pseudo-geometric with character-
istics (r, fc, r — 1).

Bruck [5], defines the deficiency d of a net (r, k) by

(7.3) d = k - r + 1 .

The interpretation of the deficiency d is that if it were possible
to add d more parallel classes, each consisting of k lines, so that the
extended net now has k + 1 classes of parallels, the net would
become an affine plane, in which any two points are joined by a
unique line.

If we take the k2 points of the net as treatments and the rk
lines as blocks, we obtain what is known as the lattice design. This
is a PBIB design (r, k, 1, 0) based on the strongly regular graph GN

with parameters given by (7.1), (7.2). Lattice designs were intro-
duced by Yates [24], The association scheme corresponding to GN is
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the Lr scheme defined by Bose and Shimanoto [4].
It is well known that a latice design with r replications and

block size k is equivalent to a system of r — 2 mutually orthogonal
Latin squares of order k.

If r — 2 mutually orthogonal Latin square of order k are given,
we can superpose them. Then each cell contains r — 2 symbols
belonging in order to the different Latin squares. The k2 cells are
now identified with k2 treatments. Treatments belonging to the same
row give one set of k blocks. Treatments belonging to the same
column give another set of k blooks. Treatments (cells) which contain
the same symbol of the ίth Latin square give a set of blocks for
each value of i (i = 1, 2, , r — 2). We thus get r sets of blocks.
The treatments and blocks so obtained constitute a lattice design.

Conversely given a Lattice design with r replications and block
size k, we can construct a set of r — 2 mutually orthogonal Latin
squares of order k.

If r — 2 mutually orthogonal Latin squares of order k are given,
we can superpose them. Then each cell contains r — 2 symbols
belonging in order to the different Latin squares. The k2 cells are
now identified with k2 treatments. Treatments belonging to the same
row give one set of k blocks. Treatments belonging to the same
column give another set of k blocks. Treatments (cells) which con-
tain the same symbol of the ίth Latin square give a set of blocks for
each value of i (i = 1, 2, , r — 2). We thus get r sets of blocks.
The treatments and blocks so obtained constitute a lattice design.

Conversely given a Lattice design with r replications and block
size fc, we can construct a set of r — 2 mutually orthogonal Latin
squares of order k.

(b) Take an n x n squares and write down the numbers 1,2, ,
n(n — l)/2 in the cells above the main diagonal. Fill up the cells
below the main diagonal symmetrically. The case n = 5 is exemplified
below.

*

1

2

3

4

1

*

5

6

7

2

5

*

8

9

3

6

8

10

4

7

9

10

Fig. 1

The cells containing the same number are identified with the
same point. Thus there are two different cells representing the same
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point, there being v — n(n — l)/2 points all together. Let the n
rows constitute lines. Thus there are n lines. It is clear that axioms
Al, A2, A3 of a partial geometry are satisfied with r = 2, k — n ~ 1.
It is easy to see that any two lines intersect in one point. Thus
ί = 2, and we have a partial geometry (2, n — 1, 2).

If two points which lie on a line are called first associates, and
two points which do not lie on any line are called second associates,
we have the triangular association scheme first defined by Bose and
Shimamoto [4], and extensively studied by Connor [9], Shrikhande
[21], Hoffman [13, 14] and Chang [6, 7], The parameters of the as-
sociation scheme or the corresponding strongly regular graph are

(7.4) nλ = 2(n - 2) , n2 = (n - 2){n - 3)/2 ,

(7.5) v\λ = n - 2 , Pϊi = 4 .

If a strongly regular graph has the parameters (7.4), (7.5) we
shall call it a pseudo-triangular graph with characteristic n. A
pseudo-triangular graph with characteristic n is pseudo-geometric
with characteristics (2, n — 1, 2).

(c) A balanced incomplete block design BIB is an arrangement
of a set of v0 objects or treatments in b0 sets or blocks, such that
(i) each block contains k0 distinct treatments (ii) each treatment is
contained in r0 blocks (iii) each pair of distinct treatments is con-
tained in λ0 blocks. This design has sometimes been called a (v0, k0,
λ0) configuration. The dual of a design is defined as a new design
whose treatments and blocks are in (1,1) correspondence with the
blocks and treatments of the original design, and incidence is pre-
served (where a block and a treatment are incident if the treatment
is contained in the block, and non-incident otherwise), Shrikhande
[23] has shown that the dual of a BIB design with λ0 = 1 is a PBIB
design. Now a BIB design with λ0 = 1 is clearly a partial geometry
(r0, k0, k0). Hence the dual design is the dual partial geometry
(fe0, r0, fc0). If we set kQ — r and r0 = fc, so as to make r the replica-
tion number and k the block size in the dual design, then the dual
design is the partial geometry (r, fc, r). Any two blocks (lines) of
this design intersect in a unique treatment (point). Hence the
association scheme of this design has been called the SLB (singly
linked block) scheme by Bose and Shimamoto [4]. The parameters of
the corresponding strongly regular graph can be written down directly
from Theorem (4.1). We have

(7.6) nt = r(k - 1) , n2 - (k - r)(r -
(7.7) v\x = (r - I)2 + k - 2 , pi, = r2 .

If a strongly regular graph has the parameters (7.6), (7.7) we
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shall call it a pseudo-SLB graph with characteristics (r, k). A pseudo-
SLB graph with characteristics (r, k) is a pseudo-geometric graph
with characteristics (r, fc, r).

(d) To conclude we shall give a rather less obvious example of
a partial geometry.

Consider an elliptic non-degenerate quadric Q5 in the finite pro-
jective space PG(5, pn). This quadric is ruled by straight lines, called
generators, but contains no plane. As shown by Primrose [16] and
Ray-Chaudhuri [17], there are (s3 + l)(s + 1) points and (s3 + l)(s2 + 1)
generators in Q5, each generator contains s + 1 points, and through
each point there pass s2 + 1 generators, where s = pn.

If P is a point on Q5 not contained in a generator I, then the
polar 4-space of P intersects I in a single point P*, and PP* is a
generator of Qb. It can be readily verified by using theorems proved
by Ray-Chaudhuri that PP* is the only generator through P, which
intersects I. This shows that if we consider the points and genera-
tors of Q5 as points and lines, they constitute a partial geometry
(s2 + 1,8 + 1, 1). The parameters of the graph of this partial ge-
ometry can be easily written down using Theorem (4.1). They are

nx = s(s2 + 1) , n2 = s4 + 1 ,

The partial geometry (s2 + 1, s + 1, 1) is of course a PBIB design.
This was obtained by Ray-Chaudhuri [18], the special case s = 2 was
given earlier by Bose and Clatworthy [1]. An interesting point in
the present formulation is that to verify that the configuration of
points and generators on Qb is a PBIB design we have only to check
the constancy of r, k and t instead of the constancy of r, k, nlf n2,
Vlif Pϊi as was done by Bose and Clatworthy [1] and by Ray-Chaudhuri
[18]. The dual partial geometry (s + 1, s2 + 1,1) is also of interest.

In the same way one can show that the configuration of points
and generators on a non-degenerate quadric ζ)4 in PG(4, pn) is a
partial geometry (s + 1, s + 1,1) where s = pn. The corresponding
design was first obtained by Clatworthy [8].

8 Lemmas on claws in pseudcvgeometric graphs. We have shown
in Theorem (5.1), that if we can base a PBIB design (r, fc, 1, 0) on a
strongly regular graph G, then G is pseudo-geometric and the design
is a partial geometry. We can ask the converse question: If the
graph G is pseudo-geometric (r, k, t) can we base a PBIB design
(r, k, 1, 0) on it? In graph theoretic language this question may be
put as: If the graph G is pseudo-geometric (r, fc, t) can we find a
set of cliques K19 K2, •• ,iΓb satisfying the axioms A*l-A*4 of §6.
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In the rest of the paper we shall frequently use the following
functions:

<8.1) τ(r, ί) = 1 + (r - l)\t - 1) ,

(8.2) q(r, t) = 1 + (r ~ l)(2r - l)(ί - 1) ,

<8.3) p(r, t)=:rt + (r- l)(ί - l)(2r - 1) ,

(8.4) p(r, t) = * [r(r - 1) + t(r + l)(r2 - 2r + 2)] .

We note that in view of the inequality 1 ^ t ^ r

(8.5) p(r, «) ^ tfr, ί) ^ <?(r, ί) ^ y(r, t) .

The concept of a cZαw was suggested by Alan Hoffman in con-
versation with R. H. Bruck and the author. By a claw [P, S] of a
pseudo-geometric graph G is meant an ordered pair consisting of a
vertex P, the vertex of the claw, and a nonempty set S of vertices
distinct from P such that every vertex in S is joined to P in G but
no two vertices in S are joined in G.

The number of elements in a finite set S will be denoted by \S\.
The order of the claw [P, S] is defined as s = | S|.

In Lemmas 8.1 - 8.3, G denotes a pseudo-geometric graph (r, fc, ί).

LEMMA 8.1. If k > y(r, t) = 1 + (t - l)(r - I)2 ίfcew /or α ^ s,
1 ^ s fg r, βαcΛ vertex P of G is the vertex of a claw [P, >S] of order
s. We can choose S to include any vertex A joined to P in G.

Let P be a vertex of G. Suppose there exists a claw [P, S] of
order s. Let T be the set of all vertices other than those belonging
to [P, S] and which are joined to P (are first associates of P). Let
f(x) be the number of vertices Q in T, such that Q is joined to
exactly x vertices in S (f(x) is the number of vertices in T each of
which has f(x) first associates in S). Then we have

<8 6) Σ/(a?) = nλ - s = r(k - 1) - s ,

since the left hand side of (8.6) counts all first associates of P, which
are not in S. Now let us count pairs {A, Q) where A is in S and
Q is in T and is a first associate of both A and P. Since A and P
have exactly Pπ common first associates (none of which can belong
to S by the definition of a claw) we have sp\λ pairs like (A, Q).

Again there are f(x) vertices in T each of which has exactly x
first associates in S. They contribute xf(x) to our count, Hence

(8.7) Σ 0/0*0 - spl = s{(t - l)(r - 1) + (fc - 2)} .
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Hence

(8.8) /(0) -±(x~ l)f(x) = (r - s)(k - 1) - s(t - l)(r - 1) .
x = l

Hence if s < r and k > y(r, t) = 1 + (r - l)\t - 1), then /(0) is
positive, i.e. there is at least one vertex As+1 in T which is not
joined to Al9 A2, * ,AS. We can therefore add As+1 to S and get a
claw of order s + 1. In this way we can go on extending a claw
till we get a claw of any required order not exceeding r. We can
start this process with any claw [P, A] of order 1. This proves the
lemma.

LEMMA (8.2). If k > τ(r, ί) = 1 + (r - l)\t - 1), and if [P, S]
is a claw of order r — 1, £&ew £&ere exist at least k — (r, ί) distinct
vertices Q of G such that [P, S U Q] is a claw of order r.

If [P, S] is a claw of order r - 1, then from (8.8)

2: fc

Hence there exist at least k — j(r, t) vertices Q, each of which
taken together with S give a claw [P, S*] of order r where S* =

LEMMA (8.3). 7/ fc > p(r, ί) = i [r(r - 1) + t(r + l)(r2 - 2r + 2)]
then there exists in G no claw of order r + 1.

Let [P, S] be a claw of order s in G. Let the set T be as in
Lemma (8.1). We shall count the number of triplets (AJί^ Q) where
Alf A2 is an ordered pair of distinct vertices in S, and Q is a vertex
in T which is a first associate of both A± and A2. Since A1 and A2

are second associates they have exactly p\x — 1 common first associates
other than P. Some of these may not lie in T. Hence an upper
bound for the required number of triplets is s(s — 1) p\l9 However
the f(x) vertices in T, each of which has exactly x first associates
in S, contribute x(x — l)f(x) to our count. Hence

(8.9) Σ Φ ~ !)/(*) ^ Φ - l)(PΪi - 1) = s ( s ~ 1)(^ - 1)

If possible let s = r + 1. Then adding (8.8) to (8.9) multiplied
by a half, and noting that on the left hand side of (8.9) the term
x = o contributes nothing we get

- 1)(* - 2)/(aO

^ -fc + ί [r(r - 1) + ί(r + l)(r2 - 2r + 2)] .
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Hence if k > p(r, t), there cannot exist a claw of order r + 1, as the
left hand side is essentially positive.

9 Lemmas on cliques in pseudo-geometric pxaphs In the
Lemmas (9.1) to (9.6), G denotes a pseudo-geometric graph (r, k, t).
The definition of a major clique generalizes Brack's definition, and
the concept of a grand clique is taken over from Bruck [5].

A major clique K of G is a clique such that

I K\ ^ k + 1 - τ(r, ί) = A? - (r - 1)2(£ - 1) .

A grand clique is a major clique which is also a maximal clique
// K and L are distinct maximal cliques, then K\J L cannot be

a clique. Since K and L are distinct, there must be a vertex P in
one of them (say K), not belonging to the other (L). Now if K\jL
is a clique, then P is joined to every vertex of L. Thus P U L is a
clique which contradicts the fact that L is maximal. Since grand
cliques are maximal the union of two grand cliques cannot be a
clique.

If we take the set of grand cliques as the set Σ of § 6, we may
enquire under what conditions the axioms A*l, A*2, A*3 and A*4
are satisfied. The lemmas which follow are directed to this purpose.

LEMMA (9.1). If k>(r, t) and if G has no claw of order r + 1 ,
then for every pair of distinct joined vertices P and Q in G, there
exists at least one major clique containing both P and Q.

From Lemma (8.1) we can find a claw [P, S] of order r such
that QeS. Let Alf A2, , Ar^ be other vertices of S. Let Ω be
the set of vertices R which when adjoined to S, give a claw P, S*
of order r, S* — SU R. From Lemma (8.2), the number of points in
Ω = \Ω\^k- 7(r, t).

The vertices in Ω are all joined to one another. If any two
were not joined they could be added to Alf A2, , Ar-X to give a
claw of order r + 1. Thus P and the vertices in Ω are all mutually
joined. Hence P U Ω — K is a clique of order ^ k + 1 — τ(r, t), i.e.
a major clique.

COROLLARY 1. In Lemma (9.1) the hypothesis may be replaced
by k> p(r, t).

This follows from Lemma (8.3) by noting that p(r, t) ^ y(r, t)
for 1 ^ t ^ r.

COROLLARY 2. When the conditions of Lemma (9.1) or Corollary 1
are satisfied, P and Q are contained in at least one grand clique.
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We can extend the major clique K by adding new vertices till
it becomes maximal, and therefore a grand clique.

LEMMA (9.2). If K and L are cliques of G and K\J L is not
a clique then \ K Π L | <Ξ rt.

Since K U L is not a clique, there must exist in K U L a pair
of vertices Pl9 P2 not joined to one another such that P± eK, P2e L.
Any vertex belonging to |JBΓΠL| must be joined to both Px and P2.
Hence the number of vertices in \K f] L\ cannot exceed p2

n. Thus

I K Π L I g rt .

LEMMA (9.3). / / K and L are cliques of G and K Π L contains
at least two vertices A and B, then

Every vertex in K\J L, other than A and B, is a first associate of

both A and B. Hence

LEMMA (9.4). // K and L are cliques of G such that (i) K{J L
is not a clique (ii) K Π L contains at least two vertices, then

\L\^k + rt + (r- ΐ)(t - 1) .

Since conditions of Lemmas (9.2) and (9.3) are satisfied

K\ + \L\ - \KΠL\ + \K\JL\

^rt + k + (r-

LEMMA (9.5). If k > p{ry t) = rt + (r - l)(ί - l)(2r - 1) and if
G has no claw of order r + 1, then two distinct vertices of G which
are joined, are contained in one and only one grand clique.

Suppose there are two distinct grand cliques K and L both con-
taining P and Q. Then K{jL cannot be a clique. Also K Π L has
at least two vertices P and Q. Hence from Lemma (9.4),

I ίΓ| + I £ I ̂  r ί + A; + (r - l)(ί - 1) .

Since K and L are grand cliques, they are both major. Hence

2[k - (r - l)\t -l)]^

k ^ rt + (r - l)(t - l)(2r - 1) = p(t) ,
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which is a contradiction.

COROLLARY. In Lemma (9.5) the hypothesis may be replaced by
k > p{r, t).

LEMMA (9.6) If (i) k > q(r, t) = 1 + (r - l)(2r - l)(t - lj,: (ii)

£wo distinct vertices of G are contained in utmost one grand clique
of G, (iii) there exists no claw of order r + 1 in G, then each point
of G is contained in exactly r grand cliques.

From Lemma (9.1), Corollary 2 any two vertices are contained in
:at least one grand clique. It follows from assumption (ii), that any
two vertices of G are contained in one and only one grand clique.
Again from Lemma (8.1), there exists a claw [P, S] of order r, where
S = {Alf A2, , Ar}. As in Lemma (8.1), let T be the set of first
associates of P, other than A19 A2, , Ar. We define Hd as the set
-consisting of P, Aj and all Qe T, such that Q is a first associate of
Aj but not of At when i Φ j . Let f(x) be as in Lemma (8.1). Now
/(0) = 0, since there are no claws of order r + 1. Hence from (8.6)
and (8.7) we have

(a?) = n 1 - r = r{k - 2) ,

Σ,xf(x) = rpl, = φ - 2) + r(r - l)(ί - 1) ,

Σ (<c - D/(*) = r(r - l)(ί - 1) .
x=2

"Now

Σ/(«) ^ Σ (* - !)/(*) ̂  (r - 1) ±f(x) .
2 2 2

r(t - 1) ^ Σ/(a;) ^ r(r -

r(ί - 1) ^ r(fc - 2) - /(I) ^ r(r - l)(ί - 1) .

Hence we have

(9.1) r(k-t- 1) ^ /(I) ^ r{(fc - 2) - (r - l)(ί - 1)} .

Any two vertices in Hj are joined together otherwise there would
be a claw of order r + 1. Thus H3 is a clique.

If we put Hf = Hj — (Aj U P), then Hf consists of exactly those
vertices of T which are joined to Aj but to no other vertex of S.
Ήence Hf, Hί, , H? are disjoint sets and the total number of
Tertices in these sets is /(I), which satisfies (9.1).
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Now there is a unique grand clique K, containing Aj and P(j =
1,2, , r). The number of vertices in K5 cannot be less than the
number of vertices in Hj. If possible let \KS\ < \Hj\. Since Kj is.
a grand clique it follows that Hs is a major clique and is contained
in some grand clique K . Since Aj and P are contained in K3 and
K'h they must coincide. Hence Kά contains H$ which contradicts-
\KJK\HJ\.

Now consider the r grand cliques Klf K2, , Kr. Then Kλ — P,
K2 - P, , Kr - P are disjoint. For if K{ - P and K5- P (i Φ j}
have a common point Q, then ίΓi and Ks would coincide and would
contain both A{ and Aj which is impossible since A{ is not joined to*
Aj. Now

| * i - P | + | JK 1 -P |+ ••• + \Kr-P\
^ I fli - P| + I fζ - P| + + \Hr-P\

^ r{(k _ l) _ (r - l)(ί - 1)} .

If possible suppose there is another grand clique Kr + 1 containing-
P. The vertices in Kr+ι — P must be disjoint from the vertices in
JEx - P, , Kτ - P. Also iΓr+1 - P must have at least (fc - 1) -
(r — l)2(ί — 1) vertices. If we remember that the number of first-
associates of P is r(k — 1) we have

r{(k - 1) - (r - l)(t - 1)} + (fc - 1) - (r - l)2(ί - 1) ^ r(k - 1) .

k ^ 1 + (r - l)(2r - l)(ί - 1) .

Hence fc g q(r, t), which gives a contradiction. This finally proveŝ ,
our lemma.

COROLLARY 1. The hypothesis of the Lemma may be replaced
by (i) fc > p(r, t) and (ii) there exists no claw of order r + 1 in G.

This follows from Lemma (9.5), and the inequality ρ(r, t) ^
Q(r, t).

COROLLARY 2. The hypothesis of the lemma may be replaced
by fc > p{r, t).

This follows from Corollary 1, Lemma (8.3), and the inequality
p(r, t) ^ p(r, t).

THEOREM (9.1). Let G be a pseudo-geometric graph (r, &, t). If
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( i ) k>q(r,t),
(ii) two distinct vertices of G are contained in utmost one

grand clique,
(iii) there exists no claw of order r + 1 in G; then G is geo-

metrisable (r, k, t).

THEOREM (9.2). Let G be a pseudo-geometric graph (r, &, t). If
( i ) k>p(r,t),
(ii) there exists no claw of order r + 1 in G; then G is geo-

metrisable (r, k, t).

THEOREM (9.3). Let G be a pseudo-geometric graph (r, k, t). If
k > p(r, t), then G is geometrisable (r, k, t).

If we take the set of grand cliques of G, as the set of § 6, then
Lemmas (9.5) and (9.6), together with their corollaries show that the
axioms A*l and A*2 are satisfied, under the conditions of any of the
Theorems (9.1), (9.2), (9.3). The result now follows from Theorem (6.2).

lO The uniqueness of the triangular association scheme for
n > 8» Consider a pseudo-triangular graph with characteristic n,
which is a pseudo-geometric graph with characteristics (2, n — 1, 2)
and with parameter (7.4), (7.5). In this case r = 2, t = 2 and the
function p(rt t) given by (8.4) is equal to 7. Hence from Theorem
(9.3) the graph is geometrisable (2, n — 1, 2) if n — 1 > 7, i.e. n > 8.

Now v = n(n — l)/2 and r = 2. Thus each point occurs in exactly
two lines. Given any point P not contained in a line δ, the two
lines mx and m2 containing P, must both intersect δ, since r = t = 2.
Hence any two lines intersect in a unique point. If we designate
the lines by the numbers 1, 2, , n; then we may make a (1,1) cor-
respondence between points and the unordered number of pairs (if j),
i Φ ύ, if J = 1, 2, , w, where the point corresponding to (i, j) is the
intersection of the lines i and j . If we now take BJinxn square and
write down in the cells (i, j) and (i, i) the treatment corresponding
to the unordered pair (i, j), then clearly the points occurring in the
same row (or same column) are those occurring in the same line (see
Fig. 1 for the case n = 5). Thus the association relations between
the vertices of the graph will be exhibited in the form known as
the triangular scheme for n > 8. This result was first obtained by
Connor [9]. Of course when we use design of experiments language
the vertices of the graph or points are treatments.

Shrikhande [21] has proved the uniqueness of the triangular
scheme for n = 5, 6 and Hoffman [13] and Chang [6] have proved
the same for n — 7. Both Hoffman [14] and Chang [7] have shown
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that for n = 8, the parameters (7.4), (7.5) do not completely deter-
mine the scheme. There are three other possible schemes with the
same parameters besides the triangular. This may be expressed as>
follows: There are four non-isomorphic strongly regular graphs
ivίth parameters

nx = 12, n2 = 15, pι

n = 6, p\x = 4

only one of which is geometrisable (2, 7, 2).
Consider a BIB design

(9.1) v* = i(n- l)(n - 2), 6* = i n(n - 1), r* = n,

k* = w - 2, λ* = 2

Hall and Connor [12] have shown that if this design exists then it
can be embedded in a symmetric BIB design

(9.2) v0 = b0 = ί %(n — 1) + 1, rQ = k0 = n, λ0 = 2 .

Their proof does not cover the case w = 8, for which Connor [10]
separately showed that the design (9.1) does not exist.

Shrikhande [22], has proved the Hall-Connor theorem for the case
n φ 8 by using the uniqueness of the triangular scheme for n Φ 8.
It is interesting to observe that n = 8, the case not covered in Hall
and Connor's entirely different proof, is exactly the case when the
parameters (7.4), (7.5) do not uniquely characterize the scheme as
triangular.

l l Theorems of Shrikhande, Bruck and Mesner on the unir
queness of the Lr scheme. Consider GN as a pseudo-net graph with
characteristic (r, k) or the corresponding association scheme with
parameters (7.1), (7.2). Since t = r — 1 in this case, GN is geome-
trisable (r, k, r — 1) if

(11.1) k > p(r, r - 1) = \ (r - l)(r3 - r2 + r + 2) .

In particular if r — 2, this reduces to k > 4.
In the case r = 2, the geometry consists of two sets of parallel

lines. Each parallel class contains k lines, and each line contains k
points. Lines of the same class do not intersect. Lines of different
classes intersect in a point. Thus each point is uniquely determined
as the intersection of one line from each class. We can number the
lines of each class 1,2, •••,&; and we can number the points or
vertices of the graph 1,2, , k2. We now take a kxk square and
identify-the ith line of the first class with the ί th row, the i t h line
of the second class with the i t h column, and the cell (i, j) with the
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point which is intersection of the line i of the first class, with the
line j of the second class, then the association relations between the
vertices of the graph are exhibited as an L2 scheme. This proves
the uniqueness of the L2 scheme for n > 4 a result obtained by
Shrikhande [19] and by Mesner [15].

In the general case the geometry consists of a set of k2 points
(the vertices of GN) and r classes of parallel lines, each class con-
taining k lines. Lines of the same class do not intersect. Lines of
different classes intersect in one point. Let the parallel classes be
designated by (R), (C), (E/i), , (J7r-2) To the k lines within each
class we assign the symbols 1,2, , k. Each point is uniquely given
by the intersection of a line of (R), with a line of (C). Hence as
in the case r = 2, the lines of (R) may be identified with the rows,
and the lines of (C) with the columns of a k x k square. Then the
intersection of the line of (R) and the line of (C) is identified with
the cell (ί, j). If in each cell (ΐ, j) we put the number of the line
of (Ua) which passes through the point corresponding to the cell, we
get Latin squares La (a = 1, 2, , r — 2) and the Latin squares
Llf L2, •• ,L r_2 are mutually orthogonal. Two points (cells) are first
associates if they lie in the same row, same column or correspond to
the same letter of the same Latin square. Thus the association
relations between the points or vertices of GN can be exhibited by
the Lr scheme defined by Bose and Shimamoto [4]. Thus the Lr

scheme with parameters (7.1)-(7.2) is unique (up to type) if (11.1)
holds. It is necessary to add the words up to type, since there may
be many non-isomorphic sets of r — 2 mutually orthogonal Latin
squares. This result is implicit in Brack's paper [5]. A slightly
weaker result was proved by Mesner [15],

12 The SLB scheme and the general uniqueness theorem* Let
us consider the SLB scheme or the pseudo-SLB graph with characteris-
tics (r, k) for which the parameters are given by (7.6), (7.7). Then
Theorem (9.3) states that the graph is geometrisable (r, k, r) if

(12.1) k >lτ{τ" -r2 + r + 1) .

In the language of designs this would mean that if there is an asso-
ciation scheme with parameters (7.6), (7.7) then if (12.1) holds the
association relations can be exhibited by the dual of a BIB design
(with r0 — k and kQ — r, λ0 — 1) so that the first associates are exactly
those which occur together in a block of this dual and the second
associates are those which do not occur together in a block of this
dual. Thus (7.6), (7.7) determine the structure of the association
scheme up to type. It is necessary to add the words up to type
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since there will exist in general non-isomorphic BIB designs with
(r0 = k, kQ = r, λ0 = 1) and their duals will automatically be non-iso-
morphic. When (12.1) does not hold we cannot say that their will
exist a dual of a BIB design i.e. a partial geometry (r, k, r), whose
structure will exhibit the association relations.

In general then we can say that if we have a pseudo-geometric
association scheme with parameters (4.1), (4.2), then if

(12.2) k > p(r, t) = i [r(r - 1) + t(r + l)(r2 - 2r + 2)] .

the association structure can be exhibited by means of a partial
geometry (r, k, t), the first associates being those treatments which
correspond to points on a line of the geometry. Such schemes may
called geometric schemes. Thus when (12.2) is true, the association
scheme will be determined up to type, for there will exist non-isomor-
phic partial geometries with the same parameters r, k, t. This may
be regarded as a generalized uniqueness theorem. When (12.2) is
not true very little is known except for schemes which have the
same parameters as the triangular scheme or the L2 scheme (r = 2,
k,1 = 1). These two cases have fully investigated.

13* A general embedding theorem.

THEOREM (13.1). Given a PBIB design (r, k, Xu λ2), λ̂  > λ2 based
on a strongly regular graph G (association scheme) with parameters

(13.1) ih = (d- l)(k - l)(k - t)(t , n2 = d(k - 1) ,

(13.2) p\x = [(d - l)(fc - l)(k - t) - d(k - t - 1) - t]/t ,

Pϊi = (d - l)(fc - t)(k - t - l)/t .

We can extend the design by adding new blocks, containing the same
treatments, in such a way that the extended design is a balanced
incomplete block (BIB) design with r0 = r + dfa — λ2) replications,
block size k and in which every pair of treatments occur together
in λj blocks, provided that

(13.3) k > p(d, t) = i [d(d - 1) + t(d + l)(d2 - 2d + 2)] .

Let G* be the complementary of G, i.e. G* is the graph with
the same vertices as G, but with the relation of adjacency reversed,
i.e. just those vertices in G* are joined which were unjoined in G.
This means that first associates become second associates and vice
versa. The parameters of G* are obtained from G by interchanging
the subscripts and superscripts 1 and 2. Hence for G*

(13.3) nϊ = d(k - 1) , nS = (d - l)(fc - l)(fc - t)/« ,
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(13.4) jή* = [(d - l)(fc - l)(fc - t) - d(k - t - 1) - t]/ί ,

jή* = (d - l)(fc - ί)(fc - t - l)/ί

Using the identities (2.3), (2.4), we find that

p]ί = (ί - l)(d - 1) + Λ - 2 ,

Hence G* is pseudo-geometric with characteristics (d, &, ί).
In view of (13.3) it follows from theorem (9.3) that G* is geo-

metrisable {d, ky t). From (4.1) the geometry has d[(d — l)(k — 1) + ί]/ί
blocks, and every pair of treatments which were second associates
in the original PBIB design occur once in the new blocks. If we
add these new blocks repeated \ — λ2 times to the original blocks
then each pair occurs \ times and each treatment occurs r + d(X1 — λ2)
times. This proves our theorem.

We shall now derive from this the embedding theorem on or-
thogonal Latin squares due to Shrikhande and Brack.

In Theorem (13.1) take t — d — 1, then G* is a pseudo-geometric
graph (d, k, d — 1 ) i.e. a pseudo-net graph. If

k > p(d, d _ l ) = i ( d _ l)(d> -d* + d + 2 ) ,

it is geometrisable.
Also let us take r = k + 1 - d, \ = 1, λ2 = 0. Then the PBIB

design becomes the design (k + 1 — d, k, 1, 0) based on the strongly
regular graph with parameters (7.1), (7.2). This is easy to check by
substituting d = k + 1 — r in (13.1), (13.2) and noting that they
reduce to (7.1), (7.2). Hence the PBIB design is a net of degree
k + 1 — d, or a lattice design with r — k + 1 — d and block size k.
Hence the extended design is a BIB design with r + d i.e. k + 1
replications in which every pair of treatments occurs in one block.
This is an affine plane of order k. Hence we have

THEOREM (13.2A). A lattice design (or a net) with r — k + 1 — d
and block size k can be completed to an affine plane

v0 = k\ b0 = k(k + 1), r0 = k + 1, k0 = &, λ0 = 1 ,

by adding kd new blocks, if k> \(d — ϊ)(d3 — d2 + d + 2).
Now we have already noticed the equivalence of a lattice design

with r replications and block size fc, with a set of r — 2 mutually
orthogonal Latin squares of order k. Since an affine plane of order k
can be regarded as a lattice with k + 1 replications, Theorem (13.2A)
may alternatively be stated as

THEOREM (13.2B). // there exist k — 1 — d mutually orthogonal
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Latin squares of order k, it is possible to get a complete set of
k — 1 mutually orthogonal Latin squares, by adding d new suitably
chosen squares, provided that k > \{d — l)(ds — d2 + d + 2).

The case d = 2, was first obtained by Shrikhande [20] and the
general case was obtained by Bruck [5].
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FINITE NETS, II. UNIQUENESS AND IMBEDDING

R. H. BRUCK

l Introduction* In discussing the present paper we have a
choice of three languages: (a) the language of orthogonal latin squares;
{b) the language of incomplete block designs, as used in connection
with design of experiments; and (c) the geometric language of nets.
As far as proofs are concerned, either (b) or (c) affords a useful sym-
metry which is missing in (a); it is merely a matter of taste that we
choose (c). Here let us begin with (a).

Let C be a collection of t mutually orthogonal latin squares of
side n. We assume n > 1, t ^ 1. The inequality t ^ n — 1 necessarily
holds; if t — n — 1, C is said to be complete. As is well known, a
complete set of orthogonal latin squares of side n determines and is
determined by an affine plane of order n. We define the degree, k,
and deficiency, df of C by

(1.1) fc = ί + 2 , d = n - 1 - ί ,

so that

(1.2) k + d = n + 1 .

Here k is, in language (b), the number of constraints: one constraint
for the rows of the squares, one for the columns, and one for each
of the t squares. On the other hand, if C can be enlarged to a com-
plete set, C , of n — 1 mutually orthogonal latin squares, then d is
the number of squares in C which are not in C; or the number of
constraints missing in C. In language (c) we may describe C as a
net N of order n, degree k, deficiency d. For an example of such a
net N, we may begin with an affine plane π of order n—with its n2

points and n + 1 parallel classes of lines, n lines per class—and retain
the points but delete some d parallel classes.

Before discussing the results of the paper, it will be convenient
to define two polynomials p{x), q(x):

<1.3) p(x) = \x" + x* + x* + lx ,

(1.4) q(x) = 2x*-x2-x + l,

Received November 22, 1961. Any views expressed in this paper are those of the
author. They should not be interpreted as reflecting the views of The RAND Corpora-
tion or the official opinion or policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation as a courtesy to members
of its staff.

421



i following

I)2 q(d •

0

1

4

9

16

25

R. H.

table:

- i )
1

1

11

43

109

221

BRUCK

2(d - I)3

0

2

16

54

128

250

P(d - 1)
0

4

23

81

214

470

eP/2

8

40

128

312

648

1/2

1/2

1/2

422

d (d

1

2

3

4

5

6

We note from (1.1) that the side n and deficiency d of the collection
C (of mutually orthogonal latin squares) satisfy the inequality n ^
d + 2. Assuming that d ^ 1, we are interested in conditions under
which C can be completed; that is, can be enlarged to a complete set,
C", of mutually orthogonal latin squares of side n. Our first result is:

(A) Ifn>(d — I)2, and if C can be completed at all, then it
can be completed uniquely, aside from trivialities.

This follows from Theorem 3.1. However, examples show that
the condition n > (d — I)2 does not ensure completion. On the other
hand:

(B) If n> p(d — 1), C can always be completed.

This follows from Theorem 4.3. The result (B) is known to be
best possible for d = 1 (folk-lore) and for d — 2 (Shrikhande [9]).
Whether (B) is best possible for d > 2 is unknown to the author.
Before mentioning further results, intermediate between (A) and (B),
which take into account the structure of C, it seems worthwhile to
give a simple consequence of (B).

Bose and Shrikhande defined m(n) to be the maximum number of
mutually orthogonal latin squares of side n. As a result of the work
of Bose, Shrikhande and Parker (see, for example, [1]), Chowla, Erdos
and Straus [5] were able to prove that

(1.5) m{n) > in1191

for all sufficiently large n (the lower bound on n being unknown.) In
view of (B) we may state a dichotomy:
Either ( I ) m(n) = n — 1

or (II) n ^ p(n - 2 - m(n)) < i[n - 1 - m(n)]\
As an easily stated consequence:

(1.6) / / m(n) <n—l, then m{n) <n- 1- (2n)114 .
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We note that (I) holds precisely when there exists an affine or projective
plane of order n. Thus (I) holds for infinitely many n, for example,
for every prime-power. However, by the Bruck-Ryser Theorem (Bruck
and Ryser [3]), (II) also holds for infinitely many n. We may add
that, just as Chowla et al. state that their methods would not allow
(1.5) to be improved to

«(1.7) m(n) > n112

(although (1.7) is not known to be false for large n), so it seems
likely that the present methods would not allow (1.6) to be improved to

•(1.8) If m(n) <n — l , then m(n) S n - 2 - n1'2 .

Note that (1.8) would result from (II) if we could replace p(x) by x2.
—A more reasonable possibility is that p(x) could be replaced by q(x),
by dint of a more penetrating discussion of maximal incomplete sets
•of orthogonal latin squares. This would give an exponent 1/3, instead
of 1/2, in (1.8).—But even if (1.7), (1.8) could both be proved, they
would still leave a great gap in our knowledge of m(ri).

The refinements of (A), (B) are conveniently stated in terms of
graphs. From the collection C—or, equivalently, from the correspond-
ing net N of order n, degree fc, deficiency d—we define a graph Gx

with n2 vertices, whose edges are the unordered pairs of distinct points
lying on a common line of the net N. If G2 is the complementary
graph of Gx then G2 has (at least superficially) the type of structure
that one would associate with the graph of a net of order n, degree
d, deficiency k. (Note that the roles of k and d have been inter-
changed.) We abstract from this superficial structure a definition of
what we call a pseudo net-graph of order n, degree c£, deficiency k.
Our first observation is that, to enlarge C to a complete set C", or,
equivalently, to imbed the net N in an affine plane of order n, we
must introduce a suitable collection of lines into the complimentary
graph G2 in such a way as to turn G2 into the graph of a net of order
n, degree d, deficiency k. We actually prove our results for pseudo
net-graphs. Thus (B) is obtained as a consequence of:

(B') Ifn> p(d — 1), every pseudo net-graph of order n} degree
d is the graph of a uniquely defined net of order n, degree d.

The corresponding theorem for d = 2 was proved by Shrikhande
[10], who also refers to unpublished results of Dale Mesner for d ^ 2.
In the language (b) used by Shrikhande, (B') could be restated as:

(B") If n > p(d — 1), and if the parameters of the second kind
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for a partially balanced incomplete block design with n2 treatments
with two associate classes are given by

Ul = d(n - 1) , p\x = n - 2 + (d - l)(d - 2 ) , p\x = d(d - 1) ,

then the design has Ld association scheme.

Now we require the notion of a claw. If G is a pseudo net-graph,
a claw P, S of G is a pair consisting of a vertex P and a nonempty
set S of vertices distinct from P such that P is joined in G to every
vertex in S but no two vertices in S are joined in G. The order of
the claw is the cardinal number, \S\, of S. If G is the graph of a
net of degree d then, obviously, G has no claws of order d + 1. We
may state a partial converse (see Theorem 4.2):

(C) If n> 2(d — I)3, ami if G is a pseudo net-graph of order n,
degree d which possesses no claws of order d + 1, then G is the graph
of a uniquely defined net of order n, degree d.

This result is also given by Shrikhande [10] for d = 2. We may
remark here that the inequality in (C) could probably be sharpened to

n > 2(d - I)3 - (d - I)2 .

This could be done if the right-hand side of formula (4.7) in Lemma
4.2 could be replaced by d — 1, as seems likely.

To state our final result in this direction we need the notion of
a grand clique. A clique (of a pseudo-net graph G of order n, degree
d) is a set of vertices every two of which are joined in G. And a
grand clique is a maximal clique containing at least

n - (d - l)\d - 2)

vertices. Our result is (Theorem 4.1):

(D) Assume n > q(d — 1), and let G be a pseudo net-graph of
order n, degree d such that (i) no two distinct grand cliques of G
have more than one common vertex and (ii) G has no claws of order
d + 1. Then G is the graph of a uniquely defined net of order n,
degree d.

We may remark that, for d = 1 or 2, condition (i) of (D) may be
dropped. Indeed, in these cases, grand cliques have exactly n vertices,
and this simplifies matters considerably. On the other hand, for d > 2,
(i) is needed to help us prove that grand cliques have exactly n
vertices and are in fact the lines of a net.
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These are perhaps the main results of the paper. However, other
items are also worthy of note. In § 2 we find it worthwhile to
formalize the familiar process of "enumeratinng in two ways." We
feel that this process would repay formal study, just as the formal
study of equality has led to a rich theory of equivalence relations.
In § 5 (originally conceived as a section designed to end all study of
incidence matrices, but now recast) we uncover a one-to-one corre-
spondence, apparently unknown until the present, between sets of
k — 2 mutually orthogonal latin squares of side n and sets of k mutually
orthogonal matrices of order n\ (Theorem 5.1). The suitable modifi-
cation for pseudo net-graphs is given in Theorem 5.2. We also show
in § 5 that a conjecture concerning adjacency matrices of finite graphs
(originally advanced by Harary and disproved by Bose) is hopelessly
beyond repair.

The paper [4], of like title to the present one, was compressed at
the suggestion of the editors. A good deal of material—some of which
appears in almost unrecognizable form in §§ 3, 5 of the present paper—
was omitted, including all examples. There are some grounds for our
belief that the result was to hamper theory of latin squares. As a
case in point, a counterexample contained in the original version of
[4], and known to the author in 1949, served in 1961 to halt an ex-
tensive high-speed machine program on latin squares. With this in
mind, we have tried in the concluding section (§ 6) to include a reason-
able selection of remarks and examples.

In conclusion, the author would like to express his appreciation to
The EAND Corporation of Santa Monica and to all the participants
of the 1961 Summer Symposium on Combinatorial Mathematics of
Project EAND. The present paper has been largely molded in dis-
cussions with Alan Hoffman, R. C. Bose and E. T. Parker. Hoffman
is certainly the father of Lemma 4.4 (though he is not responsible for
(4.19)), and Hoffman and Bose must share some guilt in connection
with the birth of Theorem 5.1—which they, however, have never
seen.

2* Counting in two ways During the course of this paper we
shall have many occasions to use the familiar process of "counting in
two ways." In order to ensure brevity without loss of clarity, it
seems worthwhile to state the process as a formal lemma. Here, for
any set S, | S | denotes the cardinal number of S.

LEMMA 2.1. Let A, B be nonempty sets, p be a finite subset of
the direct product set A x B. For each a in A, let ap denote the
subset of B consisting of all b in B such that (α, b) is in p; and, for
each b in B> let pb be the subset of A consisting of all a in A such
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that (α, 6) is in p. Then

(2.1) ΣI<Vl = ΣΣ
aβA

Proof. For each a in A, the set (α, ap), consisting of all pairs
(α, b) with 6 in ap, contains precisely | ap | elements of />. Also, the
sets (α, α^), as a ranges over A, partition ^—provided we ignore the
empty sets which may turn up. Hence the left-hand side of (2.1) is
equal to \p\. Similarly for the right-hand side of (2.1). This com-
pletes the proof.

It goes without saying that the value of (2.1) in any particular
case depends upon skill in choosing the sets A and B (these may often
be complex sets constructed from others more immediately at hand)
and the relation (or finite subset) p. I would conjecture that all
proofs by enumeration may be reduced to a sequence of applications
of the apparently innocuous Lemma 2.1. Be that as it may, there
were several instances at the 1961 Combinatorial Symposium of Project
RAND in which Lemma 2.1 provided a simpler alternative to proofs
involving matrix calculations.

3 Nets* We begin with a positive integer (or, more generally,
with any cardinal number) k such that

(3.1) k ^ 3 .

A fc-net, N, is a system of undefined points and lines, together with
an incidence relation, subject to the following axioms: (i) N has at
least one point, (ii) The lines of N are partitioned into k disjoint,
nonempty, "parallel classes" such that (a) each point of N is incident
with exactly one line of each class; (b) to two lines belonging to
distinct classes there corresponds exactly one point of N which is
incident with both lines. For convenience, we shall use phrases such
as "point is on line" instead of speaking of incidence.

The axioms, coupled with (3.1), ensure the existence of two distinct
lines L, U of N and a parallel class K containing neither of L, I/.
Since each point of L lies on a unique line of class K, and since each
line of class K meets L in a unique point, there is a one-to-one corre-
spondence between the points of L and the lines of K. Similarly,
there is a one-to-one correspondence between the points of U and the
lines of K. Furthermore, each point of N lies on exactly one line of
K. Hence, if some line of N contains exactly n distinct points, the
following statements are true:

( I ) Each line of JV contains exactly n distinct points, where



FINITE NETS, II. UNIQUENESS AND IMBEDDING 427

(II) Each point of N lies on exactly k distinct lines, where

A ^ 1.
(III) N has exactly kn distinct lines. These fall into k parallel

classes of n lines each. Distinct lines of the same parallel class have
no common points. Two lines of different classes have exactly one
ĉommon point.

(IV) N has exactly n2 distinct points.
A system N satisfying (I)-(IV) we shall call a net of order n,

degree k. If (3.1) fails—in particular, if k = 1 or 2—we shall call the
net degenerate. And if n = 1 we shall call the net trivial. In the
sequel we study finite nontrivial nets (n and k finite) but we cannot
entirely avoid degenerate nets.

For each finite nontrivial net N of order n9 degree k we introduce
integers d, n{ and p)k as follows:

<3.2) k + d = n + 1

.(3.3) nλ = k(n - 1) , n2 = d(n - 1) ,

p\x = n - 2 + (k - l)(fc - 2) ,

Vn = P21 = (fc - 1)^ ,

PΛ = d(d - 1) ,
<3.4)

PL = n - 2 + (d - l)(d - 2) ,

Pi = Pl2 = (d - l)fc ,

In (3.3), (3.4) we are using the notation of R. C. Bose [2]. We call
the integer d the deficiency of N. It is to be observed that inter-
change of k and d preserves (3.2) and has the effect in (3.3), (3.4) of
interchanging the subscripts and superscripts 1, 2.

Before making clear the significance of the above definitions, it
will be convenient to introduce further notation. If P, Q are two
distinct points of N we say that P, Q are joined in N if there exists
a line PQ of N (necessarily unique) which contains both P and Q; if
the line PQ does not exist, we say that P, Q are not joined in N.
By a partial transversal, S, of N we mean a nonempty set, S, of
points of N such that every two distinct points in S are not joined
in N. By a transversal of N we mean a partial transversal with
exactly n distinct points (where n is the order of N). We are now
ready for an important elementary lemma.

LEMMA 3.1. Let N be a nontrivial finite net of order n, degree
My deficiency d.

( i ) If S is a partial transversal of N, then | S | ^ n.
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(ii) If P is a point of N, then, of the n2 — 1 points of iNΓ
distinct from P, nx are joined to P in N and n2 are not joined to P
in N.

(iii) If P is a point of N and if L is a line of N not contain-
ing P, then P is joined to k — 1 points of L and P is not joined to
d points of L.

(iii') If P is a point of N and if T is a transversal of N not
containing P, then P is not joined to d — 1 points of T and P is
joined to k points of T.

(iv) If P, Q are distinct points joined in N, then, of the remain-
ing n2 — 2 points, p\x are joined to both of P, Q; p\2 are joined to P
and not joined to Q; pλ

21 are not joined to P and joined to Q; p\2 are
not joined to P and not joined to Q.

(iv') // P, Q are distinct points not joined in N, then, of the
remaining n2 — 2 points, p\2 are not joined to P and not joined to
Q; p\λ are not joined to P and joined to Q; pl2 are joined to P and
not joined to Q; p2

n are joined to P and joined to Q.

REMARKS. (1) The statement of Lemma 3.1 is intended to
emphasize a duality of importance for the sequel. Item (i) merely
points out that transversals are maximal partial transversals. (How-
ever, not every maximal partial transversal is a transversal.) We note
that if "joined" and "not joined" are interchanged, then (ii) remains
true provided nλ, n2 are interchanged; (iii) and (iii') are interchanged
provided "line L" and "transversal T" are interchanged, as well as k
and d; and (iv), (iv') are interchanged provided the subscripts and
superscripts 1, 2 are interchanged.

(2) In view of (ii)—since n2 = d(n — 1)—or (iii) we see that the
deficiency, d, of a finite net N, is a nonnegative integer.

(3) In view of (ii) we see that a finite net, N, of order n,
deficiency zero is precisely an affine plane of order n. Thus the
deficiency measures the extent to which a net fails to be an affine
plane—namely, it lacks d classes of parallel lines.

(4) In view of (iii') we see that if d = 0, then N has no trans-
versals. (Indeed, if d = 0, each partial transversal of N has exactly
one point, since every two distinct points are joined in N—by (ii), (3.3).)

Proof ( i ) . Let s = | S | and let K be any parallel class of lines
of N. Each of the s points of S lies on a unique line of K. Two
distinct points of S are not joined in ΛΓand hence lie on distinct lines
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of K. Therefore s^\K\=n. This proves (i).
(ii) We note from (3.3), (3.2) that nx + n2 = n2 - 1. Each of

the k lines through P contains n — 1 points in addition to P. The
nλ — k(n — 1) points so obtained are distinct and are all the points
joined to P. This proves (ii).

(iii) We note from (3.2) that (k — 1) + d = n. One of the k
lines through P is parallel to L. The rest meet L in k — 1 distinct
points. Moreover, L has exactly n distinct points. This proves (iii).

(iii') The n distinct points of T lie one each on the n distinct
lines of each parallel class (cf. the proof of (i)). Hence the k lines
through P meet T in k distinct points. Since k + (d — 1) = n, there
remain d — 1 points of T not joined to P. This proves (iii').

(iv) Here P, Q lie on a line PQ of JV. There are n — 2 points
of PQ which are joined to both P and Q. Each of the k — 1 lines
through P, other than PQ, is met by the k — 1 lines through Q, other
than PQ, in k — 2 distinct points (there being a case of parallelism).
This gives a total of

n - 2 + (k - l)(k -2) = pi,

distinct points joined to both P and Q. Since

by (3.4), (3.2), (3.3), and since P is joined (by (ii)) to exactly nλ — 1
points distinct from itself and Q, then there are exactly p\2 distinct
points joined to P but not to Q. (And, of course, there are pι

Ά distinct
points joined to Q but not to P.) Since

Pli + Vn = n2

by (3.4, (3.2), (3.3), and since P is not joined (by (ii)) to exactly n2

distinct points, then there are exactly p]2 distinct points joined to
neither P nor Q. This proves (iv).

(iv') Here P, Q are not joined in N. Since each of the k lines
through P is met by the k lines through Q in exactly k — 1 points
(one case of parallelism) and since none of these intersection points is
P or Q, there are exactly

k(k -1) = p\x

distinct points joined to both P and Q. Since

Pli + Vn = nx ,

there are exactly p\2 points joined to P but not Q. Since

Pli + PI2 = n2 - 1 ,
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and since P is not joined to exactly n2 — 1 points in addition to Qr

the proof of (iv') and of Lemma 3.1 is now complete.
It will be convenient at this point to make a brief review of some

well known facts about nets. Let n ^ 2 be any given positive integer,
and let us construct a square of side n, containing n2 cells. We regard
the cells as points of a net N. If we define two distinct cells to be
joined in N if and only if they lie in the same row, then N is a
(degenerate) net of order n, degree 1, with the n rows of cells as the
n lines of its single parallel class. If we allow both rows and columns
of cells as lines, we have a (degenerate) net of order n> degree 2*
If we now mark the cells with the numbers 1 through n in such a
way as to form a latin square and allow, in addition to the row-lines
and column-lines, lines consisting of n cells marked with the same
number, we get a net of order n, degree 3. Similarly, for any integer
k in the range 3 ^ k ^ n + 1, a set of k — 2 mutually orthogonal
latin squares of side n may be used to define a (non-degenerate) net
of order n, degree k. Conversely, any net of order n9 degree k (k ^ 1)
can be obtained in the manner indicated, usually in many ways.

To imbed a net N of order n, degree k (where k < n + 1) in a.
net Nτ of order n, degree k + 1 which has the same points as N and
has k of its line classes identical with those of N is equivalent to
finding a single new "parallel class." This must consist of n distinct
transversals of N, no two with a point in common. To imbed N in
an affine plane N2 of order n (with the same points as N and with k
of its line classes identical with those of N) is equivalent to finding
d — n + 1 — k new "parallel classes," consisting of d sets of n parallel
transversals, such that two distinct transversals belonging to the same
set have no common point and two belonging to different sets have
exactly one common point. It is easy to see that each of the n2 points
should lie in exactly d of the transversals. Indeed, to imbed net N~
of order n, degree k, deficiency d > 0 in an affine plane is equivalent
to defining a complementary net, JV, of order n, degree d, deficiency
k, whose points are identical with those of N and whose lines are a.
suitably selected set of transversals of N.

Several problems arise. A given net may have no complementary
net or several complementary nets. How can we ensure existence or
uniqueness of a complementary net? A given net may have several
classes of parallel transversals, or no complete parallel class of trans-
versals, or no transversals at all. How can we ensure existence of a
suitable collection of transversals?

One case in which transversals are embarrassingly common is
worth mentioning, A net of order 10, degree 3, is essentially a latin
square of side 10. Here the deficiency is d = 8. To imbed such a
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net in an affine plane of order 10 we would need a suitable collection
of dn = 80 transversals, 8 through each point. No such collection has
ever been found. However, E. T. Parker, in a machine search for
an orthogonal mate to suitably selected latin squares, usually finds an
average of about 120 transversals per cell—or about 15 times as many
transverals per point of the net as we would want. As we shall see,
the situation changes when the order n is somewhat "larger" compared
with the deficiency d.

LEMMA 3.2. Let N be a finite nontrivial net of order n, degree
fc, deficiency d > 0. Let T be a transversal of N and let S be a
partial transversal of N not contained in T but containing at least
two points of T. Then

(3.5) \SΠ T\ S d - 1 ,

(3.6) | S | ^ ( d - l ) 2 .

COROLLARY. IfNisa finite nontrivial net of order n, deficiency
d > 0, and if n > (d — I)2, then two distinct transversals of N can
have at most one common point.

Proof. By hypothesis, S contains at least one point R which is
not in T. By Lemma 1 (iii')> there are precisely d — 1 points of T
not joined to R. Among these d — 1 points must be the points of
S Π T, since R is joined to no other point of S. Hence we have (3.5).
Again, by hypothesis, SίΊ T contains at least two distinct points P, Q.
By Lemma 1 (iv'), there are precisely p\ points joined to neither P
nor Q, and the points of S U T — {P, Q} must be among these p\2 points.
Hence

(3.7) \SΌT\^plΛ + 2 = n + (d- l)(d - 2) .

By this and (3.5), we have

\s\ + \τ\ = ι s n τ\ + \SΌ τ\
^(d-l) + n + (d- l)(d - 2) - n + (d - I)2 .

However, | T\ = n, since T is a transversal. Therefore we have (3.6).
If we assume that S is also a transversal, (3.6) yields

(3.8) n ^ (d - I)2 .

At this point we note that if S, T are any two distinct transversals,
then S must have a point not in T. Hence, if we further assume
that Sy T have at least two common points, we get (3.8). Thus, by
denying (3.8), we get the Corollary. This completes the proof.
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Two remarks are in order. First, if (3.8) holds, then (3.6) is
trivial in view of Lemma 1 (i). Secondly, the Corollory to Lemma 3.2
is "best possible" of its kind. One class of examples may be obtained
as follows: Let m be any integer (for example, any prime power) for
which there exists an affine plane π of order n = m2 which possesses
an affine subplane πx of order m. We form a net iVof order n = m\
degree k = m2 — m, deficiency d = m + 1 whose points are the points
of 7Γ and whose lines are the k parallel classes of π containing no lines
of πλ. The net is degenerate if m = 2, and nondegenerate otherwise.
Among the transversals of N are the m2 + m lines of πλ (that is, the
lines of π containing at least two and hence exactly m points of π±)
and each two of these intersect in at most one point. But there is
another transversal, namely the set consisting of the n — m2 points
of πlf and this has exactly m points in common with each of the lines
of πγ. In this class of examples we have n = (d — I)2. In addition,
when equality holds in (3.8), transversals seem to behave as the above
discussion indicates. Indeed:

LEMMA 3.3. Let N be a finite net of order n = m2, degree k =
m2 — m, deficiency d = m + 1. Assume m > 2, so that N is nontrivial
and nondegenerate.

(i) If S, T are distinct transversals with more than one common
point, then they have exactly d — 1 = m common points. Moreover
(a) each point ofS— T is joined to each point ofT—S and (b) if
P, Q are any two distinct points of the intersection S Π T9 then every
point not in the union S U T is joined to at least one of P,Q.

(ii) // S, T, U are three distinct transversals such that S has
m points in common with each of T, U, then T, U have at most one
common point.

Proof. For (i), we use the proof of Lemma 3.2, assuming that
S, T are distinct transversals with at least two common points. Then
(3.5), (3.7) become

( 3 . 9 ) \ S f ) T \ ^ m , \ S Ό T \ ^ 2 + p t 2 = m 2 + m ( m - 1 ) ,

and we get

2 n = \ S \ + I T\ = \ S \ J T\ + \SΠ T\ ^ 2 m 2 = 2 n .

Hence we must have equality in (3.9). Thus | S Π T\ — m, and, more-
over, (b) holds. Again, if R is any point in S — T, then R is not
joined to exactly d — 1 = m points of T, and these points must be
the points of S Π T. Consequently, R must be joined to every point
of T — S. This proves (a) and completes the proof of (i).
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To prove (ii), we begin by assuming that S Π T Π U has at least
two distinct points P, Q. Then, by (i) (b), since S Π T has m points
and since no point of U is joined to P or Q, we must conclude that
U is in S U T. Since, by (i) (a), every point of S — T is joined to
every point of T — S, we see that U cannot contain both a point of
S - T and a point of T - S. Therefore either UaSor UaT. But
then, since \ U\ ~ \S\ = \ T\, either U = S or Ϊ7 = ϊ7, in contradiction
to hypothesis. Consequently,

(3.io) | s n TΠ u\ ̂ 1 .

By hypothesis, | S Π Γ| = m = | S Π Z7|. By (3.10), S Γi Γ, S Π ί7have
at most one common point. These two facts, taken together, tell us
that U has at least one point of S — T (indeed, at least m — 1 such
points). Therefore U, having a point of S — T, can have no point of
T - S. This means that

(3.10a) Γnί/cSflΓn?/.

And (13.10a), (3.10) complete the proof of Lemma 3.3.
There are many other examples indicating that the Corollary to

Lemma 3.2 is best possible. One comes from the nets of order n = 6,
degree k = 3, deficiency d = 4. Here we have n — 6 < 9 = (d — I)2.
Such nets are given by latin squares of order 6. There are 17 types,
and at least one has two distinct transversals with 3 common points.
(See Fisher and Yates [6].)

As far as construction is concerned, the nets satisfying (3.8) are
the most important at present. Nevertheless, there is a great deal
to be learned about the remaining nets, and we shall be concerned
here with inequalities at least as strong as

(3.11) n >{d - I)2 .

The most obvious consequences of (3.11*) are summed up in the follow-
ing theorem.

THEOREM 3.1. Let Nbe a finite nontrivial net of order n, degree
k, deficiency d, satisfying (3.11*). Let ΛΓ* be the system whose points
are the points of N and whose lines are the lines of N together with
the transversals of N, and whose incidence relation is the natural one.

( i ) If t is the total number of distinct transversals of N, then

(3.12) t^dn.

(ii) A necessary and sufficient condition that N be imbeddable
in an affine plane of order n is that equality hold in (3.12).

(iii) / / N is imbeddable in an affine plane JVΊ of order n, then
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JVΊ is isomorphic to JV*. In summary, JV* is the only candidate for
an affine plane of order n containing JV.

Proof. By the Corollary to Lemma 3.2, two distinct transversals
of JV have at most one common point. Moreover, two distinct lines
of JV have at most one common point, and a line and a transversal
of JV have exactly one common point. Consequently, two distinct lines
of N* have at most one common point.

For each point P of JV(and JV*), let t(P) be the number of distinct
transversals of JV containing P. Thus the number of distinct lines of
JV* containing P is exactly

k + t{P) .

Two such lines have only the point P in common. Therefore the number
of points, distinct from P, to which P can be joined in JV* (not JV!) is.

[k + t(P)](n - 1) ^ n2 - 1 .

Since n > 1, we deduce that

k + t(P) ^n + 1 = k + d

and hence that

(3.13) t(P) ^ d

for every point P in JV. Moreover, for any fixed P, equality holds in
(3.13) precisely when P can be joined (in JV*) to every other point.
By summing (3.13) over the n2 points P of JV, and remembering that
every transversal has exactly n points, we see that (3.12) holds, with
equality precisely when every two distinct points are joined in JV*..
In particular, (i) is true.

If JV is imbeddable in an affine plane JV2 of order n, then (when
JV is considered as a subsystem of NJ every line of Nx is either a line
of JV or a transversal of JV. Hence every line of JVi. is a line of iV*.
Since every two distinct points are joined in Nlf we must conclude
that equality holds in (3.12).

Now suppose, conversely, that equality holds in (3.12). Then, also,
equality holds in (3.13) for every point P, and every two distinct
points are joined in JV*. We consider a transversal T and a line L
of JV and note the T> L have a unique common point, Q. Let P be
any point of L distinct from Q. Then P is not in T. Hence, by
Lemma 1 (iii'), there are axactly d — 1 distinct points of T not joined
in JV to P. Each of these is joined to P by a unique line of JV*,
giving, in all, d — 1 distinct transversals of JV which contain P and



FINITE NETS, II. UNIQUENESS AND IMBEDDING 435

intersect T. Since t(P) — d, there remains a unique transversal which
contains P and if parallel to T. As P varies over the n — 1 points
of L distinct from Q, we get in this way n — 1 distinct transversals
parallel to T. No two of these transversals intersect, for a common
point R would lie on two distinct transversals parallel to T. Conse-
quently, when we include Γ, we get a set of n distinct, mutually
parallel transversals. These must contain all the points of N, namely
n points on each of n transversals. It should now be clear that the
t = dn transversals of N form d distinct parallel classes of lines of
N*, distinct from the kn lines of N. Therefore iV* is a net of order
n, degree k + d = n + 1, deficiency 0. That is, ΛΓ* is affine plane.

Putting the last two paragraphs together, we see that (ii) and
(iii) are true. This completes the proof of Theorem 3.1.

It would be wrong to assume that the N* of Theorem 3.1 is
always an affine plane. If N is the net of order n = 4, degree k = 3,
deficiency d = 2 given by the cyclic group of order 4 then (3.11) holds
but N has no transversals. If N is the net of order n = 5, degree
k = 3, deficiency d — 3 given by any loop of order 5 other than the
cyclic group (there are only two nets of order 5, degree 3) then (3.11*)
holds but N has exactly 3 transversals; one point lies on all three, 12
points lie each on one, and 12 points lie on none. Moreover (see
Norton [8]) there exists a net of order n = 7, degree k = 5, deficiency
d = 3 with too few transversals to be imbedded in a net of degree 6,
deficiency 2. Precise necessary and sufficient conditions, in the presence
of (3.11*), that -ΛΓ* be an affine plane still await exploration.

In the section which follows we show, in particular, that a suitable
strengthening of the inequality (3.11*) suffices to ensure that iV* is
an affine plane.

4 Net*graphs and pseudo net-graphs From a net N of order nf

degree k, deficiency d we form a net-graph G1 of order n, degree k,
deficiency d (namely, the graph of N) as follows: Gx has n2 vertices,
namely the n2 points of N. Two distinct points P,QoίN form an
(unordered) edge {P, Q} of G1 if and only if P, Q are joined in N (that
is, lie on a common line of N.) Since the edges of Gx are unordered,
Gj is a symmetric graph. Since each vertex of Gλ lies on exactly
nλ — k(n — 1) edges of Gl9 the graph is regular. But Gι has still more
regularity, given in Lemma 3.1 (iv) and (iv') in terms of the constants
of connection p)k.

For any symmetric graph G, the complementary graph Gf is a
symmetric graph with the same vertices as G, such that, if P, Q are
distinct vertices of G, then {P, Q} is on edge of G' precisely when
{P, Q} is not an edge of G.

In particular, if G1 is as in the first paragraph, and if G2 is the
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complement of Glf then G2 is an example of what we shall call a pseudσ
net-graph of order n, degree d, deficiency k. And the question as to
whether N can be imbedded (in at least one way) in an affine plane
of order n is (as essentially noted in § 3) equivalent to the question
as to whether G2 is the net-graph of at least one net N' of order n,
degree d, deficiency k, namely a net complementary to N. Moreover,
by Theorem 3.1, if n > (d — I)2, and if G2 is a net-graph, then the
corresponding net is uniquely defined by G2.

By a pseudo net-graph G of order n, degree d, deficiency k, where
n, d, k are nonnegative integers related by

(4.1) d + k = n + 1 ,

we mean a symmetric graph with n2 vertices such that
( i ) each vertex of G is joined (by an edge of G) to exactly

nx = d(n — 1)

other vertices of G;
(ii) two distinct vertices P, Q of G which are joined in G are

together joined to exactly

p\, = n - 2 + (d - l)(d - 2)

other vertices of G;
(iii) two distinct vertices P, Q which are not joined in G are

together joined to exactly

pi, = d(d - 1)

other vertices in G.
It will be noted that we have interchanged k and d and the

indices 1 and 2 in formulas (3.2), (3.3), (3.4). This is merely a matter
of convenience in view of the application to imbedding of nets. We
shall have little need to refer to the deficiency, k, of G. However,
to avoid trivialities, we shall assume throughout that

(4.2) n ^ d ^ 1 .

By a clique of graph G we mean a subgraph of G every two of
whose vertices are joined in the subgraph. That is, a clique is a
complete subgraph of G. We are interested in introducing certain
cliques as lines. Specifically, if G is a pseudo net-graph of order n,
we define a line of G to be a clique with exactly n vertices. When
G is the complementary graph, G2, of a net N, the cliques of G are
the partial transversals of N, and the lines of G are the transversals
of N. In this case, by Lemma 3.1 (i), no clique of G has more than
n elements. The same fact is true for pseudo net-graphs, but requires
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a different proof.

LEMMA 4.1. Let G be a pseudo net-graph of order n, degree d>
and let L be a line of G. Then

( i ) each vertex of G which is not in L is joined in G to exactly
d — 1 distinct vertices of L; and

(ii) L is a maximal clique of G.

COROLLARY. NO clique of G has more than n elements.

Proof. Let 1/ be the set consisting of the n2 — n vertices of G
which are not in L. For each integer x in the range 0 ^ x ^ n, let
g{x) denote the number of vertices in 1/ which are joined in G to
exactly x distinct vertices in L. We shall first make use of the
formulas

(4.3)

(4.4) Σ xg(x) = (d - l)(n* - n) ,

(4.5) Σ s'flrOB) = (d - l)\n2 - n),

where the sum in each case is over the range of x, and then establish
them later. From these formulas we deduce that

Σ{d - I - x)2g{x)

= (n2 - n)[(d - 1)2 1 - 2(d - l) (d - 1) + l (d - I)2] = 0 ,

and thence that g(x) = 0 for x Φ d — 1. At this point, (4.3) yields
g(d — 1) = n2 — n. And now (i) follows. From (i) and the fact that
n exceeds d — 1, we see that for every vertex P in U, the set L U {P}
is not a clique, since P is joined to only d — 1 vertices, and therefore
is not joined to all vertices, in L. This means that L is a maximal
clique.—The Corollary should be obvious.

We prove the formulas by appeal to Lemma 2.1. In each case,
the set B of that lemma is U. For (4.3), A is any one-element set,
and p is A x B. For (4.4), A is L and p is the set of all pairs (α, b)
with a in A, b in B such that {a, b} is an edge. The left side of (4.4)
is a double sum; xg(x) counts all | pb \ with b joined to exactly x
edges, and Σ ®9(ρ) gives the complete sum. For the right-hand side,
we note that there are n choices of a in A. Each a lies on d(n — 1)
edges, including n — 1 edges joining it to points of A — L. Hence

Σ \aρ\= n [d(n - 1) - (n - 1)] = (d - l)(n2 - n) .

To get (4.5), we take A to be the set of n(n — 1) ordered pairs of
distinct vertices of L, and p to be the subset of A x B consisting of
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all pairs (α, 6) such that b is joined by an edge to both of the vertices
making up a. Then x(x — l)g(x) is the sum of \pb\ over all b which
are joined to exactly x vertices of L, and

On the other hand, for each element a of A,

I α/0 I = Vn ~(n-2) = (d -l)(d - 2) .

Thus

Σ x(x — l)g(x) = (n2 — n)(d — l)(d — 2) ,

whence, by addition of (4.4), we get (4.5). This completes the proof
of Lemma 4.1. It seems worth remarking that, although Lemma 4.1
and its proof both seem pretty obvious, the proof was still lacking
for several weeks after everything which follows in this section had
been established subject to the conjecture that no clique had more
than n vertices.

In the proofs which follow, we first establish the existence of
certain cliques called grand cliques, and eventually prove, on the basis
of Lemma 4.1, that these are lines. We make two definitions, relative
to a pseudo net-graph of order n, degree k:

A major clique, K, is a clique such that

(4.6) \K\^n-(d- l)\d - 2) .

A grand clique is a major clique which is also a maximal clique. We
note from Lemma 4.1 that, if d = 1 or 2, major cliques and grand
cliques are the same as lines. There is a lemma for graphs completely
analogous to Lemma 3.2 (with lines and cliques replacing transversals
and partial transversals) but here we need something weaker:

LEMMA 4.2. Let G be a pseudo net-graph of order n, degree d,
and let K, L be two distinct cliques of G.

( i ) IfKuLis not a clique, then

(4.7) \KΠL\

(ii) IfKf)L has at least two vertices, then

(4.8) \KΌL\^n + (d- l)(d - 2) .

(iii) / / (4.7), (4.8) hold, then

(4.9) \K\ + \L\^n + 2(d-lY .

COROLLARY. If G is a pseudo net-graph of order n, degree d,
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and ifn> 2(d — I)3, then two distinct grand cliques of G can have
at most one common vertex.

REMARK. Analogous results hold for partial transversals in a net
of order n, deficiency d.

Proof. ( i ) If K u L is not a clique, there must exist a vertex
P in K— L and a vertex Q in L — K such that P, Q are not joined
in G. Then P, Q are together joined to exactly

Pϊi = d(d - 1)

other vertices, and these must include Kf)L. This proves (i).
(ii) If K f) L contains two distinct vertices R, S, then R, S are

are joined in G and hence are together joined to exactly

p\1 = n~2 + (d- l)(d - 2)

other vertices. Among these must be included K U L — {R, S}. This
proves (ii); and (iii) follows immediately.

Now suppose that K, L are two distinct maximal cliques with at
least two common vertices. Then (ii) holds. Moreover, K\JL cannot
be a clique, so (i) holds. Therefore we have (iii). If if, L are also
both major cliques, (4.9) yields

2 ) l ^ n + 2(d - I)2

and hence

(4.10) n^2(d- I)3 .

Consequently, two distinct grand cliques cannot have two common
vertices unless (4.10) holds. This proves the Corollary.

To establish the existence of major and grand cliques, we need
the concept of a claw—a concept suggested in conversation by Alan
Hoffman. By a claw, P, S, of a pseudo net-graph, G is meant an
ordered pair consisting of a vertex P, the vertex of the claw, and a
nonempty set S of vertices distinct from P such that every vertex in
,S is joined to P in G but no two vertices in S are joined in G. By
the order of the claw P, S we mean the number, | S|, of vertices in S.

When G is the complementary graph of a net JV of deficiency d,
it is easy to see that a claw P, S of order d exists for every vertex
P. Indeed, let L be any line of JV not containing P, and let S consist
of the d distinct points of L not joined to P in N; then every two
points of S are joined in N. Hence, in G, P, S is a claw of order d
with vertex P.

We need several lemmas concerning claws, and it is convenient
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to begin with a fairly general preliminary lemma.

LEMMA 4.3. Let G be a pseudo net-graph of order n, degree d,
and let P, S be a claw of G of order \S\ = s. Let T be the set of
all vertices of G other than P and those in S. For each x in the
range 0 ^ x ^ s, let f(x) be the number of vertices in T which are
joined to P and, in addition, are joined to exactly x vertices in S.
Then

(4.11)
0

(4.12) /(0) -±(x- l)f(x) = (d- s)(n - 1) - s(d - l)(d - 2) ,
2

(4.13) 2/(0) + ±(x- l)(x - 2)f(x)
3

= as + 2(d - s)(n - 1) - 2s(d - l)(d - 2) ,

where as is an integer such that

(4.14) 0 ^ a. S s(s - l)(d2 - d - 1) ,

and the upper bound is attained in (4.14) precisely when every vertex
of T which is joined to at least two distinct vertices of S is also
joined to P.

REMARK. If s ^ 2, the summation on the left side of (4.13) should
be omitted. Similarly, if s = 1, the summation on the left side of
(4.12) should be omitted.

Proof. The left-hand side of (4.11) is the number of vertices of
T which are joined to P. As for the right-hand side of (4.11), P is
joined in G to exactly d(n — 1) distinct vertices; of these vertices, s
are in S and the rest are in T. This proves (4.11).

Next we prove

(4.15) Σ »/0*0 = s[n - 2 + (d - l)(d - 2)] ,
1

by applying Lemma 2.1. We take A to be the set of all vertices in
T which are joined to P, B to be S, and p to be the subset of A x B
consisting of all (α, b), a e A, b e B, such that {α, b) is an edge of G.
For any x ^ 1, xf(x) is the sum of | ap | as a ranges over the vertices
in A which are joined to exactly x vertices in B = S; hence the left-
hand side of (4.15) is | p \ = Σ I aP l F° r a n y b in B = S, since P and
6 are joined, there are exactly p\λ vertices in G joined to both P and
6; and these are in A. Hence
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I pb I = p\λ = n - 2 + (d - l)(d - 2)

and therefore, since | B | = | S | = s, Σ I pb I is the right-hand side of
(4.15).

This proves (4.15). To get (4.12), we subtract (4.15) from (4.11).
Next we prove

(4.16) ± Φ ~ l)/(») = «.
2

where a8 satisfies (4.14). To do this we first define, for every ordered
pair U, V of distinct vertices in S, Λ(?7, V) to be the number of
vertices in T which are joined to U, V and also to P, and fo( U, V)
to be the number of vertices in T which are joined to U, V but not
to P. For each such pair U, V, there are exactly p\x vertices in G
joined to both of U, V; one of these vertices is P and the rest are
in T. Hence

7, V) + fo(U, V) = pl1-l = d*~d-

We define

where the sum is over the s(s — 1) ordered pairs of vertices U, V in
S, and observe that

α. + Σ/o(CT, V) = s(s - 1W ~ d - 1) .

Since the second sum is a nonnegative integer, we see that the integer
a8 satisfies (4.14) and attains its upper bound under the conditions
stated in the lemma. To prove (4.16) we use Lemma 2.1 with A as
before and with B defined to be the set of all ordered pairs U, V of
distinct vertices in S. Also, p is the subset of A x B consisting of
all triples (α, U, V) with a joined to both of U, V, From the definition
of as,\p\ — X I pb I = ocs. For each x ^ 2, x(x — ϊ)f(x) is the sum of
\ap\ over all a in A which are joined to exactly x elements of S.
Thus we have (4.16). To obtain (4.13), we multiply (4.12) by 2 and
add the result to (4.16). This completes the proof of Lemma 4.3.

The author is indebted to Allan Hoffman for suggesting the
importance of the non-existence of claws of order d + 1, and for
sketching a non-existence proof for n large compared with d. In the
next lemma we give precise details in terms of the polynomial p(x)
defined by

(4.17) p(x) = ix4 + xz + x2 + ix .

It will be convenient to note that
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(4.18) 2[p(d - 1) - 1] = (d + ΐ)d(d2 - d - 1) - 2(d + l)(d - l)(d - 2) .

LEMMA 4.4. If G is a pseudo net-graph of order n, degree d,
and if

(4.19) n>p(d-l) ,

then G has no claws of order d + 1.

Proof. Assume, by way of obtaining a contradiction, that G has
a claw P, S of order d + 1. Then we may quote Lemma 4.3 with
s = d + 1. The left hand side of (4.13) is a nonnegative integer.
Hence, certainly, if we replace ad+1 by its upper bound in (4.14), the
right hand side of (4.13) must be nonnegative. This gives

(d + l)d(d2 - d - 1) - 2(n - 1) - 2(d + l)(d - l)(d - 2) ̂  0

and hence, by (4.18),

2(n - 1) S 2[p(d - 1) - 1] ,

in contradiction to (4.19). This proves Lemma 4.4.

The next three lemmas may conveniently be stated and proved
together:

LEMMA 4.5. Let G be a pseudo net-graph of order n, degree d
such that

(4.20) n - 1 >(d - l)\d - 2) .

Then to every pair P, Q of distinct vertices joined in G there corre-
sponds at least one claw P, S of order d such that S contains Q.

LEMMA 4.6. Let G be a pseudo net-graph of order n, degree d
such that (4.20) holds and G has no claws of order d + 1. Then
every edge of G is contained in at least one grand clique of G.

LEMMA 4.7. Let G be a pseudo net-graph of order n, degree d
subject to the following three conditions: (i) G has no claws of order
d + 1; (ii) two distinct grand cliques of G have at most one common
point and (in) n > q(d — 1) where

(4.21) q(x) = 2xz-x2-x + l.

Then every vertex of G lies in exactly d distinct grand cliques, and
every grand clique of G is a line of G.

Proof of Lemma 4.5. We begin by noting that P, {Q} is a claw
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of order one. If d = 1, the proof of Lemma 4.5 is complete. There-
fore we consider the case d > 1 and assume inductively that there
exists a claw P, S of order s such that S contains Q and 1 ^ s S
d — 1. Since s ^ d — 1, the right-hand side of (4.12) (see Lemma 4.3)
is at least

n - 1 - (d - l)\d - 2) .

Since the sum on the left-hand side of (4.12) is non-negative, we
deduce that

(4.22) /(0) ^ n - 1 - (d - l)\d - 2) > 0 ,

the last inequality following from (4.20). If R is any one of the/(0)
vertices in T which are joined to P but to no vertex in S, then P,
β U {R} is a claw of order s + 1. Therefore, by mathematical induction,
we have the conclusion of Lemma 4.5.

Proof of Lemma 4.6. Let {P, Q} be any edge of G. By Lemma
4.5, there exists at least one claw P, S' of order d such that S'.
contains Q. We write S' = {Q} U S where S does not contain Q. Then
(in the notation of Lemma 4.3) let H be the set of all elements of T
which are joined to P but to no element of S. Clearly H contains Q.
Moreover, | H \ = /(0), and /(0) satisfies (4.22). Hence if if = {P} U #,

(4.23) \K\^n-{d- l)\d - 2) .

We claim that K is a clique. Indeed, every element of H is joined
to P. Therefore, if iΓ contains two distinct vertices A, B not joined
in G, then P, S [J {A, B} is a claw of order d + 1, contrary to hypo-
thesis. In view of (4.23), the clique K is major. Therefore, if Kr is
any maximal clique containing K, then if' is a grand clique containing
the edge {P, Q}. This completes the proof of Lemma 4.6.

Proof of Lemma 4.7. We first note that

•(4.24) ?(d - 1) - 1 = (<Z - l)\d - 2) + d(d - l)(d - 2) .

Hence the inequality n > g(d — 1) implies the inequality (4.20), If P
is any vertex of G, there exists, by Lemma 4.5, at least one claw
P, S of order d with vertex P. We denote the d vertices in S by
Alf A2, , Ad. For each i in the range 1 ^ i ^ d, we denote by Hi
the set of vertices, distinct from P and the A, for i Ψ i; which are
joined to P but to no vertex A3 for j Φ i. As the proof of Lemma
4.6 shows, P U Hi is, for each i, a major clique containing P and A{.
We denote by iΓt a grand clique containing PU Ht. Since, for f ^ i,
H{ and iϊj have no common elements, it follows from our uniqueness
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hypothesis (ii) that the only common element of K{ and K5 is P. We
wish to show that the d grand cliques Klf K2, , Kd are the only
grand cliques containing P.

We begin by recalling that P, S is a claw of order d and that
(in the notation of Lemma 4.3) the set

H=H1ΌH2[J . . . ΌHd

consists of S and of all vertices in T which are joined to exactly one
of the vertices Alf •••, Ad of S and are also joined to P. That is*
(when we take s = d in Lemma 4.3),

\H\=f(l) + d.

Moreover, since G has no cliques of order d + 1, /(0) = 0. Thus (4.11),.
(4.12), with s = d, can be rewritten as

(4.25) | H | φ

(4.26) Σ (* - !)/(*) = d(d ~ l)(d - 2) .
2

If d = 1, the summation disappears in (4.25) and the inequalities

(4.27) d[n - 1 - (d - l)(d - 2)] ^ | £Γ| ^ d[n - 1 - (d - 2)]

hold trivially. If d > 1, (4.26) yields

2 2

whence

- 2) ^ - Σ/(a?) ^ -d(d ~ 2) .

The latter inequalities, combined with (4.25), yield (4.27).
Now let us suppose that P is contained in at least one grand

clique K distinct from Kl9 K2, Kd. Then each of the d(n — 1)<
vertices (distinct from P) which are joined to P, is contained in at
most one of the d + 1 grand cliques. Moreover, Klf «« , Kd together
contain at least |JH"| of these vertices, and K, being a grand clique,,
contains at least

n - 1 - (d - l)\d - 2)

more. Therefore, by (4.27),

d[n - 1 - (d - l)(d - 2)] + n - 1 - (d - l)\d - 2) ^ d(n - 1}



FINITE NETS, II. UNIQUENESS AND IMBEDDING 445

and hence (see (4.24))

n - 1 ^ (d - lY(d - 2) + d(d - ί)(d - 2) = g(d — 1) - 1 .

This yields n g g(d — 1), in contradiction to our hypothesis.
At this stage we have proved that each vertex Plies in exactly

d distinct grand cliques Ku , Kd. If Q were a vertex joined to P
but in none of Klf •• ,2£d, then, by Lemma 4.6, there would be a
grand clique K, distinct from Klf , Kd, containing P and Q. Hence
each of the d(n — 1) vertices joined to P lies in one (and only one,
by uniqueness) of Klf -—,Kd. By Lemma 4.1, no maximal clique can
have more than n elements. Consequently, each of Ku , Kd must
contain exactly n vertices. That is, each K{ is a line of G.

If K is any grand clique of G, we fix attention on a vertex P
•contained in K and use the fact, just proved, that every grand clique
containing P is a line. Hence K is a line of G. This completes the
proof of Lemma 4.7.

We did not need the upper bound in (4.27) for the proof of Lemma
4.7. This upper bound shows, however, that, for d > 2, the major
cliques {P} U H{ constructed in the proof are not all lines—else the
upper bound would have to be at least d(n — 1).

Now we shall state and prove three theorems—three, because the
varying hypotheses apply to different classes of graphs. We also
state (4.2), which we have tacitly assumed up until this point.

THEOREM 4.1. Let G be a pseudo net-graph of order n, degree
d, with n Ξ> d ^ 1, which is subject to the following conditions: (i) G
has no claws of order d + 1; (ii) two distinct grand cliques of G
have at most one common point; (iii) n > q(d — 1), where the poly-
nomial q is given by (4.21). Then G is the graph of one and only
one net of order n, degree d.

COROLLARY. Assume, in addition to the hypotheses of Theorem
4.1, that G is the complementary graph of a nontrivial net N of order
n, deficiency d. Then N can be imbedded uniquely in an affine plane
π of order n, and G is graph of the net complementary to N in π.

Proof. We may apply Lemma 4.7. Since every grand clique of
G is a line, we see that each vertex of G lies on exactly d distinct
lines of G. Let P be a vertex of G and let L be a line of G not
containing P. By Lemma 4.1 (i), P is joined to exactly d — 1 distinct
vertices in L. By Lemma 4.6 (which we may apply in view of (4.24))
these d — 1 vertices lie one each on d — 1 lines through P. Thus
there is one and only one line, I/, through P which is parallel to L
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(has no vertex in common with L.) If we choose any line M which,
meets L, we see that through each vertex in M but not L there
passes a unique line parallel to L. By uniqueness, no two such
parallels can intersect. Hence L determines a parallel class L con-
sisting of n lines, including L itself, each two of which are parallel.
It is now clear that the vertices of G (considered as points) and the
lines of G constitute a net of order n, degree d. Since two distinct
vertices of G are joined in G if and only if they lie on a common
line of G, we see that G is the graph of the net. The Corollary is*
immediate, in view of the discussion in § 3. This completes the proof
of Theorem 4.1 and Corollary.

THEOREM 4.2. Let G be a pseudo net-graph of order n, degree d
such that (i) G has no claws of order d + 1 and (ii) n > 2(d — I)3 ^ 0
(ami, in case d — 1, also n > 1.) Then G is the graph of one and
only one net of order n, degree d.

COROLLARY. Assume, in addition to the hypotheses of Theorem
4.2, that G is the complementary graph of a net N of order n,
deficiency d. Then N can be imbedded uniquely in an affine plane
π of order n, and G is the graph of the net complementary to N in π.

Proof. We need merely show that the hypotheses of Theorem
4.1 are verified. Hypothesis (i) of Theorem 4.2 is identical with hypo-
thesis (i) of Theorem 4.1. In view of the Corollary of Lemma 4.2,
hypothesis (ii) of Theorem 4.2 implies hypothesis (ii) of Theorem 4.1.
Since

2(d - I)3 - q(d - 1) = (d - I)2 + (d - 1) - 1 > 0 for d > 1

and

hypothesis (ii) of Theorem 4.2 also implies hypothesis (iii) of Theorem
4.1. This completes the proof.

THEOREM 4.3. Let G be a pseudo net-graph of order n, degree d-
such that n > p(d — 1), where p is the polynomial given by (4.17),
and either d — l,n > 1 or d > 1. Then G is the graph of one and
only one net of order n, degree d.

COROLLARY. Assume, in addition to the hypotheses of Theorem
4.3, that G is the complementary graph of a net N of order nΨ

deficiency d. Then N can be imbedded uniquely in an affine plane
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π of order n, and G is the graph of the net complementary to N in π.

Proof. p(0) = q(0) = 1 and

p(d - 1) - 2(d - I)3 = i{(d - l)3(d - 3) + 2(d - I)2 + 3(d - 1)} > 0

if d > 1. Thus we may apply Lemma 4.4 to get the hypotheses of
Theorem 4.2.

5. Incidence matrices. We are going to show that certain sets
of k mutually orthogonal symmetric matrices of order n2 are closely
akin to nets of order n, degree k—and thus to sets of fc — 2 mutually
orthogonal latin squares of side n. Surprising as it may seem, in
view of the coincidence of the adjective "orthogonal" in "orthogonal
matrices" and "orthogonal latin squares," we have it on the authority
of R. C. Bose that, when orthogonal latin squares are used in the
analysis of statistics, no orthogonal matrices arise such as the ones
here defined. Thus the correspondence seems to be new.

It will be convenient to have a name for the matrices we study,
and we adopt the adjective "germaine" as a pseudonym for "akin."
By a germaine matrix, F, of order n2 we mean a matrix i^of n2 rows
and columns such that (i) F is symmetric; (ii) every entry on the main
diagonal of F is n — 1; (iii) every other entry of F is either n — 1
or - 1 ; (iv) F2 = n2F.

If F is a germaine matrix of order n2, then, by (iv), the matrix
E — n~2F is idempotent and, by (ii), E has trace n — 1. Since (over
a field of characteristic zero) the trace of an idempotent matrix is
equal to its rank, we see that E and F have rank n — 1. When
n = 2, there are germaine matrices of order 4 which we want to avoid,
e.g., the matrix with every entry equal to 1. This is an exception
to the general rule (which will be clear in a moment) that germaine
matrices have zero row-sums.

In order to avoid complications of notation, we begin with two
lemmas concerning one and two germaine matrices respectively.

LEMMA 5.1. Let n ^ 2 be an integer. To each enumeration
1, 2, , n2 of the n2 points of a net N of order n, degree 1 there
corresponds a germaine matrix F of order n2 defined as follows: F
has n — 1 down the main diagonal; for i Φ j , F has n — 1 or — 1 in
position (i, j) according as the points i, j of N lie or do not lie on a
line of N. Moreover, F has zero row sums. Conversely, if F is a
germaine matrix of order n2 {and if, in case n = 2, F has zero row
sums) then F arises from a net N of order n, degree 1 in the manner
indicated.
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Proof. If N is given, and if F is defined from N as described,
it is a straightforward matter to verify that F is germaine and has
zero row-sums. Conversely, let

be a given germaine matrix of order n2 (with zero row-sums in case
n = 2). Since F is symmetric, condition (iv) for a germaine matrix
may be written as

(5.1) n2fi3 = Σ fikfjk (i, 3 = 1, 2, • •, O

where & ranges from 1 to n2. Let G be a graph whose n2 vertices
are the integers 1,2, , n2. For i Φ j , let vertices i, j form an edge
if and only if fa — n — l. Since n — lΦ—1, the edges of i*7 are
well-defined, by (ii), (iii). Moreover, by (i), G is symmetric.

Our first task is to show that G is a pseudo net-graph of order
n, degree d = 1. Thus, in the sense of § 4, we must show that

(5.2) nx = n - 1 , p)1 = n-2, pi = 0 .

Consider some fixed vertex ί of G and suppose that i is joined to x
and not joined to n2 — 1 — x of the remaining w2 — 1 vertices. Taking
j = i in (5.1), and using the properties of F, we get

w«(n - 1) = (n - 1)2(1 + x) + l-(n2 - 1 - x) ,

whence

^2(w - 2) = w(w - 2)(1 + x) .

If n > 2, we get 1 + x = n, x = n — 1. In any case, the sum of the
ith row of F is

(n - 1)(1 + α>) - (^2 - 1 - x) = n(x - n + 1) ,

and this is zero precisely when x — n — 1. Therefore we have nx =
x = n — 1, whence

(5.3) nx — n — 1 , wa = n2 — w ,

where, of the n2 — 1 vertices distinct from ΐ, nx are joined and n2

are not joined to i. Next consider two distinct vertices i, i, joined
in (?. Of the n2 — 2 vertices distinct from ΐ, i let pι

L1 = 1/ be joined
to both ΐ and i . Then (since i, j are joined) p\2 = ^ — 1 — 1/ = n —
2 — /̂ are joined to i but not i, and p]x — n — 2 — y are joined to j
but not i, and p)2 — n2 — pι

Λ = n2 — 2n + 2 + y are joined to neither
i nor i . Using (5.1) for the given i, j , we get
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n\n - 1) = 2(n - I)2 + (n - 1 ) % - (n - l)(pj, + pi) + pi

= W2 + W2?/ ,

whence y = n — 2. Thus

(5.4) pl! = rc-2, pi = pi = O, pi = τ φ * - l ) .

Finally, consider two distinct vertices i, i not joined in (?. This time
we may set

Pa. = z , P12 = P i = ^ i — s = n - 1 - z ,

ί>22 = ^2 — 1 — Pll = ^ — 2W + « .

From (5.1) we get

n\-l) = 2(n - 1)(-1) + (n - 1 ) % - (n - l)(p2

2 + p2θ + pi

= - w 2 + wa« .

Therefore 2 = 0 and

<5.5) pJ! = O, Pi = P i = ^ - l , p i = n - 2 + ( n - l ) ( n - 2 ) .

This completes the proof that G is a pseudo net-graph of order n,
degree d = 1, deficiency & = n.

Since p(0) = 0 and since d = l,n>l, we may conclude from
Theorem 4.3 that G is the graph of a net iVof order n, degree (2 = 1.
This completes the proof of Lemma 5.1.

We recall that two matrices A, B are orthogonal provided AB =
BA = 0 = the zero matrix.

LEMMA 5.2. Let n Ξ> 2 6e cm integer. To each enumeration
1, 2, , n2 of the n2 points of a net N of order n, degree 2, and to
each enumeration 1,2 of the two line-classes of N, there corresponds
an ordered pair Flf F2 of orthogonal germaine matrices of order n2,
such that, for a = 1, 2, Fa corresponds in the sense of Lemma 5.1 to
the net Na of order n, degree 1 with the same points as N and with
the lines of class a as its lines. Conversely, if Fl9 F2 is an ordered
pair of orthogonal germaine matrices, (with zero row sums, in case
n = 2) then Flf F2 arises from a net N of order n, degree 2 in the
manner indicated.

Proof. If JV is given, and if F19 F2 are defined from N as
described, then Flf F2 are germaine by Lemma 5.1, and, by a straight-
forward computation, Flf F2 are orthogonal. Now we assume, con-
versely, that Fu F2 are orthogonal and germaine. By Lemma 5.1, for
a = 1,2, Fa defines a net Na of order n, degree 1 on the points
1, 2, , n2. We let Nbe the system with the same points as iVΊ and
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N2 and with the lines of Nτ as its first parallel class and the lines of
N2 as its second parallel class. Then each line of N contains exactly
n distinct points, and each point of N lies on exactly one line of each
class. To prove that N is a net of order n, degree 2, we need only
show that two lines of distinct classes have one and only one common,
point.

If we write F1 = {aiό), F2 = (δ^ ), then, since Flf F2 are symmetric,,
orthogonality is expressed by the condition

(5.6) Σ « Λ = 0 (i,i = l,2, . . f n
a ) . .

k,

First we consider a point i and suppose that, of the ri* — 1 other
points, xn are joined to i both by a line of class 1 and a line of class-
2, x10 are joined to i by a line of class 1 but not by a line of class-
2, and similarly for x01, xm. Setting xu = x, we see that

From (5.6) with i = i, we get (since Flf F2 are germaine)

0 - (n - 1)2(1 + xu) - (n - l)($10 + $01) + a?M

= n2x .

Hence $ = 0. That is, if two lines of distinct classes have a common,
point i, then they have no other common point.

There remains the possibility that there are two lines of different
classes with no common point. Suppose that, for some i Φ j, the line
of class 1 through i and the line of class 2 through j have no common-
point. Then, from (5.6), for the given i, j, we get

0 - n(n - 1)(-1) + n(n - 1)(-1) + [(n2

a contradiction. This completes the proof of Lemma 5.2.
Now we are ready for the main theorem.

THEOREM 5.1. Let n, k be integers, with n^2,l^k^n+l.
To each enumeration 1,2, , n2 of the n2 points of a net N of order
n, degree k, and to each enumeration 1, 2, , k of the k line-classes
of N, there corresponds an ordered set

(5.7) Fl9Fi9 . . , F f c

of mutually orthogonal germaine matrices of order n2 such that, for
a = 1, 2, , k, Fa corresponds in the sense of Lemma 5.1 to the net
Na of order n, degree 1 with the same points as N and with the
lines of class a as its lines. Conversely, if (5.7) is an ordered set



FINITE NETS, II. UNIQUENESS AND IMBEDDING 451

of k mutually orthogonal germaine matrices of order n2 (each with
zero row-sums, in case n — 2) then (5.7) arises from a net N of order
n, degree k in the manner indicated.

Proof. In view of Lemmas 5.1, 5.2, we need only treat the case
k ^ 3. In this case, for a < /2, if N is given, let NΛ β be the net of
order n, degree 2 with the same points as N and with the line-classes
a, β as its two line-classes. By Lemma 5.2, NΛ β determines the
ordered pair Fa, Fβ of orthogonal germaine matrices of order n2.
Conversely, the pair determines NΛ β. It should now be clear that the
set (5.7) determines a net N of order n, degree k. Indeed, the only
point which could be at issue is whether two lines of distinct classes
in N have a unique common point, and this follows from the fact
that each Na β is a net of degree 2. The proof of Theorem 5.1 is now
complete.

For a (non-trivial) net N of order n, degree k, deficiency d we
also define matrices Fo, F*, F^ in addition to (5.7). First we define

(5.8) F* = i:F{.
i = l

In addition, Fo (usually called J or S) is the matrix of order n2 with
every entry equal to 1, and, finally, F^ is defined by the equation

(5.9) n2l = Fo + F* + F» ,

where / is the identity matrix of order n2. We shall give a direct
description of ί1* and F^: The matrix F* has k(n — 1) down the
main diagonal and, for i Φ j, has d — 1 or — k in place (i, j) according
as the points i, j of N are joined in N (by a line of any class) or not
joined in N. By contrast, the matrix F*> has d(n — 1) down the main
diagonal and, for i Φ i, has — d or k — 1 in place (i, j) according as
the points i, j are joined or not joined in N. Clearly it is reasonable
to associate F * with the graph Gλ of N and F^ with the complementary
graph G2. We note that if N is an affine plane, so that d = 0 and
every two points of N are joined, then F^ is the zero matrix, and
F * has n2 — 1 down the main diagonal, —1 off the main diagonal.

If the graph G of the theorem which follows is the complementary
graph of the above net N, then the matrix F of the theorem is F^
(except that the words "joined" and "not joined" have been inter-
changed):

THEOREM 5.2. Let n, d, k be positive integers with

(5.10) d + k = n + 1 .
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To each ordering 1, 2, , n2 of the n2 vertices of a pseudo net-graph
G of order n, degree d, deficiency k there corresponds a matrix F
of order n2 with the following properties: (i) F is symmetric; (ii)
every entry in the main diagonal of F is d(n — 1); (iii) every other
entry of F is either k — 1 or — d. (iv) F2 — n2F. Specifically y we
define F by insisting on (ii) and, for distinct vertices i, j, by putting
k — 1 or —d in place (i, j) of F according as i, j are joined or not
joined in G. The matrix F, so defined, has zero row sums. Con-
versely, if F is a matrix of order n2 with properties (i)—(iv) {and
if F has zero row-sums in case n = 2d), then F arises from a pseudo
net-graph G of order n, degree d, deficiency k in the manner indicated.

Sketch of proof. We note that, when d — 1, Theorem 5.2 is
essentially Lemma 5.1 (stated for a graph instead of a net). The
direct part of the proof is straightforward and the converse part can
be stated so a$ to reduce to the main part of the proof of Lemma
5.1 when d = 1. The only difference is that we do not claim—and,
for n small compared with d, we cannot claim—that F determines a
net. This should suffice for the proof of Theorem 5.2.

It should be observed that if the edges of the graph G of Theorem
5.2 can be partitioned into two sets so that G can be regarded as
made up of two graphs Gx, G2 on the same vertices, where Ga is a
pseudo net-graph of order n, degree dΛ (and d — dx + d2) then the
matrix F of Theorem 5.2 can be decomposed (F = Fλ + F2) into the
sum of a pair of orthogonal matrices Flf F2, where Fω is defined for
G* in the manner of Theorem 5.2. Precisely when G is a net-graph,
F can be decomposed into a sum of d mutually orthogonal germaine
matrices.

Returning again to a net N of order n, degree k, deficiency d,
and to the matrices exhibited in (5.8), (5.9), we wish to discuss briefly
point-point incidence matrices for N. First we define

(5.11) E{ = n-2F< (0 ̂  i ^ k) , E* = n~2F* , £L = n-'F^

and observe that these E's are mutually orthogonal idempotent
matrices. Moreover

(5.12) E* = ΣEiy

(5.13) I=Et + E* + E.,

(4.14) rank Eo = 1 , rank E( = n - 1 (1 ̂  i ^ k) ,

(5.15) rank E* = k(n - 1), rank E. = d(n - 1) .

Next let
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be k + 2 rational numbers and define the point-point incidence matrix

(5.16) A(x,y19 - ;yk,z) = (a(i,j))

of order n2 as follows: a(i, i) = x for all i; if i Φ j , and if the points
ΐ, i of N lie on a line of class a, a(i, j) — ya; if i Φ j , and if the
points i, j " are not joined in N, a{i, j) = s. We may express the F's
and J5"s in terms of A{x, y19 -- ,yk,z) for suitable choices of x9 the
y's and 2. Specifically, we get Fo by taking #, the y's and # all equal
to 1. We get Fa(l ^ a f^ k) by taking x = ya — n •— 1, z — — 1 and
2/β = —1 for β φ a. And we get Fw by taking α? = d(n — 1), yrt =
—d (1 ^ a ^ fc) and « — fc — 1. Conversely, we may easily verify that

(5.17) A(x, yu--, yky z) - XE0 + g

where

X - x + (n - 1)?/* + d(n -

(5.18) Yi = x + nyi-y*-dz, (i ύ i ^ k)

(5.19) »* = Σ»*.
t = l

Since the ΐ/'s are mutually orthogonal idempotents of known ranks,
we see at once that the characteristic roots of A(xlf yl9 , yk9 z) are:
X of multiplicity 1; (for 1 ^ i ^ fc) Γΐ of multiplicity n — 1; α?ιcϊ ^
o/ multiplicity d(n — 1).—For certain choices of x9 the y's and £,
some of these roots coincide; then their multiplicities must be added.

The results of the preceding paragraph may be used to show that
a conjecture originally advanced by Harary and later disproved by
Bose (along the present lines), is quite impossible to repair. We re-
call that, for any finite symmetric graph G with s vertices 1,2, , s,
the adjacency matrix of G is a matrix of order s with 0 down the
main diagonal, and with 1 or 0 in non-diagonal position (i, j) according
as the vertices i, j are joined or not joined in G. Harary's conjecture
was that (to within an isomorphism) a finite symmetric graph was
determined by the characteristic roots of its adjacency matrix, taken
with their multiplicities. However, if Gιt G2 are the graph and the
complementary graph of the net N of the preceding paragraph, the
adjacency matrix of Gλ comes from (5.16) by taking x = z = 0 and
all y's equal to 1, and the adjacency matrix of G2 comes by taking
x = 0, z — 1 and all y's equal to 0. In either case, the characteristic
roots and their multiplicities depend only upon nt k and d. Let us
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concentrate on Gx and note, from Theorem 4.3, that, if n > p(k — 1),
Gλ uniquely determines N. It follows that, for n > p(k — 1), there
are precisely as many graphs G1 as there are nets N. However, even
in the special case k = 3, corresponding to a single latin square, the
number of nets of order n, degree k increases astronomically with n.
(Cf. Hall [7].)

Finally, we wish to mention line-point incidence matrices, again
for the same net N. With each line L of the net N we associate a
row-vector of n2 columns, having 1 or 0 in column i according as point
ί lies or does not lie on L. With the aίh line class of N we associate
a matrix Ma of n rows, n2 columns, the rows of Ma being those for
the lines of class α, in any order. Finally, we define M to be the
matrix of kn rows, n2 columns, given by

M2
(5.20) M =

Then M is the line-point incidence matrix of N. We merely wish to
note that, where Aτ denotes the transpose of matrix A,

(5.21) M*MΛ = nE« + nE«, 1 g a ^ k ,

(5.22) MTM = knE0 + nE* .

As a consequence, the germaine matrices of Theorem 5.1 bear a simple
relationship to the matrices M^MΛ.

6. Remarks and examples. In [4] we assigned to each non-trivial
non-degenerate net JV of order n, degree k (and deficiency d) a numerical
invariant Φ(N) with properties like Euler's totient. In particular, a
necessary condition for the existence for a transversal to N is that
Φ(N) = 1. (Consequently, by Theorem 4.3, Φ(N) = 1 if n > p(d - 1).)

It was remarked in [4] that the necessary condition Φ(N) = 1 was
not sufficient for the existence of a transversal, but this statement
seems to have been missed. Accordingly, we remark here that if N
is the net of the latin square

(6.1)

1
2

3

4

5

6

2
3

5

6

4

1

3
4

1

2

6

5

4
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6
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2

3

5
6

2

3

1

4

6
1

4

5

3

2
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then Φ(N) = 1 but N has no transversals.—This example recently dis-
proved a conjecture and stopped a computer program.

If G is the complementary graph of the net of (6.1), then G has
order n = 6, degree d = 4, deficiency fc = 3, and G has no lines what-
ever. For other examples of this type, we need the MacNeίsh number,
M(ri), of the positive integer n: If n is a prime-power, M(n) = n.
If n is a product of prime-powers involving distinct primes, then M(ri)
is the least of these prime powers. MacNeish showed that, for every
positive integer n ^ 2, there is at least one set of M(n) — 1 mutually
orthogonal latin of side n (thus, a net of order n, degree M(n) + 1)
and he conjectured (incorrectly) that there could be no more. In [4],
using a direct product construction essentially due to MacNeish, we
showed rather more: For each positive integer n there exists at least
one net N of order n, degree k = M(n) + 1, deficiency d = n — M{ri),
for which Φ(N) = M(n) > 1. Such a net N, of course, has no trans-
versals. Thus, if G is the complementary graph of N, G is a pseudo
net-graph of order n, degree D(n) = n — M(n) with no lines whatever.
If n is a prime-power, D(n) = 0 and the result has no interest. If
-n = PQ where P is a prime-power, Q is prime to P, and P is the
least prime-power dividing n, then ikf(w) = P and n/D(n) = Q/(Q — 1).
Hence, for Q large, D(n) is close to n. For example, D(20) = 16.
Thus these examples are of little help with the theorems of §§ 3, 4,
though they do show that some conditions are necessary.

We call attention to other examples briefly discussed in §3.
The results of the present paper, especially Theorems 3.1 and

Theorems 4.1, 4.2, 4.3, suggest that a further study of pseudo net-
graphs of order n, degree d subject to

{6.2) d > 1, n > d + 1, (d - I)2 < n ^ p(d - 1)

would be rewarding. We offer the following:

Conjecture. Every pseudo net-graph of order n, degree d,
deficiency k, subject to (6.2), is either the graph of a net of order
n, degree d or the complementary graph of a net of order n, degree
k or both.

When d = 2, (6.2) yields n = 4, whence k = 3. As Shrikhande
shows, there are just two pseudo net-graphs of order 4, degree 2,
deficiency 3. One comes from the plane of order 4 and is thus both
a net-graph and a complementary net-graph. The other is not a net-
graph but is the complementary graph of the net of order 4, degree
S defined by the cyclic group of order 4. The situation for d > 2 is
completely unknown to the author, except for n S 7.
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One of the difficulties in dealing with pseudo net-graphs is the
lack of a method of forming a "direct product" of two of them in
such a way as to end up with a pseudo net-graph. The direct product
of two nets (and hence of two net-graphs) of the same degree is
easily defined (cf. [4]) but uses the existence of line-classes. This
construction is unavailable for pseudo net-graphs. The direct-product
construction for nets of the same degree allows a direct-product con-
struction for complementary net-graphs of the same deficiency—but
here we require too much knowledge of the nets to permit a gener-
alization.

ADDENDUM. Dale Mesner, in his unpublished Ph. D. thesis ("An
investigation of certain combinatorial properties of partially balanced
incomplete block experimental designs and association schemes, with
a detailed study of designs of Latin squares and related topics,"
Michigan State University, 1956) has results allied to Theorem 4.3.
Essentially, he proves Theorem 4.3 with the hypothesis n > p(d — 1)
replaced by a stronger hypothesis n > d0. Here we may define d0 to
be the greatest integer in the largest of the real roots obtained from
the quadratic equations

( I ) 4α2 - (d - l)(9d2 - U + Ί)x + (d - l)2(9d2 - 9d + 7) = 0,

(II) 2dx2 - (dB - 2d* + 3d" - d2 - 2d + l)x

- (d6 - 3d5 + 3d4 + 2d3 - 3d2 + d + 1) = 0 .

With a little labor we may verify the inequalities

Jd4 - d3 < p(d - 1)< d0 < id4 , d ^ 2 ,

which show that Mesner's result is close to Theorem 4.3 but not as
sharp.
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THE INVERSE OF THE ERROR FUNCTION

L. CARLITZ

1. Introduction. In a recent paper [3] J. R. Philip has discussed
some properties of the function inverfc θ defined by means of

{1.1) θ = erfc (inverfc θ) .

Since

(1.2) iπll2(l - erfc a?) = <* - — + — - — + — . . .
V ; 3 2!5 3!7 4!9
it follows that

(1.3) inverfc θ = u + —^3 + — u5 + i ? I ^ 7 + 4 3 6 9 u9 + ,
V ; 3 30 630 22680

where

w = ίττ1/2(l - θ) .
The coefficients in (1.3) are rational numbers. It is therefore of

some interest to look for arithmetic properties of these numbers.
It will be convenient to change the notation slightly. Put

dt,
0

so that

fix) = (-f)1/2(l ~ erfc 2

and let g(x) denote the inverse function :

(1.5) f(g(n)) = g(f(u)) - u ,

where

(1.6) g(u) - Σ ^ > + i / o

ΐ t T i M
*=o (2n + 1)!

It follows from (1.4) and (1.5) that

(1.7) £'(*)

Differentiating again, we get

Received April 11, 1962.
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(1.8) g"(u) = g{u){g'(u)f .

It follows from (1.6) and (1.8) that

\V) tt 2\X,V) -tt-2w+3 2-X /o \l /o \l / Π o o ! ϊ T Γ 2 r+1^2s +lΛ2tt-2r-2s+l

r+«̂ n (2r)! (2s)! (2n — 2r — 2s + 1)!

Since Ax = 1 it is evident from (1.9) that all the coefficients A2n+1 are
positive integers. It is easily verified that the first few values of
A2n+ι a re

A± = A3 = 1, A5 = 7, AΊ = 127, Λ = 4369 - 17.257 .

We shall show that

(1.10) A2n+P = - 2.4.6 (p - l)A2n+1 (mod p) ,

where ί? is an arbitrary prime and that

(1.11) A 2 n + δ ^ -A2n+1 (mod 8)

and indeed

(1.12) A2n+9 = Aan+1 (mod 16) .

We also find certain congruences (mod p) for a sequence of
integers e2n related to the A2n+1 (see Theorems 2 and 3 below).

Finally we put

g(u) ^"n(2n)l

and obtain a theorem of the Staudt-Clausen type for the β2n, namely

R — fl _ _ ^ _ _ V >42w/(p-l)
P2W — ^ 2 ί i — 2-1 Λ 2> >

3 p-l/2n p

where G2w is an integer, b = 2 or 1 according as % Ξ 1 or ΐ 1 (mod 3)
and the summation is over all primes p > 3 such that p — l/2w...
Moreover

Ap = - 2.4.6 (p - 1) (mod p) .

2. A series of the form [2]

(2.1) ff(») = Σ α . 4 '

where the an are rational integers, is called a Hurwitz series, or
briefly an iί-series. I t is easily verified that sum, difference and
product of two ίf-series is again an fl-series. Also the derivative
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and the definite integral of the ίf-series define by (2.1):

H'(x) = Σ α.+i ̂ r , \XH(t)dt = Σ an.x -* !

are iϊ-series. If Hλ{x) denotes an iί-series without constant term
then Hl(x)jk\ is an iϊ-series for k = 1, 2, 3, it follows that
ΉiH^x)) is an iϊ-series, where H(x) is an arbitrary series of the
form (2.1).

By the statement

where the αn, bn are integers, is meant the system of congruences

an = bn (mod m) (w = 0,1, 2, •) .

Thus the above statement about H*(x)/kl can be written in the form

(2.2) Hί(x) = 0 (mod k\) .

Returning to (1.4) it is evident that

(2.3) f(x) = Σ ( - IT Onί/Z^ t = Σ ca +i /o

a?aΓiM '

"=o 2W(2^ + 1)^! =̂o (2n + 1)!

where

/Q Λ\ * / Λ\*> ("My, / -\\n "\ Q K. . . /O/v, 1 \

so that /(ίc) is an if-series without constant term.
If p is an odd prime, it follows from (2.4) that

(2.5) c2n+1 ΞΞ 0, (mod p) (2n + 1 > p) .

Thus (1.5) implies

<2 6) S ^ i r + « r a f t (modp)

We now compute the coefficient of up/pl in the left member of
(2.6). Clearly the terms with 1 ^ n < (p — l)/2 contribute nothing.
Hence (2.6) yields

Ap + cp = 0 (mod p) .

Using (2.4) this becomes

(2.7) Ap= ~ ( ~ l ) w 1 . 3 . 5 . . . ( ί > - 2 ) (mod p) ,
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or if we prefer

(2.8) Ap = - 2 . 4. 6 - 2m = ~(—)ml (mod p) ,
\pJ

where p = 2m + 1 and (2/p) is the Legendre symbol. For example
we,have

A5 Ξ - 1 . 3 = 2 (mod 5) ,
A7 = 1. 3. 5 Ξ= 1 (mod 7) ,

An = 1. 3. 5. 7. 9 = - 1 (mod 11) .

We consider next the residue (mod p) of Ap+2n. If 2n < p we
have

(P + 2 * ) l Ξ ( 2 t O ! ( m o d ,
(2r)! (2s)! (p + 2n - 2r - 2s)! (2r)! (2s)! (2n - 2r - 2s)!

by a familiar property of multinomial coefficients. Thus (1.9) implies,
(for 2n < p)

±p+2n+2 =
n (2r)! (2s)! (2n - 2r - 2s)!

Since Ap Ξ£ 0 (mod ί)) we may put

(2.10) Ap+2n = Ape2% (mod p) (2n ^ p + 1) .

Then (2.9) becomes

1 ; 2 W + 2"" r4S (2r)I (2s)! (2n - 2r - 2s)!

A2r+1A2s+1β2π_2r_2s (mod p)

provided 2tι < p.
We now define a set of positive integers e2n by means of e0 = 1̂

If we put

»=o (2%)!

then (2.12) is equivalent to

(2.13) ίi"(x) = Φ{x)(g'(x)Y
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Comparing (2.13) with (1.8) we get

(2 14) IM. = g"(*)
' ' Φ(x) g(x) '

It follows that

Φ(x)g'(x) - g{x)Φ'(x) = 1 .

A little manipulation yields

= - g(x) ( * L . = _ 9{x)

i g*(χ)

and we get

(2.15) Φ(x) = 1

Since

&"V = 1.3.5. . ( 2 n - 3 ) ,

it follows from (2.2) and (2.15) that

(2.16, ^-i-gί-a-

where p = 2m + 1.
We notice also that (1.7) gives

(2.17)

while (1.8) yields

m - l

(2.18) flf"(w) = Σ ^ f

( } (modΣ
n=0

3. We may rewrite (1.8) as

(3.1) g"(u)

Differentiating again and using (1.7) we get

(3.2) g'»(u) - (1 + 2g\u)) exp ( | -

Since
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—ΰ\u)\ = 1 (mod 3) ,

it is clear that (3.2) implies

g'"(u) = 1 + 2g\u) (mod 3) .

On the other hand (1.7) gives

g\u) = 1 + ig\u) = 1 + 2g\n) (mod 3) .

We have therefore

(3.3) g'»(u) = g'(u) (mod 3) .

Comparison with (1.6) yields

(3.4) A2n+1 = 1 (mod 3) (n = 0,1, Δ, )

If we differentiate (3.2) two more times we get

rg{u) = (7gr(^) + 6gr3) exp (2g2(^)) ,
(3.5) /K

[Dbg(u) = (7 + 46fif2(«) + 24fif4(w)) exp ( j

where D = d/dw. From the last equation it follows easily that

D6g(u) = 2 + gf2(tt) + 4fif4(ίί) (mod 5) .

Since by (1.7)

Dg{u) = 1 + i-ΛM) + τ-δW) = 1 + Zg\u) + 2g\u) (mod 5) ,
Δ o

it follows that

(3.5) (Dδ - 2D)g(u) = 0 (mod 5) .

This is equivalent to

(3.6) A2n+δ = 2A2W+1 (mod 5) (n = 0,1, 2, . •) .

Since Λ = A3 = 1, (2.6) implies

(3.7) Ain+1 = Ain+5 = 2n (mod 5) (n = 0, 1, 2, •••)

It is clear from (3.1), (3.2) and (3.5) that

(3.8) D*g(u) = fn-Mu)) exp (j92(

where ψn(z) is a polynomial of degree n in z with positive integral
coefficients. Differentiating (3.8) we find that ψn(z) satisfies the
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recurrence

(3.9) ψn(z) = φ'n-άz) + nzψn^(z) .

We shall require the residue (mod p) of ψp^(z). It is not evident
how to obtain this residue using (3.8) and (3.9). We shall therefore
use a different method.

The writer has proved [1, §6] that if

i nl

is an fZ-series without constant term, if

i nl

is the inverse of g(x) and in addition

(3.10) bn = 0 (mod p) (n > p) ,

where p is an arbitrary prime, then

(3.11) an+p = apan+1 (mod p) (n ^ 0) .

Clearly (3.10) is satisfied in the present case and therefore (3.11)
implies

(3.12) A2n+P = ApA2n+1 (mod p) .

Making use of (2.8) -we may now state

THEOREM 1. The coefficients of g(u) defined by (1.6) satisfy

(3.13) A2n+P = -2.4.6 (p - l ) 4 . i (mod p) (n = 0, 1, 2, -) ,

where p is an arbitrary odd prime.

It is easily verified that (3.4) and (3.6) are in agreement with
(3.13).

Since (3.12) is equivalent to

(Dp - ApD)g{u) = 0 (mod p) ,

comparison with (3.8) yields

= Ap exp (ig\u)) = Ap Σ - ζ S p (mod p) ,

where p = 2m + 1.
If we put
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(g(u))k= Σ ^ ^ (fc = 1 , 2 , 3 , . . - ) ,

we can show [1, Theorem 10] that A(

n

k) satisfies

(3.14) Ai% = APA[% (mod p) (n ^ 0)

for all fc ̂  1.
We shall apply this result to the series Φ(u) defined by (2.15).

Since (3.14) is equivalent to

{D* - ApD)g\u) = 0 (mod p) ,

it is clear that (2.16) implies

(3.15) (D> - A P D ) φ ( u ) Ξ ^ 1 ^ ^ ^
(m — 1)! p

APD) gP+1W (mod p) ,
P

where p = 2m + 1.
Now by [1, (6.12)] we have

S3. " (2» + 1)!

where

(3.16) ^(w) = u + .

(modp)f

g1() p

pi

moreover

nP{/>Λ °° /v.n(p—l) + l

It follows from (3.16) and (3.17) that

(D* - APD) £&L s 1 (mod p) .
p\

Thus (3.15) becomes

(D» - AvD)Φ(u) ΞE -Apg(u) (mod p),

which is equivalent to

(3.18) e2M+P+1 Ξ Ap(eM+, - i4,.+1) (mod p) (n = 0,1, 2, . •)

We may state
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THEOREM 2. The coefficients e2n defined by (2.12) satisfy (3.18).

In view of (2.10) we may rewrite (3.18) as

(3.19) A 2 n + p + 2 = ApA2n+1 + e2n+p+1 (2n < p) .

Since

A A = A

(3.19) is equivalent to

(3.20) A 2 n + p + 2 = A 2 n + P + e2n+p^ (mod p) (2n < p) .

We notice also that repeated application of (3.18) yields

(3.21) e2n+k(p - 1) = A\e2n - kA2n+k(p - 1) - 1 (mod p)

in particular we have for k = p

(3.22) e2n+p(p^1} = Ape2n (mod p) .

It is also easy to extend (3.20) to

(o.2o) Ag^+fctp-D+i = ΛΛ2Λ+jj.(p-i)_i + β2w+fc(p-i> (mod p)

(0 < 2n ̂  p + 1 fc = 1, 2, 3, •) .

Indeed it follows from (3.23) and (3.18) that

l>—1)—1/

— 1 ) — 1

Note that (3.23) does not hold for fc = 0.
We may state the following theorem which supplements Theorem 2.

THEOREM 3. The coefficients e2n defined by (2.12) satisfy (3.21),
(3.22) and (3.23).

4 We now derive congruences for A2n+1 (mod 8). From the first
of (3.5) we have

D4g(u) = (-g(u) + 6g%u)) exp (2g\u))

= (-g(u) + 6g%u))(l + 2g\n))

= -9(n) + ig\u) + 4gδ(u) (mod 8) ,

so that

(4.1) D4g(u) = -g(u) (mod 8) .
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This is equivalent to

(4.2) Λ2n+δ = ~A2n+1 (mod 8) (n = 0, 1, 2, •) ,

which implies

(4.3) Ain+1 = A4%+3 = ( - l ) (mod 8) (w = 0,1, 2, . •) .

This result can however be improved without much difficulty.
Working modulo 16 we find that the fn{z) defined by (3.8) and (3.9)
satisfy

ψ,(z) = 7z + 6z3 , ψA(z) = 7-2z\

fb(z) = -z + 6s3 , ψ,(z) ΞΞ - 1 + 12z2 ,

ψΊ(z) = z + 4z3

note that the ψn(z) are here treated as finite iϊ-series. Then by (3-8)

D8g(u) = (g(u) + ig%u)) exp

so that

(4.4) D8g(u) = g(u) (mod 16) .

This is equivalent to

(4.5) A 2 n + 9 = A 2 n + 1 (mod 16) .

Since Ax = A3 = 1, Aδ = 7, A7 = 7 (mod 16), (4.5) implies

8 Λ + 1 ΞΞ A8%+3 ΞΞ 1 (mod 16) ,
(4.6)

Λ.+5 = A8n+7 = 7 (mod 16) .

We may state

THEOREM 4. The coefficients A2n+1 satisfy (4.2), (4.3), (4.5), (4.6).

5 We now put

(5.1) - ^ - Σ A M - J - ,
r̂(̂ ) =̂o (2n)l

so that

(5.2) Σ( 2r ) A^~^^r = 0 (n > 0) .

It follows from (5.2) that the β2n are rational numbers with odd de-
nominators.

From (5.1) and (2.3) we have
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g{u) &>2n + 1 (2%)!

By (2.4)

c U = S ^ L = ( 1 } . 1.8.5 . . .(5.4)
2n + 1

Let p be an odd prime. Then for 2n + 1 > p, c'2n+1 is integral (mod
p) except possibly when p\2n + 1. Let

2n + 1 = W , p + fe , r ̂  1 .

If k > 1 it is obvious from (5.4) that c'2n+1 is integral (mod p). If
k = 1, the numerator of C2n+1 is divisible by at least pw, where
w = (p*-1 — l)/2. But since

Up'-1 - 1) ̂  r

except when p = 3, r = 2, it follows that

(5 5) p w s β £ ? & (raodί)) b > 3 ) '
(5.6) 3 ^ ^ Ξ - ^ M - ^ λ (mod3).

flr(w) 2! 8!

In the next place we have [1, (6.2)]

(5.7) - ^ i S ΣArr-Γ TTTΓ ( m o d ^
(p - 1)! «=i (n(p - 1))!

for all p. As for g\u)/81, we have by (3.16)

3! "iy ' ? (2n + 1)1 '

g[(u) = 1 + ig\u)g'(u) = 1 + ig\u) = flr'(tt) (mod 3)

It follows that

and a little manipulation leads to

<5 8)
 Ψ-^WTW

 (mαJ3)

If we recall that

cp = —Ap (mod p)
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and make use of (5.1), (5.3), (5.5), (5.6), (5.7) and (5.8) we get the
following analog of the Staudt-Clausen theorem:

THEOREM 5. The coefficients β2n defined by (5.1) satisfy

(5.9) β2n = G2n--^-- Σ ^ ,

3 P-1/2Λ p

where G2n is an integer,

(2 n = l (mod 3)(1 n =£ 1 (mod 3)

and the summation is over all primes p > 3 such that p — 112n.

6. The following values of An were computed by R. Carlitz in
the Duke University Computing Laboratory.

A5 =7, A7 = 127,

A9 = 17.257,

An = 7.34807,

A18 - 20036983,

Λ16 - 17.134138639,

A17 = 7.49020204823,

A19 = 127.163.467.6823703,

A21 - 23.109.6291767620181,

A23 = 7.655889589032992201*,

A2δ = 17.94020690191035873697*,

The numbers marked with an asterisk have not been factored com-
pletely but at any rate have no prime divisors < 104.
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SOME DEGENERATE CAUCHY PROBLEMS WITH

OPERATOR COEFFICIENTS

ROBERT CARROLL

1. Motivated in part by connections with problems in transonic
gas dynamics there has been considerable interest in equations of
the form

(1.1) utt — K(t)uxx + bux + eut + du — h = 0

where d, 6, e and h are functions of (x, t) (see here Bers [4] for a
bibliography and discussion). In particular there arises the Cauchy
problem for (1.1) in the hyperbolic region with data given on the
parabolic line t = 0 (see in particular Protter [20], Conti [9], Bers [3],
Berezin [2], Hellwig [12; 13], Frankl [10], Weinstein [25], Krasnov
[15; 16], Carroll [8], Germain and Bader [11], and Barancev [1]). Protter
assumes that K{t) is a monotone increasing function of ί, K(0) = 0, and
shows that the Cauchy problem for (1.1) with initial data u(x, 0) and
ut{x, 0) prescribed on a finite a?-interval, is correctly set (under suitable
regularity assumptions) if tb(x, t)lλ/K{t) —• 0 as t —> 0. Thus in particular
if b = 0 the condition is automatically true. Krasnov considers generalized
solutions and the equation

(1.2) nu-Σ±- (a*) + Σb{^- + e £ + du = h.
dx{ \ dxk I dXi dt

Again the presence of first order terms ί̂  complicates the matter and
(as with Protter for Kit) - t«) it is assumed that b{ = O(t«l2-^(t))
where β{t) —• 0 (additional assumptions are also made). Krasnov supposes

Λl + δ 0

^ ct°Σξ\ with hjt s e U (δ0 > 0 is a number for which bounds
α+l+δ0

are determined in the proof) and finds solutions u such that utjt a
l + δ 0

e L2 and uxjt~*~e L2. Thus the growth of h appears to play an im-
portant role in determining a solution in this more general equation
(1.2). Slightly more general degeneracies for Σaikξiξk are mentioned
by Krasnov but always in some comparison to a power of t.

It is one of the aims of the present paper to give a more precise
estimate of the allowable degeneracy in relation to the growth of h
and to give estimates for the solution. In particular we will not require
that K(t) be monotone. For simplicity we omit here first order terms
in du/dXi; this will be dealt with, in an abstract framework, in a
subsequent article. A summary of some of the present work was
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given in [8]. We remark that an operational treatment of the type
of degenerate problems considered by Tersenov [24] and Hu Hsien
Sun [14] is also contemplated (this involves an equation of the form
K(t)utt — uxx + bux + eut + du — h = 0 with data given for t — 0). As
indicated above our results generalize in certain respects those of
Krasnov, however the methods employed here are quite different; for
example Krasnov relies heavily on a Galerkin type method for existence
whereas we employ an energy method based on work of Lions [17].
Further generalizations in our framework are clearly possible (see [16]).

2» Following Lions (see [18] for an extensive bibliography and
treatment of operational differential equations) we reformulate (1.2)
as follows. Let V and H, VaH, be Hubert spaces, V dense in H,
with the topology of V being finer than that induced by H.* The
norms in V and H are denoted by || || and | | respectively. Let
(u, v) —» a{t, u, v) be a continuous sesquilinear form on 7 x 7for tfixed,

O^t^b< co, with a(t, u, v)=a(t, v, u). Assume that t—>a{t, u, v) e Cι[§, δ]
for (u, v) fixed. We recall (see [18]) that the form a(t, u, v) defines an
unbounded operator A(t): D(A(t)) —> H by defining D(A(t)) to be the
set of ue V such that v—>a(t,u,v) is continuous on V in the topology
of H. Then we can write for u e D(A(t)), (A(t)u, v) = a(t, u, v) for ve V.
Now let {B(t)} be a family of bounded Hermitian operators in H with
t-*B(t) e &\£f£H, H)) (here &m{G) is the space of m-times continuously
differentiable functions of t with values in G and =&ζ(H, H) is the
space of continuous linear maps H-+Ή with the topology of simple
convergence—see [5]).

Let now ψ > 0 be a numerical function with ψ ] as ί-^0,
ψe C°(0, 6]. Here ψ does not necessarily approach co. We assume q
is another numerical function such that q > 0 on (0, 6] with q —• 0 as
t —* 0 (in what follows all limits such as q —• 0 will refer to t —• 0).
Let / be given such that ψfeL2(H) (for the spaces LP(H) and the
integration of vector valued functions see [6; 7]). We assume q e Cx(0, δ].
Let j^Γ be the Hubert space of functions u on [0, s] such that u(0) —
0, ψu' e L\H), and ωu e L\ V) with

(2.1) \\u\\^s

(a) is a numerical function to be determined, o) > 0, co—> co). Here
all derivatives are taken in the sense of vector valued distributions in
£^'(if)(see [23]) and ̂ m a y be proved complete by standard arguments.
Let now Jg% be the space of functions h which satisfy h(s) — 0,
hlir e L\H), h'lf e L\H), and qh/ω e L\ V). Set

* H is also assumed to be separable for simplicity in a later argument; this condi-
tion is not necessary however.
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(2.2) E.(u,h) = \'{qa(t, u, h) + (B(t)u', h) - (u'9 h')}dt
Jo

and define

(2.3) L8(h) = \\f, h)dt .
Jo

We note that (2.2) and (2.3) are well defined for ue J^^he ^T8, and
/ as described. Thus assume ω as indicated has been given; then we pose

Problem 1. Find s and ue^such that for all he££*8

(2.4) E.(u, h) = £.(Λ) .

Naturally we wish to find the best co in some sense when posing
problem 1. Here best will be left vague for the present in remarking
only that ft) furnishes a measure of how rapidly the solution u tends
to 0 as t —• 0. We define now 3ΓS to be the space of functions k

S t
φhdξ for k ^ ; where φ is a numerical function to

0

be determined (in general φe C'[0, s], φ > 0 on (0, s], and cp-^O as
t -> 0). Clearly k' = φh and thus fc'/^f = h/ψ 6 L2(£T). For suitable
choice of the numerical function S > 0, δ—>oo, we define J%^s as a
prehilbert space with norm

(2.5) k' -dt

LEMMA 1. Define v = φ/g and assume
( i ) φf2eL°°
(ii) ω ^ δ
(iii) ft>VeZ/

ω^dξeL1 with φ, q, ω, ψ, δ e C°(0, s] αii positive on (0, β].
0

Then ^ ^ c ^ " algebraically and topologically.

Proof. The following estimates are straightforward

(2.6)

(2.7)

\fk'\ =

= I \δ[-0-ωvhdξ
I I Jo <w

φψ2k'

lξ

< ¥
φψ

= Jo J

*| I ^
01 1 ft)

dξ.

Thus by (2.7) for & € J¥f and <5 satisfying the hypotheses we have
( < <x>; also by (2.6) and the fact ω ^ δ it follows that p | | ^ s ^

^ From (2.7) we obtain also the result that ||fc||2-^0 as ί—>0
which proves that in fact
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(2.8)

LEMMA 2. Assume (i)-(iv) and

(v) llv[ω2v2dξ eL°°
Jo

(vi) φ'ψ2 e L~
(vii) l/vd2eL~
(viii) -(l/α>)' 1/δ2 e L~, V ̂  0. Assume also tfcat a(t, u, u) ̂  a ||ujf,

8(fc, k) 2>

dt

φ/ιcί̂ , £7s(u, fc) = Es(u, h) .
o

Proof. Formally we have

(2.9) 2ReE8(k, k) = I α ( ί , fc, * -\llJL\a(t,k,k)-(±)a'(t,k,
o }o(\φ/ \φ

2Re[ — {Bkr, k')dt - <p\h\2 'dt .

Noting that lim φ \ h |2 = lim 1/φ | fcf |2 = θ2 ̂  0 will exist if all the other
terms make sense we have

1- α(ί, fc, fc) g — || fc ||2 ̂  - ( W d f Π 1^-1 Γ
φ V V Jo Jo I I ft) I I

(2.10)

which vanishes as t-+0. Note by the Banach Steinhaus theorem it
follows that (see [18])

(2.11)

(2.12)

(2.13) \\'λ(Bk',k')dt
I Jo φ

fc'

Moreover under the hypotheses above

(2.14) dt <oo

(2.15) I [ £a'(t, k, k)dt\ g cX ~ \\δk\\2dt <<
I Jo φ \ Jo vδ2

(2.16) - (Y-2-Y a(t, k, k)dt g c\ - (—Y i Hίfclpd
J o V φ / Jo V t ^ / δ 2
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Thus (2.9) is valid and (2.8) follows.
The formula (2.8) indicates the properties desired of δ and φ in

order to obtain an estimate ReE3(k, k) ̂  Ω ||fc||^β thus enabling us to
apply the Lions projection theorem (see [18]). We will give here a
natural choice for 8, φ etc. without seeking the best possible result.
To this end set

dξjψ2 ^ Nt.
0

Hence φψ2 — cφ\φ' —* 0 also and thus 1/φψ —> co. Next let R Φ 0 be
a constant and

<2.18)

where δx > 0 is determined by v(s). Thus v —» 0 corresponds to δ g U

and in any case, noting v' = RvΨ,

d, + \ Rδ2d

1- J*
O

(This shows that [ω2v2dξ < co and that 1/v [ω2v2dξ ^ M. The last
Jo Jo

term in (2.19) is taken to be zero if δ g U or t (O) = 0, and v(0)lv(t) is seen
to be bounded by one in all other cases.) Thus (i), (ii) (by assumption),
(iii), (v), (vi), and (viii) hold. Also the φ'ψ2 term dominates in the
second integral of (2.8) for s small. Now for (vii) we note that 1/vδ2 =
(vlv')R and v' — (φ/q)'; thus

(2.20) —
v φ q φ L q JO ψ'

S t
dξjψ2 g l - S i for t small

0

then v'jv ̂  ^φ'jφ —* co since φ, φf > 0 on (0, b] and φ\φ' —> 0. In any
case if v'/v —> co then v/i;' —> 0 and 1/vδ2 —* 0 which means not only
that (vii) holds but that the — α(l/v)' 1/δ2 term dominates in the first
integral of (2.8) for s small. Note here that φ and hence v are defined
on [0, 6] independently of s by say (2.17) whereas (2.18) determines δ2

on any interval (0, s] for v given. Finally with regard to (iv) there
are various hypotheses on ω and v which would work but we assume
simply that
<2.21) ω2 = -2—, 0 < e < 1
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Then if say v e C°[0, b]

(2-22) j ., ,

It should be noted that v e C°[0, b] now implies that ω^cδ since ω2β2 =
Rv* and this would be a condition equivalent to (ii). We remark that

v->0 implies ω$U since \ω2dξ = (V/v2-βd£ = 0(l/^- ε). This proves

LEMMA 3. Assume a(t, u, u) ^ α||w||2, v'/v-*oofve C°[0, 6], ω2 =

v'lv2-*, φ = c^dξlψ2, and v = 1/δ, + \*Rδ2dξ. Then ω g cδ and (i),
Jo Jί

(iii)-(viii) hold with ReEJJk, k) ^ β p | | ^ for s sufficiently small.
Using the above lemmas and the Lions projection theorem (see [18])

there results

THEOREM 1. Under the hypotheses of Lemma 3 and the conditions
on a(t, u, v), B{t) stipulated above there exist functions o) (cogL2 if
v—>0) such that for s small problem 1 has a solution.

Proof. We need only check that the map u —• E£u, k): Jζ—> C is
continuous for k e ^ fixed and that the map k —> L£k) = Lβ(h):
St9 —> C is continuous. This verification is immediate.

Now since q > 0 on (0, 6] we can treat qa(t, u, v) as a nondegenerate
form on say [s/2, 6] and apply Lions' results for such problems (see
[17; 18]). We want to solve

Problem 2. Find u e J^ such that Eb(u, h) = Lb(h) for all h e
Thus suppose the problem has been solved for [0, s], that is suppose

problem 1 has been solved with solution uγ. Then following [17] let
peC1 with p — 1 on [0,2/3 s] and p = 0 in a neighborhood of s. Set
u2 = u — pux\ then u2 = 0 on [0,2/3 s] and u2 — u for t^s. The problem
2 for w becomes

(2.23) £ 6(^ 2, Λ) = ( V , λ)dί - (p'[(Bulf h) + (u[, h)]dt
Jo Jo

- \\qa(t, ulf ph) + (Bu[, ph) - « (jΛ)')}dt .
Jo

Now if he 3% we see that phe 3%\ hence

(2.24) Eb(u2, h) = ( V , * ~ P^)^ί - \bpr[(B^u h) + (u[, h)]dt .
Jo Jo

In particular we see that everything vanishes on say [0, s/2]; hence
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we pose the Cauchy problem with initial data given at s/2 as follows.
Let Ĵ ~/2 8 l be the space of u such that ωu e L\v) and ψuf e L\H) on
[s/2, s/2 + sj with u(sl2) = 0. The space <^β/2 βl corresponding to £ίfs

is defined similarly on [s/2, s/2 + s j . We extend ω and δ to be constant
on [s, 6]; then since ψ, ω, 3 etc. are positive and continuous we may
define say ^ / 2 , S l in terms of u e L2( V) and v! e L\H). Let Eφ 8χ denote
the terms in Eb integrated over [s/2, s/2 + sj, and denote the right
side of (2.24) integrated from s/2 to s/2 + sx by Lsj2 8l (h). Then consider

Problem 3. Find u2ej?ζnsi such that Esi2,Sl(u2, h) = Lsl2 Sl(h) for
all h e <βέ?al2t8l.

Problem 3 has a (unique) solution for sλ sufficiently small by [17]
and the above extension procedure may be repeated in steps of length
sJ2. Thus u will eventually be determined on [0, b] satisfying problem
2. Hence

THEOREM 2. Under the hypotheses of Theorem 1 there exists α
solution of problem 2.

3. Suppose now that E8(u, h) — 0 for all h e ̂ %fs. Let h —

— \*Judξ, hf = Ju, J-> co. Then

LEMMA 4. Assume

(a) jηωλ'dξlf'eL1

(b) J/ωψeL00

(c) J2lω2[\q2lω2) dξ e IΛ Then he£^s ifue ^ζαnd h = - \'judξ.
Jo Jί

Proof. Clearly h'/ψ = (J/ωψ)ωu e L\ V) (hence certainly A'/^ e
and h(s) — 0; also

ΊJΓ Jί 0) / ψ

Jo a)2 \Jί ω 2 / Jo

Using the Fubini and Tonelli theorems (see e.g. [19]) the lemma follows.
We note now explicitly the fact that if u e L2(H) and v! e L2(H)

{uf taken in 2$\H) on (0, s)) then u may be identified with a continuous
function and w(0) = 0 makes sense. Indeed for u, determined almost
everywhere, we see that u' e L\H) on [0, s] and clearly Du — u' in

&'{H) where u = ( V d | e ^(jff) (see [23]). Thus D(u - u) = 0 and
Jo

by [21] for any h e H, (u — u, h) = ch in ^ ' . Hence (# — u,h) = ch
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almost everywhere as a function and thus u may be identified scalarljr
with the continuous function u. Since H is separable we may then
identify u with a continuous function and u(0) = 0 is meaningful (see
[23], [22]). Hence u = u follows. Thus setting u = ['u'dξ, h = — ['h'dξ-

Jo Jt

(3.3) |(it,Λ)| =

^ sup

~ 2 u .

i<

Ψ

Thus (w, λ) = 0 at t = 0 and we note that [(Bu', h)dt = - [(B'u, h)dt —

S 8 „ JO JO

{Bu, h() dt. Hence Es(u, h) = 0 becomes, with h as above
0(3.4) ^ α(ί, A', A) - (Bfuy h) - 0 .

Set now θ2 = lim qlJa(t, h, h) which will exist if everything else makes,
sense in the following. Then we have

LEMMA 5. Assume (a)-(c) from Lemma 4 and

(d) jΓdf/f 2 eL~

(e) -J'lω2eL°°;J' < 0
(f) J->oo; J7J'->0

(g) (QIJYKQIJ)-*00 Γfcβw ifh=— ['judξ, uej^, and ifa(t, h, h) ^

a: ||A||2 iί follows that

^-\\ dt

ft)2 ft)2 ft)2 ft)2 J

Proof. By (d) we have

J\u\> ̂
f o ψ2

whereas from (e) there results — J'\u\2 = —J'lω2\ωu\2eL\ Next by
(f) and (e) it follows that lim Jqjω2 = limίJZ-JOί-e/'g/ω2) = 0; hence
Jqlω2eL°° and

ι« ιr«
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Note here q\J— 0 and qjj= \\qlJY dξ; also by (g) surely Γ ? / / | | A| | f dξ <
oo. Now by (f) i t follows t h a t J\u\2 = {JfJ') J'\u\2eb and finally
we remark t h a t

(3,7) 2Re \\B'U, h)dξ ^β \'['j(ξ) {\ u(t) |2 + Iu(ξ) |2} dξdt
Jo J o j ί

[jdξ)dt+ [
ω2 it / Jo a)2

Here the Jϊ/α>2 term makes sense since Jt/ω2 = (Jj—J')(—J't\ω2) —>0
by (e) and (f). Then we note that

but by 1' Hospital's rule lim 1/J ['jdξ = lim J / - J 1 = 0 (here note that

J' Φ 0f J Φ 0 for ί > 0). Hence we may write

(3.8) θ* + \[{{jj «(«, A, A) + (-̂ r) αf(ί, λ, A)} dt

2J?β ί V(Sw, %)dί
Jo

- \'j'\u\*dt
J

The lemma follows immediately.
Now let o)2 = v'lv2~2 as before and consider the following choice

for the function J

(3.9) J = i + c \Sω2dξ; - - ^ 1 = 5 .
J* α>2

It follows that (e) holds (we assume ω, v etc. are as before) and since
v = 9>/g (d) is a consequence of the fact that

(3.10) c \ω*dξ Γ *Z ^ c^ (Vdf = cφ [ - ( i Y
it io ψ2 it it \v /

Note now that with the above choice of ω we can write J in the

form J=j + c J'v'/v2-*dξ = j-(a/1 -ε)(1/φ)) 1 - 8 + (c/1 - e )

If i is taken to be i = (c/1 - ε) (l/vis))1-* then

(3.11)

Thus if v\vf —• 0 then J\—J'-* 0. Moreover since ω2 = (v'/v) (l/^)1"8 it
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follows that ω—> co if v-+0 and v\vf —> co and also by (3.11) J—>co

if v-+0. Hence if v'lv—*co and v—+0 then (f) holds and ω—> co.

Consider now condition (a); using (d) we have J2/a)2 \ dξ/ψ2 ^ c J\of =
Jo

—cc JjJf —> 0 which implies (a). For (c) we note

(3.12) [ ^ ( f ' J ^
Jo of VJo O)2

VJo ft)2 /

However l/β>2 ί'βΛif = v*-e/v' \'vΊv*-dξ - (1/1 - β) {v/v' - c/ω2} and if

v/v' —* 0 and ω —> oo it follows that the first two integrals in (3.12)

exist. The last integral in (3.12) is bounded by

The first term in the integrand vanishes as t —> 0 by the above remarks
and using V Hospital's rule on the second term we note that

ω2dξ \ drjjω2 = Km (I ω2dξ) ω4 which is zero by the above (note
ί JO \J< / /

here if ωeL2 (3.12) is seen immediately to exist and no recourse to
the preceding argument is intended). Thus if v'jv —* co and o) —* co
(c) surely holds.

Now since J/ωψ = (c/1 — ε) l/ωψv1-2 it follows that (b) holds if
o)2v2~2s > c/ψ2 or (v'lv)ε > c/ψ2. It is not necessary that ψ f co in general;
when v -> 0 (b) will hold if v' > clψ2. Thus (b) holds if v -> 0 and

(3.13) l

S t

dξlψ2. In particular (3.13) holds
S o

^ | / ^ 2 ^ 1 — Si, since q —> 0 (see here also'
0

equation (2.20)). This proves

S t
dξlf2 ^ 1 — s± for t small. Then

0

if J — (c/1 — ε) Ijv1-2 (/' = — cω2) and v —> 0 it follows that vf\v —> co
ami (a)-(f) ΛoϊcZ.

We recall that 9 and v are defined independently of s (see (2.17))
and our constructions and proofs have shown that for t small
enough the (qlJ)'(02lq2 and —J'/a)2 terms will dominate in the first
and second integrals respectively of (3.5). It remains to check only
a few terms in order to see whether by suitable choice of s this
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domination prevails over [0, s]. Now by (3.11) JjJ' is independent of
s as is J/ω2 (indeed a priori ω2 and d2 depend only on v). Now since
— J' = cω2 > 0 we have J monotone decreasing and clearly

At)
[SJ(ξ)dξ ^ s - t ^

Hence referring to the proof of Lemma 5 we can establish domination
over an interval [0, s] in the second integral of (3.5). There remains
the (qlJY term for which we may write

(3.14) ®- = 3L
ίq_\- q * K ' V - φ V ~ r qφ'

Thus in particular the ratio in (3.14) is a priori independent of s and
the desired domination may be obtained on an interval [0, s] by choosing
s sufficiently small. Thus we have proved

LEMMA 7. If the hypotheses of Lemma 6 hold and (g) is true it
\ωu\2dt ^ 0.

0

Clearly the condition (h) in Lemma 6 is much stronger than is
necessary but it gives a manageable criterion. We note now that if
q' ^ 0 then by (h) εx ^ [1 - q'φ/qφ'] S 1 and from (3.14) it results that
(qlJ)Ί(qlJ) ^ (1 — ε) φ'/φ —> oo. Thus if q is monotone, for any ε, 0 <
ε < 1, (g) is a consequence of (h). Another case of interest would be
if 1 — q'φ/qφf ^ Q; then if ε ^ 1/Q (g) holds. A somewhat better
result may be obtained as follows. We note that

ιdξ_ __ (log q)'

loq — T )

S t

dξ/ψ2 exists as ί-»0. We note
0

that the conditions needed to apply 1'Hospital's rule hold and thus Q =

S I

dξ/ψ2. Therefore for t small (h) implies that
S

0
log g/log I iS . g 1 - ε2, 0 < ε2 < εx .

Jo *ψΔ

But for t small the logarithms are negative and thus loq q ^

G t \ i-ε 2 /rt \i-ε2

df/i/r2 or g ^ c?^/αίr2) = cφ1^2. Converse ly if q ^ c ^ 1 " 8 2

p / VJo /
a n d if Q = lim q'φ/qφ' e x i s t s t h e n Q g 1 — ε3 for some ε3, 0 < ε3 < ε2.
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Hence if Q exists as defined and q ^ cφ1^2 then (h) holds and moreover
v = φ\q ^ φ/cφ1-*2 = (l/c)φS2 —> 0. We note that by construction if Q

S t
dξ/ψ2 ^ 0; hence ε[l — q'φjqφ'] < ε(l + ε4)

0

for t small enough and ε4 > 0 given. Choose now ε4 such that ε(l + ε 4 ) < l

or ε4 < (1 - ε)/ε then from (3.14) (q/JYUq/J) ^ cφ'/φ for t small. This

proves

dξjψ2 exists and that q ;>

M dξ/ψ2) ", 0 < ε2 < 1. Then (h) holds, v-^+0, and (q/JY/iq/J) — oo for

J = c/v1^ as above. Hence for s small enough the solution of problem

1 is unique.
Again using [17] we conclude

THEOREM 4. Assume a(t, u,u)^a \\u\\\ t-^a(t, u, v) e C1 [0, 6], t -*
B(t) e &\£Z(H, H% α(ί, u, v) = α(ί, v, u), qeC1 (0, 6], q > 0 for t > 0,
q->0 as t->0,ψeC°(0,b],ψ>0,ψ] as t -^0, ψfeL2(H), q ^

C\dξlf2V '2 (0 < ε2 < 1), αtid Q = lim (q'ψ^q)^ dξ/ψ2 exists. Then there

exists a unique solution of problem 2 for spaces JPζ, <§$fh based on

functions ω£L2(ωeC0 (0, 6]).
We note now that if Q Φ 0 then qf < 0 for t small is not possible.

dξ/ψ2 ^ ε4 > 0 then <? g (I dξ/ψ*) and we may
o VJo /

assume ε4 < 1 since if q S 71+γ?, V ^ 0, 7 -> 0, then ^ ^ 7s4 for any ε4 < 1

when £ is small. In fact ε4 < 1 is necessary if we are to have q ^

cφ1'*2 and thus the case Q Φ 0 with # ^ (\ dξ/ψ2) amounts to an

estimate of the form ([d&Ψ*)1"** ^ 9 ^ (S?^^ 2 )^ ° < Sa < 1 ? Sa + ε4 ~
1. Finally we remark that under the hypotheses of Theorem 4 if

lim q'ψ2 exists then by ΓHospitaΓs rule lim q'ψ2 — lim q \ dξ/ψ2 =
/ Jo

lim c q\φ = oo. This implies that ^ \ oo if g' is bounded but in a case
such as q — t1'2, ψ | oo is not required.

4. Let now 3ts be the completion of 3ίΓ% for the norm || ||af,.
Then we may pose problem 1 for 3rz instead of J*Γ (call this problem
1') and repeating the procedures of §§ 2 and 3 there will exist a function
it e 3f9 solving problem V if s is small enough. It may be easily seen
that the elements adjoined to 3ίΓ8 by completion correspond to functions
ίc such that δίce L2(V), ίc'lφψe L2(H), and £(0) = 0. Moreover the
injection i: 5^s—*^ may be extended by continuity to a continuous
map i: ^

LEMMA 8. ^%7 a ^ algebraically and topologically.
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Proof. We need only show, after the above remarks, that i is an
injection. Let kn —> ίc in J ^ , kn e 3ίΓ8, and assume that ί{kn) = fcΛ —> 0 =
ί(fc). We want to show that fc = 0 in j£^. First fcn = i(fcΛ) —• 0 in
&l means in particular that ωkn —»0 in L\V). Hence (see [6], p. 133)
there is a subsequence ||α>fcWp||

2—>0 almost everywhere. Therefore
ll^fc.JI1—*0 almost everywhere and by the assumption kn—>ίc in J%Γ
we know δknp —> δίc in L\V). Theorefore we must have (see [6], p. 133
again) δknp -> 0 in L2(V), and δίc = 0 in L 2 (F) (similarly fc'/^f = 0 in
L\H))\ thus in particular ίc — 0 which shows that i(Λ) = 0 implies
£ = 0.

Let now ύ e ^ Γ be the solution of problem 1' above. Then u e ^
by Lemma 8 and by the uniqueness Theorem 3 we must have u = u
for s small where % is the solution of problem 1. Hence

THEOREM 5. Let the hypotheses of Theorem 4 hold. Then there
exists a unique solution u of problem 2 which belongs to J

Now consider the proof of the Lions projection theorem given say
in [17] (see also [18]). We have ReE8(k, k) ^ Ω\\k\\£s for ke 3Γ8

and wish to solve E8(u, k) — L8(k) for u e 3%~8 (the equation holding for
all k e 3ίΓ8). Then we write, following Lions, Ls(k) = ((χ, k))^a, χ e d%Γ8>
and E8(ut k) = ((u, !>&))£,, Lk e 3%. Here L: 3fT%-+ J ; is a densely
defined linear operator in 3ίΓ%. But ke

(4.1) Ω 11 k I \g^ ̂  | ((k, Lk))£s | ^

which implies L is one-to-one. Moreover if Ro = L(^%Γ) then L"1 is
a bounded operator on Ro and may be extended by continuity to Ro

defining L"1: JK0 —> ̂ * . Let P: J£f--> JB0 be the projection and set R —
L~XP which is thus everywhere defined and continuous on ^ . Then
we want to find u such that {{u, Lk)) = ((χ, L'1 Lk)) = ((χ, i2Lfe)) =
((iί*χ, Lfc)) for all k e 3ίΓ.. Thus a solution is w = i2*χ and by the
subsequent uniqueness result u = iϋ*χ is the only solution. Using this
sketch of the proof of the projection theorem we can bound u. Indeed
| |w| |^β ^ ll-β*Zll^β = c llzll^, since R* is bounded. Moreover

A dt
Ψ

(4.2)
<

This means (see [5], p. I l l ) since J%ς is dense in 3rs that | | χ | | ^ F =

. Therefore we have proved(\

THEOREM 6. Under the hypotheses of Theorem 4 αtwί for s suf-
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ficiently small the (unique) solution of problem 1 satisfies the estimate

^ 1 1

The estimate can clearly be extended to [0, b] which given

COROLLARY. Under the hypotheses of Theorem 6 the unique solution

G b \l/2

(ψf\2dt) .
REFERENCES

1. R. Barancev, Expansion theorems connected with boundary value problems for the
equation uxx — K{x)utt — 0 in the strip 0 S x ^ 1 with a degeneracy or a singularity on
the boundary, Doklady Akad. Nauk, SSSR, T. 121, (1958), 9-12.
2. I. Berezin, On the Cauchy problem for linear equations of the second order with

initial data on the parabolic line, Mat. Sbornik, 2 4 (1949), 301-320.
3. L. Bers, On the continuation of a potential gas flow across the sonic line, NACA

Tech. Note 2058, 1950.
4. , Mathematical aspects of subsonic and transonic gas dynamics, Wiley,

New York, 1958
5. N. Bourbaki, Espaces vectoriels topologiques, Chap. 3-5, Paris, 1955.
6. , Int 'gration, Chap. 1-4, Paris, 1952.
7. , Integration vectorielle, Chap. 6, Paris, 1959.
8. R. Carroll, Quelques problemes de Cauchy degeneres avec des coefficients operateurs,

Comptes Rendus, Paris, T. 253, (1961), 1193-1195.
9. R. Conti, Sul problema di Cauchy per Uequazione y2a>K2{x, y)txx — tyv = f(x, y, t, tx, ty)

con i dati sulla linea parabolica, Annali di Matematica, 3 1 (1950), 303-326.
10. F. FrankΓ, On Cauchy1s problem for equations of mixed elliptic-hyperbolic type with
initial data on the transition line, Izvestia Akad. Nauk, SSSR, 8 (1944), 195-224.
11. P. Germain and P. Bader, Solutions elementaires de certaines equations aux derivees
partielles du type mixte, Bull, de la Soc. Math, de France, T. 81 (1953), 145-174.
12. G. Hellwig, Anfangs-und Randwertprobleme bei partiellen Differential gleichungen
von wechselndem Typus auf dem Randern, Math. Zeitschrift, Bd. 58, (1953), 337-357.
13. , Anfangswertprobleme bei partiellen Differential-gleichungen mit Singu-
laritaten, Journal of Rational Mech. and Analysis, 5 (1956), 395-418.
14. Hu-Hsien Sun, On the uniqueness of the solution of degenerate equations and the
rigidity of surfaces, Doklady Akad. Nauk, SSSR. T. 122. (1958), 770-773.
15. M. Krasnov, Mixed boundary value problems and the Cauchy problem for degenerate
hyperbolic equations, Doklady Akad. Nauk, SSSR. T. 107, (1956), 789-792.
16. , Mixed boundary value problems for degenerate linear hyperbolic differential
equations of the second order, Mat. Sbornik, 49 {31), (1959), 29-84.
17. J. L. Lions, Problemi misti nel senso di Hadamard classici e gzneralizzati, Rend,
del Sem. Mat. e Fis. di Milano, 2 8 (1959), 1-47.
18. , Equations differentielles operationelles et problemes aux limites, Grund. d.
Math. Wiss., Bd. I l l , Berlin, 1961.
19. E. McShane, Integration, Princeton, 1949.
20. M. Protter, The Cauchy problem for a hyperbolic second order equation with data
on the parabolic line, Canadian Journal of Math., 6 (1954), 542-553.
21. L. Schwartz, Theorie des distributions, Vols 1,2, Paris, 1950-51.
22. , Espaces de functions differentiates a valeurs vectorielles, Journal d'analyse
Math., 4 (1954-55), 88-148.



SOME DEGENERATE CAUCHY PROBLEMS 485

23. , Theorie des distributions ά valeurs vectorielles, Annales de Γinstitut Fourier,
pp. 1-141, 1957 et pp. 1-209, 1958.
24. S. Tersenov, On an equation of hyperbolic type degenerating on the boundary,
Doklady Akad. Nauk. SSSR, T. 129 (1959), 276-279.
25. A. Weinstein, The singular solutions and the Cauchy problem for generalized
Tricomi equations, Comm. Pure and Appl. Math., 7 (1954), 105-116.





A THEOREM ON MATRICES OF O'S AND l'S

M. P. DRAZIN AND E. V. HAYNSWORTH

In this note we define two types of matrices, called "special"
and "quasi-special", which we first discuss in their own rights; it
turns out that the quasi-special matrices have a canonical representa-
tion (under permutational similarity) in terms of special matrices.
We show how this fact can, essentially, be expressed in the language
of graph theory, and we also use it to give a new proof of a theo-
rem of Goldberg [1] on matrices with real roots. We shall be con-
cerned, specifically, with the following properties of an n x n matrix
A = (α«):

DEFINITION 1. We call A special if aiό Φ 0 implies aH Φ 0.

DEFINITION 2. Given any integer s with1 3 g s ^ n, we call A
s-special if, for every ordered set (i) = (ilf , is) of integers ir in
the range 1 ^ ir rg n (r = 1, , s), the statement

NΛΐ): ahh Φ 0, - -, αfV_lίf Φ 0 , ahh Φ 0

implies

NΛΐ): ahh Φ 0, - , aisis_x Φ 0 , aiχU Φ 0 .

For example, every symmetric matrix is special (and the same is true
of hermitian matrices over any ring with involution). Also, obviously,
every special n x n matrix is s-special for each s = 3, , n, and it
will be convenient to call any matrix with this latter property quasi-
special. Thus every special matrix is quasi-special. The converse of
this is easily seen to be false: e.g.

/ 0 0 0 \
A = [ 1 0 0

\ 1 1 0 /

is 3-special (since N^(ii, i29 i3) is always false), hence quasi-special, but
this A is evidently not special. Nevertheless, every quasi-special
matrix does have certain special matrices associated with it. More
precisely, our main result is

Received March 14, 1962. The first author's research was supported in part by the
United States Air Force through the Air Force Office of Scientific Research of the Air
Research and Development Command, under contract No. AF 49 (638)-382. Reproduc-
tion in whole or in part is permitted for any purpose of the United States Government.

1 Clearly s — 1, 2 would lead to properties enjoyed by every matrix A, and so we
meed not consider these values of s.
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THEOREM. (1) Given any n x n matrix of the lower-triangular
block form

I Bn 0 0 0

B21 B22 0 0

\ Bml Bm2 Bm3 Bmrt

where each block Bkk occuring on the diagonal of B is special (in
particular, square), and given any n x n permutation matrix P9

then the matrix A = PBP~X is always quasi-special.

(2) Conversely, every quasi-special n x n matrix A can be ex-
pressed in the form A = PBP'1, with B, P as in (1).

For matrices over any integral domain, of course N4(i) becomes
simply ailh aish Φ 0. However, our Theorem is essentially com-
binatorial, in that its proof involves no genuinely algebraic operations
on the elements of the matrices A, B, which may consequently be of
quite arbitrary nature. All that we need is that there be given some
classification of these elements into two disjoint subsets, say Z and
iV (standing for " z e r o " and "nonzero"), in which case we must
replace each inequality airir+ι Φ 0 occurring in N4(i) by a correspond-
ing statement aiγir+1 e N (or, equivalently, by a relational statement
ir Rir+1). Since our arguments will not require any further properties
of Z or N we might, with no real loss of generality, equally well
have stated the theorem for matrices whose elements are all 0 or 1
(hence our title). Nevertheless, for the sake of its application in a
Corollary below, where the elements will be complex numbers, we
have preferred to state the result in the apparently (but rather il-
lusorily) more general from above.

Proof of (1). This is relatively trivial. Since the property of
being quasi-special (or not) is clearly preserved under similarity trans-
formation by any permutation matrix P, we need only prove that a
matrix of the type B must itself be quasi-special. To this end, let
(i) = (iu , is) (where 3 ^ s ^ n) be any sequence for which N£(i)
holds. We shall show first that this can happen only if each of the
birir+1 (where we define is+1 = ix conventionally) lies in some diagonal
block Bkk (and indeed all in the same block, though this is not vital
to our argument).

For, since NΛ(i) requires all the birir+1 to be nonzero, each birirJh
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must lie in some block Buυ with v ^ u (where u, v depend on r).
Among all those Buv which contain a birir+l, choose one with minimum
u; without loss of generality, we may suppose that the correspond-
ing r = 1, i.e. that bhh e Buυ with u minimum and v ^ u. Then,
since all the Bkk are square, buu e BΌW for some w, and, by the mini-
mality of u> we must have v = u, i.e. 6iji2 e Buu. Repeating the argu-
ment, we see that bhh e Buuy , bis_lis e Buu, bhh e Buu.

Thus all the birir+1 corresponding to any sequence (i) for which
Nβ(i) holds must belong to the same diagonal block Buu. Since each
such Buu is given to be special (even quasi-special would be enough
for our present purpose) and since all the birir+1 are nonzero (by Nfi(i)),
it follows that all the bir+lir are nonzero too, i.e. Nβ,(i) holds. To
summarize, Nβ(i) implies NB(ΐ), so that J5, and hence A, is indeed
quasi-special, as required.

Proof of (2). If A is not itself special, i.e. if for some u, v we
have auυ = 0, aΌU Φ 0, then, since of course u Φ v, by applying a suita-
ble permutational similarity (specifically, the one that interchanges
the first row with the wth and the vth with the wth, and the columns
similarly), we may take u = 1, v = n, i.e. we may suppose throughout
that

(*) aln = 0 , anl Φ 0 .

We now apply a double induction, first on the order n of A and
secondly on the row index i within A. Thus, supposing the theorem
already proved for all square matrices of order <n, we let A be as
stated, assume by way of contradiction that A can not be transformed
to the form B by permutation, and take as our " inner" inductive
hypothesis the proposition

H^ there exist an n x n permutation matrix Qif and integers
klt , k{ satisfying 1 ^ fcx ^ k2 ^ ^ k{ < n such that, for each
h — 1, , i, we have

and also cnl Φ 0, where C = (chj) denotes the matrix Q^AQi and we
interpret kQ = 1.

We wish to prove first that Ĥ  is true for each i = 1, , n — 1,
and our chief task in so doing will be to deduce Ĥ  from H ^ . Sup-
pose then, for some i with 1 < i < n, that Hi-i holds. Since the
property of being quasi-special is unaffected under similarity trans-
formation by a permutation matrix, and since any product of per-
mutation matrices is itself a permutation matrix, we may assume
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with no loss of generality that Qi-λ is just the unit matrix (so that
we may speak of A rather than C).

Given H^x, if k^ ^ i — 1, then A would have an (i — 1) x (n — i + 1)
block of zeroes in its upper right hand corner. Also the leading
(i — 1) x (i — 1) block of A and its complementary (n — i + 1) x (n — ί + 1)
submatrix are both quasi-special, of order at most n — 1, and so, by our
inductive hypothesis on n, we could find a n ^ x u permutation matrix P
(of the form P = diag. (Pu P2), where Pu P2 are permutation matrices
of orders i — 1, n — i + 1 respectively) transforming A to the form
B, which is contrary to assumption.

Thus the only possibility is that each k^x ^ i. Let us now per-
mute the columns of A to the right of the fc^th, but omitting the
nth (i.e. n — k^x — 1 columns in all), among themselves so that, in
the set of elements where these columns intersect the ith row, the
nonzero elements (if any) are brought to the left, and the zeroes
(if any) to the right (while, by the definition of kl9 , k{-u such a
permutation of columns leaves the first i — 1 rows unaffected); and
define an integer k{ (clearly in the desired range k{-γ ^ k{ < n) by
writing the number of these nonzero elements as ki — ki^., Then,
since fc^i ^ ί, we may perform a corresponding permutation on the
(ki-i + l)th through (n — l)st rows without interfering with any of
the first i rows (or the wth, so that anl is left nonzero), i.e., with
this kif we have constructed a permutational similarity taking A into
just the form prescribed in H ,̂ provided only that ain — 0.

To prove that we do always in fact have ain = 0, we proceed in-
directly, and shall first consider the elements of the ith column
which lie above the ith row. For i > 1, if api = 0 for each p = 1, ,
i — 1, then this would imply i > k^, a contradiction. Hence there
must be some integer ix in the range ί > ix ^ 1 such that aiχi Φ 0.
By repeating this argument, we can find a sequence of integers
i > ii > % > > it > it+i = 1 such that ahi Φ 0, ahh Φθ, , α<t<f_1 Φ 0,
alit Φ 0 (where we interpret t = 0 if iλ = 1, in which case we need
only the fact that α u Φ 0). But then, if ain Φ 0, we should have
(since anl Φ 0 by H^) a (t + 3)-cycle of nonzero elements

whence, since A is quasi-special and £ + 3 ^ i + l^w, it would follow
that (in particular) aln Φ 0, contrary to Hi-i (at least for n ^ 3);
hence ain Φ 0 cannot occur, i.e. H; holds in its entirety.

Thus, to sum up, given the truth of (2) for all matrices A of
order <n, where n ^ 3, we have proved, for each i with 1 < i < n,
that Hi-i implies Hίβ Since Hi always holds (as is easily verified,
given (*)), it follows that H ^ holds. But, since kn-x < n, this would
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imply that (after a suitable permutational transformation) the nth
€olumn of A (excepting perhaps the (n, n) element) consisted entirely
of zeroes, so that, by our (" outer") inductive hypothesis on n, it
would follow that A could, after all, be permuted into the form B,
which contradiction completes our inner induction argument.

Thus for n ^ 3, the required assertion (2) about any n x n quasi-
special matrix A is implied by the corresponding assertion about all
quasi-special matrices of order <n; the cases n = 1, 2 being trivial,
(2) now follows at once by induction on n.

Though the proof we have given is in a sense quite direct, it is
also possible to regard our Theorem as being just an algebraic formula-
tion of a geometrically almost self-evident result in the theory of
graphs; and, in the process, our apparently somewhat exotic Defini-
tions 1, 2 above will now appear in a more natural light.

We suppose given a directed graph G, i.e. a set of vertices
(denoted p, q, p17 p2, •) and a binary relation R on this set (so that,
for given vertices p, q, then pRq may or may not hold); we may
think of the vertices of G as points in a plane, with a directed seg-
ment from p to q for each pair p, q satisfying pRq. By convention,
pRp is always false2. By a cycle of G we shall mean any ordered
subset pl9 •••, ps of its vertices such that pλRp2, , p^Rps, psRpύ
we call such a cycle reversible if p8f p8_lt •••, pλ is also a cycle. If
G has no cycles, we call G acyclic. If, for arbitrary p, q eG, pRq
implies qRp, then we call G symmetric. If, for arbitrary p, qeG
with pφq, there is always a sequence qlf •••, qs of vertices of G
such that qλ = p, qs = q and also, for each i = 2, , s, either
#;_! Rq{ or qiRq^u then we call G connected.

The concept of a subgraph is clear, and we can also define quotient
graphs by factoring G with respect to any prescribed identifications
of its vertices. More precisely, given any equivalence relation S on
the vertices of G, inducing equivalence classes denoted by Gh[h=1.2 ..0,
then we may regard the Gh as vertices of a new graph % by defining
3ΐ on © by the rule that Gh 3t Gk (for h Φk) if and only if there exist
peGh, qeGk such that pRq. We call © the quotient graph of G by
S, and write @ = G/S. We can now state

LEMMA. (1) Given any directed graph G and a quotient graph
G/S of it which is acyclic and of which every vertex is a sym-
metrical subgraph of G, then every cycle of G is reversible.

2 For definiteness, it is desirable to adopt either this convention or its opposite,
and in the present connection this alternative seems the more convenient. However,
there is no general agreement on the point: e.g. Harary uses the opposite convention
in [2], but in effect also uses ours in [3],
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(2) Conversely, if every cycle of a directed graph G is reversi-
ble, then there is a factoring G/S such that G/S is acyclic and each
vertex Gh of G/S is a symmetrical connected subgraph of G.

Proof of (1). By the acyclic nature of G/S, any cycle in G can-
involve only vertices from a single equivalence class Gh under S; and,
since each such Gh is given to be symmetric, any cycle in Gh is cer-
tainly reversible.

Proof of (2). We define a binary relation S on G by the rule
that, for p, q e G, we have pSq whenever either p = q or there is a
cycle of G containing both p and q. We see at once that S is an
equivalence. It is also a trivial matter to check that the induced
equivalence classes are connected and (by our hypothesis on G) sym-
metric with respect to the given relation R on G, and, finally, that
GjS is acyclic.

So transparent a lemma as this deserves stating only for the
sake of its applications, and presumably various forms of the same
result have appeared in the literature; for example, a somewhat more
general version is implicit in [3], However, it seems desirable here
to have an explicit account in a terminology adapted to our present
concerns.

In both parts of the Lemma, clearly G is connected if and onljr
if G/S and all its vertices Gh are. The two parts of the Lemma are
in close analogy with those of our Theorem, and in fact we can set
up a one-one correspondence between directed graphs of n vertices
(numbered in some specified order) on the one hand, and n x n mat-
rices of O's and Γs with zero diagonal on the other (we shall suppose
n finite, for conformity with our statement of the Theorem, but this,
is not really necessary). Specifically, given G, with vertices pι •••,
pn, we define aiS = 1 if PiRpj, and aiS — 0 otherwise; conversely, given
any n x n matrix A of O's and Γs with zero diagonal, we can reverse
this to obtain a unique numbered graph G of order n. Thus we may
write A = M(G)y G = M~\A). We verify at once that A is special if
and only if G is symmetric, that A is quasi-special if and only if the
cycles of G are reversible, and that A is lower-triangular (i.e. ai5 — 0
whenever i < j) if and only if PiRpj implies i > j (in particular, this
makes G acyclic). The restriction that A have zero diagonal is purely
a technicality, since the diagonal elements have no effect on the prop-
erties of being special or quasi-special.

Also, given any equivalence S on G, there is a simple relation-
ship between the matrix A corresponding to G and those correspond-
ing to G/S and its vertices Gh. For the matrix M(Gh), relative to-
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the ordering induced on Gh by the prescribed numbering of G, is
just the submatrix of A formed by the intersections of the rows and
•columns of A corresponding to those vertices of G which lie in GΛ.
Also, if the numbering of G is chosen so that all the vertices of Gλ

•come first (in some arbitrary order), then those of (?2, and so on, and
if we partition A accordingly, then each Gh will have as its matrix
the hth diagonal block of A; and GjS will have as its matrix (ekk),
where ehk = 1 if h Φ k and there exist peGh, qeGk with pRq, and
where ehk = 0 otherwise.

Finally, similarity transformation of A by a permutation matrix
P corresponds to re-numbering the vertices of G according to the
permutation defined by P, while G is connected if and only if there
is no such P transforming A into a diagonal sum of smaller matrices.

Thus our correspondence A = M(G) <-> G = M~\A) embraces all the
•concepts involved in the Theorem and the Lemma, and it is a routine
matter (the only point constituting a minor exception is that we
need to show that any finite acyclic graph can be numbered in such
a way that its matrix is triangular) to check that the various hypo-
theses and conclusions of the two parts of the Theorem translate,
Λinder this correspondence, into those of the Lemma. Thus (at the
cost of introducing several additional concepts and definitions) our
lemma and its proof provide an alternative and more intuitive proof
for the Theorem. This second approach shows also that the set of
diagonal blocks Bkk appearing in the Theorem is uniquely determined
by A (up to permutational similarities applied to the Bkk themselves).

We conclude with our promised application: this could be esta-
blished as a direct consequence of the Lemma, but seems more natural-
ly obtained from the theorem. We first need some terminology ana-
logous to that in Definition 2 above.

DEFINITION 3. Given any complex n x n matrix A and an inte-
ger s with 3 ^ s ^ n, we call A s-hermίtian if, for every ordered
index set (i) (as in Definition 2), we have

If A is s-hermitian for each s = 3, , n, then we call A quasi-hermi-
tian. Thus every quasi-hermitian matrix is quasi-special.

COROLLARY. If, for a given n x n quasi-hermitian matrix A,
we have

(P): all aijdji are real and non-negative (i, j = 1, , ri)>
then A has all its eigenvalues real.
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This result is due to Goldberg [1], whose own proof was by ex-
plicitly exhibiting a certain hermitian matrix having the same princi-
pal minors (and hence the same characteristic function) as A.

Proof. By part (2) of our Theorem, A is permutationally simi-
lar to a matrix of the form B. Since (P) and the property of being
quasi-hermitian are preserved under any permutational similarity,
consequently J3, and hence each of its diagonal blocks Bkk, again
satisfies the hypotheses of the Corollary; thus, since the eigenvalues-
of the Bh1c are collectively just those of A, it will be enough to prove
that all of the eigenvalues of these Bkk are real. In other words,
we need only prove the Corollary for the case of a special matrix;
accordingly, we may suppose from the outset that A is itself special.

We now introduce an n x n matrix D coinciding with A except
where A has zeroes, in which places we let D have l's; i.e., more
formally, let

_ f aiά when aiS Φ 0 ,

( 1 when aiό = 0 .

Since A is special and satisfies (P), we have di5dH real and strictly
positive {i, j = 1, , n). Define also, for all u, v with 1 ^ u < v ^ n,

Juυ = U'u,u+iU/u+i,u+2 * * * &«—i,i> y

Quυ — U'u+l,uU'u+2,u+i ' ' ' dυ,υ-l >

J UU iJuU J- >

and write

U = I QH \2fin9in (i = 1, , n)

Now, since the diό are all nonzero by definition, certainly each
gu Φ 0, while also, for any u, v with u < v, we have

so that each/^0^ is real and strictly positive. In particular fingin > 0
for all i < n, while this is trivially true for i = n. Thus all the t f

are strictly positive real numbers.
We wish to show next that tμ^ = ί^* (i, j — 1, , n), to which

end it will be convenient to write the t{ in the equivalent form
U = Qinffufin There being no loss of generality (since the tt are real)
in supposing that i < j , it will suffice to prove that
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But, under our assumption i < j , clearly gu = gugijf fin = fidfjn, and
so we need only verify that gφa — fijdjif which, on being translated
back in terms of the ai3 , is an immediate consequence of our assump-
tion that A is special, quasi-hermitian and satisfies (P).

Thus we have produced positive real tlf , tn such that tμ^ =
tJhl (i,j = 1, , n), i.e. AT2 = T2A*, where T = diag. (t{12, , tT)
is hermitian and non-singular, and we use an asterick to denote the
conjugate transposed. Thus T~λAT — {T~XAT)*, so that A is similar
to the hermitian matrix T~λAT in particular, the eigenvalues of A
must be real, as required.

In conclusion, we note that, by considering matrices of the form

with characteristic function x{x2 — a12a21 — α13α31), it is clear that a
special quasi-hermitian matrix A can have its eigenvalues all real even
if (P) fails (in particular, A need not be hermitian).

It is a pleasure to acknowledge helpful discussion with Dr. John
C. Stuelpnagel on the subject matter of this paper.
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ON COMPLEX APPROXIMATION

L. C. EGGAN and E. A. MAIBR

1. Let C denote the set of complex numbers and G the set of
Gaussian integers. In this note we prove the following theorem which
is a two-dimensional analogue of Theorem 2 in [3].

THEOREM 1. If β,yeC, then there exists ueG such that
I β — u 1 < 2 and

(27/82

As an illustration of the application of Theorem 1 to complex
approximation, we use it to prove the following result.

THEOREM 2. If θeC is irrational and aeC, a Φ mθ + n where
m,neG, then there exist infinitely many pairs of relatively prime
integers x,yeG such that

I x(xθ -y - a)\< 1/2 .

The method of proof of Theorem 2 is due to Niven [6]. Also in
[7], Niven uses Theorem 1 to obtain a more general result concerning
complex approximation by nonhomogeneous linear forms.

Alternatively, Theorem 2 may be obtained as a consequence of a
theorem of Hlawka [5]. This was done by Eggan [2] using Chalk's
statement [1] of Hlawka's Theorem.

2 Theorem 1 may be restated in an equivalent form. For
u,b,ce C, define

g(u, b, c) = \u — (b + c)\\ u — (b — c)\ .

Then Theorem 1 may be stated as follows.

THEOREM 1'. If b, ce C, then there exist ulf u2eG such that
(i) I uλ - (6 + c) \< 2, I u2 - (6 - c) | < 2

and for i = 1,2,

r \ ( K ^ ί27/32 ίf M<l/Π/32(n) g(Ui, b,c) < \

It is clear that Theorem 1' implies Theorem 1 by taking
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498 L. C. EGGAN AND E. A. MAIER

b = {β + 7)/2, C = 03 - 7)/2 .

To see that Theorem 1 implies Theorem 1', first apply Theorem 1 with
β = b + c, Ύ = b — c and then apply Theorem 1 with £ = 6 — c,
7 = 6 + c.

3* We precede the proof of Theorem 1' with a few remarks-
concerning the nature of the proof.

Given b,ceC, introduce a rectangular coordinate system for the
complex plane such that b has coordinates (0, 0) and b + c has co-
ordinates (fc, 0) where k = | c \. Then if ue C has coordinates (x, y)

g*(u,b,c) = | % - δ - c flw - 6 + c |2

= ((a? - fc)2 + y2)((x + kf + y2)

= (x2 + y2 + fc2)2 - 4fcV.

Now for k a positive real number let R(k) be the set of all points
(x, y) such that

/ > • , , i * i . 7 2 2 / ί(27/32)2 if fc < τ/11/32

(x2 + y2 + k2)2 — 4fcV < \ ,
V U ' [2k2 if k ^ i/H/32 .

Theorem 1' depends upon showing that R{k) under any rigid
motion always contains two lattice points, not necessarily distinct.
These lattice points correspond to the integers uλ and u% of the theorem.

For k > l/l/ 2 , R(k) contains two circles with centers at

(±l/fe2 - 1/2, 0)

and each of radius \\V 2 . Each of these circles contains a lattice
point no matter how R(k) is displaced in the plane. In this case,
ux and u2 correspond to these lattice points.

For k < τ/ll/32, R(k) contains the circle with center at (0, 0)
and radius l/l/ 2 . In this case, ux = u2 corresponds to a lattice
point in this circle. Finally if τ/ll/32 ^ fc ^ l/i/"2~ #(fc) contains a
region described by Sawyer [8] which always contains a lattice point
no matter how it is displaced and ux = u2 corresponds to a lattice
point in this region.

4. We turn now to the proof of Theorem 1'. As above, for given
6, c e C, introduce a coordinate system so that b has coordinate (0, 0)
and b + c has coordinates (fc, 0) where k = \c\. Then if U G C has
coordinates (x, y),

(1) g\u, b, c) = (x2 + y2 + fc2)2 - 4fcV .

Suppose that \c\ = k> 1/l/ΊΓ. For i = 1, 2 let
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- 1/2, 0)

where δt = (--l) ί + 1 and let uteG be a closest Gaussian integer to

di(i.e.\di — v,i\ ^\di — t\f teG) . Then, omitting the subscripts,

I d - (b + δc) I = I 5-l/Zc2 - 1/2 - δfc | = fc - l//c2 - 1/2 < 1/vΊF.

Hence

I u - (6 + δc) I ̂  I w - d I + I d - (6 + δc) | < 2(1/VΊF) < 2

and condition (i) is satisfied.
Now let Ui have coordinates (a?*, ̂ ) . Then, again omitting sub-

scripts, since \d — u\ ^ l/i/!Γ, we have

( 2 ) (a? - 5-//C2 - 1/2 )2 + y2 ^ 1/2 ,

equality holding if and only if d is the center of a unit square with
Gaussian integers as vertices. Also, since for any two real numbers
a and 6, 2ab ^ α2 + b\ equality holding if and only if a = 6, we have

( 3) 2δxVk2 - 1/2 ^x2 + k2 - 1/2 ,

equality holding if and only if x — Vk2 — 1/2 /δ. Thus

(1 + 2δxVk2 - 1/2 )2 = ΔδxVk2 - 1/2 + 4ίU2(&2 - 1/2) + 1

^ 2α;2 + 2fc2 - 1 + 4x\k2 - 1/2) + 1

- k\2 + 4α?2)

and since fe and k\2 + 4ίc2) are positive,

1 + 2δxVk2 - 1/2 ^ feτ/2 + 4x2.

Hence

( 4 ) 1/2 - (x - δi/fc2 - 1/2 )2 = 1 + 2δx Vk2 - 1/2 - £2 - /b2

^ fcτ/2 + Ax2 - x2 - k2 .

Using (4) and (2), we have

£2 + k2 + y2 ^ fcl/2+l?+ (x -δ Vk2 - 1/2)2 - 1/2 + τ/2

^ fc 1/2 + 4ίc2,

( 5 ) (x2 + fc2 + ί/2)2 ^ 2fc2 + 4fc2a;2 .

Thus, from (1) and (5), g2(u, 6, c) ^ 2Λ2, the equality holding if and
only if equality holds in both (2) and (3). If equality holds in (2),
then there exist four possible choices for u, at least two of these
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choices having unequal first coordinates. Now equality holds in (3) if
and only if, for fixed k, x is unique. Thus if equality holds in (2), u
may be chosen so that equality does not hold in (3). For this choice
of u, g2(u,b,c) < 2k2 which establishes condition (ii).

Next suppose |c\ = k < τ/ll/32. Now there exists ueG such
that \u-b\S 1/ι/T. Thus

\u-(b±c)\^\u-b\ + |c|<2(l/l/Y)< 2.

Also, if u has coordinates (x, y), x2 + y2 ^ 1/2 and thus

g*(u, b, c) = (x2 + 2/2)2 + 2k\y2 - a;2) + ¥

which establishes the theorem for | c | < α/ll/32.
Finally, for i/ll/32 ^ | c | = fc ̂  1/vΊΓ, we use a result due to

Sawyer [8] which states that the region denned by | x \ S 3/4 — y*,
12/1 5Ξ 1/2 always contains a lattice point no matter how it is displaced
in the plane. Thus there exists ueG with coordinates (*, y) such
that I x I ̂  3/4 - j/ 2 , | y | ^ 1/2.

If I » | < 1/2, then

| « - ( 6 ± C ) | ^ | M - 6 | + | C | = l/* 2 + 2/2 + | c | ^ VΊF .

Also since | a ; 3 - Jc2\ ^ 1/2,

ff2(w, 6, c) = (a;2 - fc2)2 + 2y\xi + fc2) + t

< + 2 ( + W
4 4 V 4 2 / 1 6 16

If 1/2 ̂  I * I ̂  3/4 - y\ then

Hence

Also - x% ^ -1/4 so a/2 - x2 g 0. Thus

g\u, b, c) = (»2 + yγ + 2k\y* - x2) + k<

This completes the proof of Theorem Γ.
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5 To prove Theorem 2, we require a well-known result of Ford
[4] which states that for any irrational Θ eC, there exist infinitely
many pairs of relatively prime h, keG such that

( 6 ) \k{kθ -h)\ < 1/vΊΓ:

For θ and a is in the statement of Theorem 2, choose h, k
satisfying (6) and let teG be such that \t — ka\ ^ 1/vΊΓ. Since /&
and fc are relatively prime, there exist r, seG such that rh — sk = t
and hence

( 7 ) I rh - sk - ka | ^ 1/vΊF .

Now, in Theorem 1, let

r^ - 8 - α = _r_

kθ -h ' k

and set

a; z= r — &w, y = s — hu

where ^ is the Gaussian integer whose existence is guaranteed by the
theorem. Then x,yeG and

\xθ — y — a \ \ x \ = | / 3 — u \ \ j — u \ \ k \ \ k θ — h \ .

Hence if | β — 71 < l/H/8 we have, using Theorem 1 and (6),

If \β — 71 ^ τ/11/8 , using Theorem 1 and (7), we have

[αtf - y - α | | α ? | < — v Ί Γ | 7 - £ | \k(kθ - h)\

hr — ks — ka

k(kθ - h)

Thus for each pair h, k satisfying (6) we have a solution in G of

(8) \x(xθ-y-a)\<ll2.

To show that there are infinitely many solutions to (8), we note
that since | β — u \ < 2 and a Φ mθ + n, m,neG, we have with the
use of (6).

( 9 ) O < | 3 0 - y - α | = | β - u \ \ kθ - h | < 2/(l/3" | k\) .

If there are only a finite number of solutions of (8), let M be
the minimum of | xθ — y — a \ for these solutions. Then from (9), for
every h, k satisfying (6) we have \k\ < 2/(τ/3ilf) and
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\h\S\h-kθ\ + \kθ\<ll(VΎ\k\) + \k\\θ\<N,

say. But this is impossible since there are infinitely many pairs
h, keG which satisfy (6).
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WEAK CONTAINMENT AND
KRONECKER PRODUCTS OF GROUP REPRESENTATIONS

J. M. G. FELL

Introduction* Throughout this paper G is a fixed locally compact
group. Let us recall some concepts bearing on the representation
theory of G. The family of all unitary equivalence classes of unitary
representations of G will be called J^~(G). A function φ of positive
type on G is associated with a subset S^ of J7~(G) if there is an S
in t9% and a vector ξ in the space H(S) of S, such that φ{x) = (Sxξ, ζ)
for all x in G. An element T of ^(G) is weakly contained in a
•subset &* of J7~(G) if every function of positive type on G associated
with T can be approximated uniformly on compact sets by sums of
functions of positive type associated with ^ . The notion of weak
containment leads to that of the inner hull-kernel topology of J7~(G):
A net {T1} of elements of J7~(G) converges to T in this topology if
and only if every subnet of {T1} weakly contains T. Relativized to
the subset G of J7~(G) consisting of the irreducible representations
of <?, this topology becomes the ordinary hull-kernel topology of G.
{For these notions and facts see [1] and [2]).

If H is a Hubert space, the adjoint space H of H can be defined
as the Hubert space whose underlying set is the same as that of H,
and which is conjugate-isomorphic with H under the identity map.
If T is a unitary representation of G, the adjoint representation T
is defined by the requirements: H(T) = H(T)~, fx = Tx(xeG). The
Kronecker product S ® T of two unitary representations S and T of
G is that representation whose space is H(S)§§ H(T), and for which
<S(g) T)x(ξ<g>7}) = (Sxξ) (8) (Tjj). We can also describe the Kronecker
product S (8) f as follows: H(S (g) T) is the Hubert space of all Hilbert-
Schmidt operators on H(T) to H(S), and (S(g) T)X(A) = SXAT~\

If^czjT (G) and ^ c ^ (G), let ^ (g) ̂  denote {S(g) Γ| S e ^ ,

Throughout this paper / will be the one-dimensional identity repre-
sentation of G. It is well known and easily verified that if S and T
are finite-dimensional unitary representations of G and T is irreducible,
S§§ T contains I if and only if S contains T. Can this be generalized
to the case where S and T are infinite-dimensional and 'containment'
is replaced by 'weak containmenty ? The main object of this note is
to answer this question affirmatively for the case that S is infinite-
dimensional but T is still finite-dimensional (Theorem 4). In preparation
for this we shall show (Theorem 2) that the Kronecker product oper-
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ation is continuous with respect to the inner hull-kernel topology of

Another by-product of the main result is the following strenth-
ening (Theorem 3) of a remark of Godement ([4], p. 77): If the regular
representation R of G weakly contains some finite-dimensional irre-
ducible unitary representation of G, then R weakly contains all unitary
representations of G.

l The continuity of the Kronecker product.

LEMMA 1. Suppose that S^c:^~(G) and TejΓ(G); and let K
be the set of all those ξ in H(T) such that the function φ defined
by φ(x) = (Txξ, ξ)(x e G) can be approximated, uniformly on compact
sets, by sums of functions of positive type associated with £f. Then
K is a closed T-invariant linear subspace of H(T).

Proof. Obviously K is closed in the norm and under scalar multi-
plication. By the easy argument of [1], p. 368, (ii'), Σ?=i ai Tx£ is in
K whenever ξ e K, the x{ are in G, and the a{ are complex; in par-
ticular K is T-invariant. It remains only to show K closed under
addition.

Let ξ and rj be elements of K; let L and M be the closed invari-
ant subspaces of H{T) generated by ξ and η respectively; and let Q
be the closure of L + M. By the preceding paragraph

(1) LdK and MaK.

If A is projection onto LL, A(M) is a dense subspace of Q Π LL. So
by Mackey's form of Schur's Lemma ([7], Theorem 1.2), the restriction
of T to the invariant subspace Q Π Lx is equivalent to a subrepre-
sentation of the restriction of T to M. This and (1) show that

(2) Qn^dK.

Putting ζ = ξ + η, we have ζ = ξ' + rf, where ξ' e L and rf e Q Π L1.
Since L and Q f) L1 are orthogonal and Γ-invariant,

(3) (T£,ζ) = (Txξ',ξ') + (TxV',y')

(x e G). By (1) and (2) ξ' and rf are in K; so by (3) ζ e K, and K is
closed under addition.

REMARK 1. If A is a C*-algebra, ^(A) is defined as the set of
all equivalence classes of ^representations of A. Exactly the same
proof shows that Lemma 1 is valid for C*-algebras, provided that we
replace functions of positive type by positive functionals, and uniform
approximation on compact sets by weak* approximation.
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REMARK 2. According to Lemma 1, T will be weakly contained
in £f provided H( T) is generated (under T) by those ξ in H( T) whose
associated functions of positive type are approximated by sums of
functions of positive type associated with S^. For example, we have
immediately:

THEOREM 1. Suppose that ^ c ^ " ( G ) and £Ί weakly contains
Tk(k = 1, 2). Then ,9i®Si weakly contains 2\(g) T2.

THEOREM 2. The map <S, T} -> S <g) T (of J^~(G) x ^~(G) into
is continuous with respect to the inner hull-kernel topology

of

Proof. Let S* -> S and T* — T in ^(G). By the definition of
the topology of ^~{G), we have only to show that the net {Sι® T1}
(and hence by the same argument every subnet of it) weakly contains
S (g) T. But Theorem 2.2 of [2] clearly shows that the function of
positive type associated with each product vector ξ(g)η in Ή(S)(£)H(T)
can be approximated by functions of positive type associated with the
S* <g) T\ Hence by Lemma 1 S (g) T is weakly contained in {S{ (g) Γ*}.

It should be mentioned that the "easy verification" of the pro-
position used in the proof of [2], p. 260, Corollary 1, actually requires
the above Theorem 1.

2 When does S ® T weakly contain. U In this section G is as-
sumed to satisfy the second axiom of countability; and we shall con-
sider only unitary representations acting in a separable space.

Suppose that TeG and Se^(G). Is it true that SφT weakly
contains / if and only if S weakly contains TΊ In general, as we
next show, the implication is false in both directions, even if S is
assumed irreducible.

Let R be the regular representation of G, and T some irreducible
representation weakly contained in R. Clearly R = R. By [6], Theorem
12.2, R ® R is a multiple of R. So R 0 R weakly contains / if and
only if R does. Choose G so that R does not weakly contain /; for
example G might be the free group on two generators, or a non-compact
connected semisimple Lie group (see [8]). Then R§§ R does not weakly
contain /, and hence, by Theorem 1, nor does Γ ® T.

For an easy counter-example in the other direction take G to be
the "ax + V group, and T to be one of the two infinite-dimensional
irreducible representations of G. Then T — 7® T weakly contains /
(see [2], Theorem 5.1), but I does not weakly contain T. A "better"
example, in which S® T weakly contains /but neither S nor T weakly
contains the other, will be given in §3.
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However, if T is finite-dimensional, the answer to the question
posed above is affirmative (Theorem 4).

LEMMA 2. If £f c S~{G) and SS weakly contains a finite-dimen-
sional irreducible unitary representation T of G, then ,9* §§ T weakly
contains I.

Proof. Sf ® f weakly contains Γ ® f by Theorem 1. Since ϊ7

is finite-dimensional, T ® T contains /.

Here is an interesting consequence of Lemma 2:

THEOREM 3. If the regular representation R of G weakly contains
some finite-dimensional irreducible representation T of G, it weakly
contains all unitary representations of G.

Proof. By Lemma 2 R ® T weakly contains I. But by [2], Lemma
4.2, 22® f is a multiple of R. Hence R weakly contains /, and the
conclusion follows from Godement's remark ([4], p. 77, or [2], p. 260).

LEMMA 3. Let T be an irreducible finite-dimensional unitary
representation of G. To each δ > 0, there is a finite subset F of G
and an e > 0 such that, whenever A is a positive linear operator on
H(T) satisfying (i) || A \\ = 1 and (ii) || ATX - TXA | | < e for all x in
F, then \\ A — E\\ < δ (E being the identity operator on H(T)).

Proof. Assume the lemma false. Then there is a 8 > 0 and a
net {Ai} of positive operators in Q such that A{TX — TZA{—τ-> 0 for

all x in G; here Q is the compact set of those positive operators A
on H(T) for which | |Λ| | = 1 and || A - E\\ ^ δ. Replacing {A*} by a
subnet, we may assume that A{ -+ A in Q. Passing to the limit, we
deduce that ATX = TXA for all x, whence A = XE. Since A is positive
and of norm 1, we must have λ = 1; but this contradicts || A — E\\ ̂  δ.

LEMMA 4. Suppose that ^cz_^(G), and T is a finite-dimensional
irreducible unitary representation of G such that Sf ® T weakly
contains I. Then S^ weakly contains T.

Proof. The family of all finite direct sums of elements of <?
weakly contains T if and only if & does; hence we may assume without
loss of generality that £? is closed under finite direct sums. But then
/ belongs to the quotient closure of Sf ® T ([2], Theorem 1.1).

Let C be a compact subset of G. For fixed δ > 0, choose F and
ε as in Lemma 3. Let r be the dimension of H(T); and put C —
(C U F) U (C U F)-1.
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By [2], Lemma 1.1, there is an S in y and a unit vector ζ in
Ή(S (g> T) such that

for all x in C\ Fixing an orthonormal basis ξlf * ,fr of H(T), let
us write ζ = Σ -i ̂  (g) f ^ e H(S)), where

r
/ pς \ -J II r j | 2 . V ^ I I y> 112

i = l

If the matrix of Tx in the basis {fj is {Tij(x)}, we have T̂ f̂  =
Σi=i τvi(5)fi. So (S ® T),ζ = Σ i (Σ* τί&)SβVi) (8) fi, whence

V r,Y

By (4) and (6),

• < 7 )
2r4

e C, i = 1, , r). From (7) and the unitariness of τ(x),

<8) ^ Σ
3

2r3

Let A be the linear map of H(T) into H(S) sending ξ{ into ^ i ^ =
1, , r). Then (8) gives

•(9) (x e C)

From this and the symmetry of C",

•(10)

By (5),

(11)

\A*S,- TXA*\\<

= || A* || £r and also

2r% (xeC).

Hence, denoting A*.A/||A*A|| by B, we obtain from (9) and (10)
J| BTX - TXB\\ < ε (xe C"). Since J5 is positive, || B|| = 1, and F G C ,
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Lemma 3 asserts that || B — E\\ < δ. From this, setting η\ = %l\\ A | | r

we get

(12) l(M)-a«l<*

for all i, j . Let φ{x) = ψxη[, η[){x e G). By (8) and (11) \\Sxrj[-

Tιiτn(χWi\\ < εf2r\ Combining this with (12) we have for x in C

x) - τn(x) I ̂  I (fsmη[ - £ τ}1{x)η'}j, η

+ I (Σ τn&Wh V') ~ τJ

which is as small as we wish. Thus we have an S in &* and a function.
φ of positive type associated with S which differs from τn on C by
an arbitrarily small quantity. So S/ weakly contains Γ.

Combining Lemmas 2 and 4 we get:

THEOREM 4. Let &* be a family of unitary representations of
G and T a finite-dimensional irreducible unitary representation of
G. Then S^ weakly contains T if and only if S? (%) T weakly con-
tains J.

As a corollary we mention the following weak "Frobenius-like""
proposition. As usual, IIs denotes the representation of G induced
from the representation S of a subgroup.

COROLLARY. Let K be a closed subgroup of G, and J and I the
identity representations of K and G respectively. We assume that
UJ weakly contains J. If S^ c J7~(K), T is a finite-dimensional
irreducible unitary representation of G, and £f weakly contains some
irreducible component of T\K, then {Us \ S e £S} weakly contains T.

Proof By Theorem 4 £f ® T | K weakly contains /. Hence by
[2], Theorem 4.2, {UssJ¥ικ\SeS^} weakly contains UJ. By hypothesis,
the latter weakly contains J; so {Us^1' κ | Se ^} weakly contains J.
But by [2], Lemma 4.2, JJss;ψκ = Us ® f. Hence another application
of Theorem 4 gives the required conclusion.

3. A counter-example* Let G be the proper Euclidean group
in three-dimensional real space R\ We observe that the hull-kerneL
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topology of G is Tλ (i.e. points are closed). Indeed, the results of
[5] show that Tf is completely continuous whenever TeG and feLx{G).
So, by [1], Lemma 1.11, G is 2\. Thus, if S and T are inequivalent
elements of G, neither weakly contains the other. We shall now
construct two inequivalent elements S and T of G such that S ® T
weakly contains I (see the beginning of § 2).

Let N and K be the translation and rotation subgroups of G
respectively; τu will denote translation by u: τu(v) = u + v{u, v e R3).
Let χ be the fixed character of N defined by χ(τu) = eiuκ The
"stationary subgroup" for χ (consisting of those σ in G such that
^(στ^- 1 ) = χ(τu) for all %) is Z = flϊSΓ, where if - {p e K \ p(l, 0, 0) =
{1, 0, 0)}. Thus, by [6], Theorem 14.1, to each character ψ of the
Abelian group H we get an irreducible representation Tφ of G, namely,
that induced from the character ψ of Z, where

<13) ψ(ρτu) = φ(p)χ(τu) (peH,ue i23) .

Further, if ψ and φ' are distinct characters of H, Tψ and Tφf are
inequivalent.

Now let φ and φ' be distinct characters of H. Let 0 < θ < π/2
^nd let /? be the element of K consisting of rotation through an angle
β about the third axis. We verify easily that Z Π pZp~x — N. Hence
by [3], Theorem 5.4 (the 'weak containment' version of Mackey's
Kronecker Product Theorem), Tφ(&(Tφ')- weakly contains the repre-
sentation of G induced from the character χθ of N given by χ$(τu) =
^ P ( « ) ) Z ( ^ U ) . (Here (Tφ')~ is the adjoint of Tφt). Since this is true
whenever 0 < θ < TΓ/2, we can use [2], Theorem 4.2, to pass to the
limit as #—>0; we then conclude that TφζZ)(TφΎ weakly contains
ί7Xo, where χ0 is the identity character of N. But U%0 is obtained by
lifting to G the regular representation of the compact group K; hence
it contains / as a direct summand. Thus we conclude that Tφ ® (Tφ')~
weakly contains /. This is the desired example, since we have already
observed that Tφ and Tφl are inequivalent irreducible representations
of G.
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SCHAUDER ESTIMATES UNDER INCOMPLETE
HOLDER CONTINUITY ASSUMPTIONS

PAUL FIFE

Dedicated to Charles Loewner on the occasion of his 70th birthday

1. Introduction* In 1934 Schauder [6], [7] obtained a priori
pointwise estimates for solutions to general second order linear elliptic
differential equations. These estimates have been generalized and
simplified by many authors, but by far the most general estimates
of this type so far are the interior estimates of Douglis and Nirenberg
[3] and the estimates up to the boundary of Agmon, Douglis, and
Nirenberg [2]. In the latter paper the boundary-value problem

L(x, D)u ~ f in a domain £& ,

Bj(x, D)u — φ5 on a portion of the boundary

5

is considered, where L is uniformly elliptic of order 2m and the B
satisfy the "complementing condition" with respect to L. Roughly
speaking, under certain smoothness assumptions on the coefficients of
L and Bjf on <%r, and on the functions u, /, φάj a priori bounds on
certain derivatives of u and their Holder difference quotients are
obtained in terms of the maximum values in 3f (or 2$) of certain
derivatives of / and φό and their Holder difference quotients. As a
byproduct at one stage near the beginning, an estimate is obtained
(their Theorem 2.2) for the case of constant coefficients and a half-
space domain, in which no Holder difference quotients occur. This
estimate leads to a maximum principle. The history of this latter
kind of estimate is also extensive, but maximum principles of greatest
generality seem to have been obtained by Agmon [1].

The present paper explores the possibility of obtaining a priori
pointwise estimates involving Holder difference quotients not with
respect to all, but only with respect to some of the independent
variables xi% With a few exceptions, the argument follows in basic
outline the argument in [2]. Also the notation of [2] is preserved
where possible. Throughout the paper n + 1 denotes the number of
independent variables, and q of them (0 ^ q g n + 1) are distinguished
from the others in that relevant functions are considered to be Holder

Received May 31, 1962, and in revised form January 30, 1963. This work was sup-
ported in part by Office of Naval Research Contract Nonr-225 (11) at Stanford University.
Reproduction in whole or in part is permitted for any purpose of the United States
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continuous only in the distinguished variables.
The first step is the derivation of certain potential theoretic re-

sults in § 2. Results of this nature go back to Hilder, Petrini, Korn,
and Lichtenstein (see the survey in [5]). These are applied in § 3 to
functions given by convolutions with a fundamental solution to an
elliptic operator as kernel, and in § 4 to solutions of the basic boundary
value problem with compact support when the operators have con-
stant coefficients and Sf is a half-space. These results are in the
form of sufficient conditions on the operator P(D) in order that P(D)u
may be estimated in terms of certain derivatives and "distinguished"
Holder difference quotients of Lu and B3u. Also a necessary con-
dition on P{D) for such estimates to hold is given. Let L and B3

denote the operators obtained from L and B3 respectively by deleting
all differentiations with respect to distinguished variables, and u a
solution to the basic boundary-value problem with L and B3 replaced
by L and B3. As a corollary it is found (in the constant coefficient,
half-space case) that u and u differ by a function whose appropriate
derivatives have estimable Holder difference quotients in all variables.

In §§ 5 and 6 the results are extended to a class of problems
with variable coefficients and domains with curved boundaries by the
method [2, 3] The distinguished variables are now certain local
curvilinear coordinates. When q < n this method appears to be in-
applicable to the general class treated in [2, § 7]; in addition to the
assumptions made there, we must impose the requirement that co-
ordinate transformations exist which map small neighborhoods adjoin-
ing 3f into hemispheres and which transform L and B3 into operators
1/ and B- such that, on the flat boundary of the hemisphere, L'(x, D)
= X(x)LQ(D) and B3(x, D) = β3(x)B3Q(D) (the notation L', B) is explained
above). In § 6 the case q = n is given special attention. It is shown
that essentially every result in the area of the usual Schauder esti-
mates (q = n + 1); i.e., every result in §§ 1-7 of [2], has its analog
with q = n. In particular, existence and uniqueness occurs in the
classes of functions corresponding to q = n exactly when it occurs
in the classes corresponding to q — n + 1. In §§ 5 and 6 the coef-
ficients in the operators L and B3 are assumed to be completely
Holder continuous.

The author expresses his gratitude to Professor L. Nirenberg
for his suggestions.

2, Potential theory* Let x be a point in w-space. We shall
distinguish its first q (0 ^ q ^ n) from its last n — q coordinates and
write x = (x, x)9 where x = (xu , xq) and x = (xq+l9 , xn) If
q — n we write x — x, and if q = 0, x = x. The concern in this
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section will be with functions u(x, t) defined in the (ft + l)-dimensional
half-space t > 0 by a singular integral

(2.1) u(x, t) = [κ(x - y; t)g(y)dy .

In certain cases u may be extended to be a continuous function in
the closed half-space t Ξ> 0; then we shall use the notation u(x, 0)
without further explanation. Our object is to exhibit conditions on
the kernel K under which certain boundedness and/or continuity
properties of u will be implied by similar properties of g.

Explicitly, we assume K(x; t) to be continuous except for x — t
= 0, and that there is a constant d such that

(2.2) D»K(x; t) > d(\ x I2 + £2)-(1/2)(?ι+μ) (μ - 0, 1)

where here and below J9μ denotes any μth order derivative. We
also assume that

(2.3a) lί K(y;t)dy
I J y—space

(2.3b) I K(x; t) I g C2t(\ x | 2 + <»)-»/»<•+«

if q = 0, and

(2.3c) I ί K(y; t)dy
I J | » l > δ

for all δ > 0

if g = n. In certain important cases the integral in (2.3a) will van-
ish; then we shall simply say that C2 = 0.

Concerning g(x) we assume that it is in !/«>, has compact support,
and is uniformly Holder continuous for some exponent a (0 < a < 1)
with respect to the variables x (in case q > 0); i.e.,

(2.4) lub Ig(fr3)-g( g '»3)l < oβ .
ί,ϊv |2-2T

It will be convenient to use the norm

[g]l = true max | flf | + the above l.u.b. for g > 0

= true max | g \ for q — 0 .

THEOREM 2.1. Under these assumptions the norm [u\\ exists for
all £ Ξ> 0

<2.5) [u% < Cs[g]% , 0 ^
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where C3 depends only on Cl9 C2, n, q, and a.
If in addition C2 = 0, then u(x, t) is Holder continuous in all

variables including t, and

(2 β) !;?i ̂ Vl+T-nr' = M-a CM' •
This theorem, in the case q ~ n, yields the results proven in [2,

§ 3] (under slightly different hypotheses on K). Its proof is trivial
in the case q = 0, so we assume q > 0. We shall employ the rep-
resentation

(2.7) u(x, t) = ^dy^K(x - y; t)[g(y) - g(3S, y)]dy

S r
dyg(x, y)\K(x - y; t)dy ,

which is equivalent to (2.1). If q = n it is understood that the

symbols \dy and y are to be omitted where they occur. Let x =

(x, x) and x' = {xf, xf) be any two points in α -space. Let δ = \x •— x'\,
S the set of points y with | y — x'\ < 2δ, | y — xr\ < 2δ, and E the
exterior of S. Then using (2.7) we write

u(x, t) — %(a?', t) = Ix + + /7 ,

where

£ = \ JKΓ(05 — y; t)[g(y) - g(x, y)]dy ,
J-Sf

I2 = - ί ΛΓ(a?' - »; ί)[ff(y) - ^ ' y)]dy ,
JS

78 - ί [ΛΓ(s - ?/; t) - K(x' - »; ί)][flr(y) - g(x, y)]dy ,

i* = - 1 A Λ dy[g(x, y) - (xr, y)]\κ(x' - y; t)dy ,

(», ^) - 9(2', y)]\K(x - y; t)dy ,

Λ - \dy g(SS', y)\[K(x -y t)- K(x' - y; t)]dy .

In case q = n we set I4 = 0 and disregard the integration with re-
spect to y in J5_7.

Since | g(y) - ^(S, y) | ^ b]g

Λ | y - x \« ̂  [fir]; | y - x |α, it follows that
I 731 < const. [g]lδa. Using (2.2) again we see by the usual argument
that Ji and 72 are subject to the same estimate. 74 and 76 may be
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estimated by (2.3a):

11* I, I Iβ I ̂  Ca[flr]iδ-tj(| y |2 + tyw-*"-vdy S const. [g]<J" .

To estimate I5 we set r — | y — x'\ so that | K(xr — y)\ < CιT~Λ, and

obtain, if q < n, \ I5 | ^ cont. [g]qJ"\ A A ί V - + ' - ^ r ̂  const. |>]£δ". If
J |y=a;/|<2δjδ

q — n -we use (2.3c) to obtain the same estimate.
The estimates obtained so far tell us that

(2.8) I u(x, t) - u(x', t) I < const . [g]'Λ \ x - x'\* + 117 \ .

Now 77 will vanish provided that either (a) C2 — 0, or (b) x and xr

differ only in their first q components; i.e., x — (x, x), xf — {x\ x).
Condition (b) is sufficient because

\[K(x — X) t) - K(xf - y; t)dy = \K(x — y, x - y\ t)dy

- \κ(xf -y,x-y; t)dy = 0 .

Now assume condition (b) to hold, so that the last term in (2.8)
does not appear. Taking the l.u.b. of the left side, (2.5) is proven
for the case 1 ^ q ^ n. It is easily extended, however, to the case
q = 0 by using (2.1) and (2.3b).

To prove the second part of Theorem 2.1 we assume condition
(a); i.e., C2 — 0, so that again the last term in (2.8) disappears. The
only thing left to prove is Holder continuity with respect to t. Let
t, V be two numbers such that 0 ^ t < t f. Since the last integral in
(2.7) also vanishes we may write

u(x, V) - u(x, t) = \dy^t Kt(x - y\ τ)dτj[g(y) - g(x, y)]dy .

Again (2.2) tells us that this integral is absolutely convergent, so we
write it as

Γ ί Kt(x - y; τ)[g(y) - g{x, y)]dydτ = 78 + /9 ,
Jt Jail V

where

= I I
Jί J \x-y

y\<t'-t

and

•••dydτ.
t J \x~y\>t'-t
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Setting p2 = \ x — y |2 + τ2, we may estimate

I J81 ^ const [flf]S j " ''p'^dp ^ const [flr]ί[(*r - f + (*' - «)"]

^ const [#]£ I V — ί I* ,

and

I 791 ^ const [ff]; I V - t | ί " r- 2 + Λ dr ^ const [flr]; | ί' - ί |Λ .

Combining these results with (2.8), (2.6) is easily obtained, completing
the proof of Theorem 2.1.

Since the above constants do not depend on t or t', this last
argument yield an immediate corollary:

COROLLARY 2.1: Let

U{x, t) = \dy\K(x - y; t)[g(y) - g(x, y)]dy ,

the first term in (2.7). Then U may be extended as a completely
Holder-continuous function to the closed region t ^ 0, in which it
satisfies the estimate (2.6).

3 Interior-type estimates* In using Theorem 2.1 to obtain Scha-
uder estimates the kernel K will be interpreted as a derivative of a
fundamental solution or of a Poisson kernel for an elliptic boundary
value problem. In this section we treat the case when K is a de-
rivative of a fundamental solution.

The following norms and pseudonorms will be employed extensive-
ly. They refer to functions defined in the half-space t > 0 (or on
the hyperplane t = 0). The differentiability properties needed for
the quantities below to be well-defined will be obvious. These norms
and pseudonorms will correspond to those in [2, §5]. Subscripts will
always denote the order of differentiation, and superscripts the in-
dependent variables with respect to which the Holder difference
quotients are to be taken.

(3.1a) "'•'•* I * - * T
[<PW. = l.u.b. I DMx, x, t) - DMx', x, f) I + L u . b . i Dιφ i

πr.,,.f (It - ί'|2 + Ix - x'IT'2

where, as before, * = (xu •••, xq). In particular
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(3.1b) M? + = U.b. |2? I 9>| ,

and

[9>]?Λ = [<P\tti = [<P]ι+.

in the sense the latter is used in [2], for instance. Of course, in
all of these the l.u.b. is taken over all derivatives of order I. Also
we define

I φ \ίU = Σ l.u.b. I D*φ I + [φ]U*,
(3.1c)

I φ lί+ - Σ l.^.b. I D'φ I + [φ]ι+Λ.

Corresponding to these norms we define ^?+ α > as the class of
functions φ defined in the half-space t > 0 with continuous and
bounded derivatives of order < Z, and piece wise continous and bounded
derivatives of order I which are uniformly Holder continuous in x.
The class <g U« l*as a n analogous definition.

The symbol Dλ will denote any derivative of order λ, at least
one of whose differentiations is with respect to a component of x;
i .e. , Dκ = (dldxJD*-1, w h e r e i^q.

REMARK: Let λ be any integer Ξg: 1. Assume f(x) has absolutely
continuous derivatives of order λ — 1, that q > 0, and that [f]l+cύ is
finite. Then every derivative Dλf is Holder continuous with respect
to all variables, and

(3.2) [£Yfc <£ C(a)[f]UΛ ,

where C depends only on a.

Proof. It is sufficient to consider the case λ = 1, q — 1, n — 2,
for the general case may be reduced to this case by freezing all but
two of the independent variables and replacing / in the proof by
some Dλ~f. By assumption, then x and x have single components;
call them x and y for simplicity, so that / = f(x, y). The absolute
continuity guarantees the identity

\'+hlf.(ξ, y + k)- /.(£, y)]dξ = \v+\fv(χ + M ) - /.(*, V)¥v
jx J y

to hold for all values of x, y, h, and k. It follows that

S y+k
[fy(x + h,V)~ Mas, h)]dη

y

- \X+h[L(ξ, y + k)- /.(*, y + k)]dξ +
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h[fx(ξ, y) - /,(«, y)dς .

The first term on the right is bounded in absolute value by kha[f]\+af

and each of the other two by

1 + a

Dividing through by hk* and setting σ = h/k, we have the estimate

for all values of σ. Taking the l.u.b. of the left over all x, y, and
k, and the g.l.b. of the right over σ, we have [fx]% ̂  C(a)[f]l+(,.
As mentioned, this generalizes immediately to (3.2).

The following lemma will constitute an application of Theorem
2.1 to the case when K(x — y; 0) is a fundamental solution of an
elliptic differential operator in the variables x with constant coef-
ficients, and containing only derivatives of order 2m. The constant
H will be defined as an upper bound for the ellipticity constant of
L, and for the coefficients of L. It is shown in [4] that a fundamental
solution Γ(x) to L always exists having the property

(3.3) I DkΓ(x) I < const | x \2m~n~k(l + | log | x ||) ,

the log term being omitted unless n is even and 0 ̂  k ^ 2m — n.

THEOREM 3.1. Assume 1 ̂  q ^ n. Let I be any number ^ 2m,
and let f(x) have derivatives of order l-2m which are uniformly
Holder continuous with respect to x. If I > 2m we also assume
the derivatives of order I — 2m — 1 to be absolutely continuous, and
if I = 2m, f(x) is to be integrable. (That derivatives Dι~2mf are
integrable for I > 2m follows from the absolute continuity assump-
tion.) Also we assume f to have compact support. Then if

(3.4) v(x) = jr(a? - y)f(y)dy ,

every derivative Dιv exists and

(3.5) [Dιv]lS const [f]Um+ω.

The constants here depend only on H, n, m, I, and a.

Proof. The case q = n is a well-known result, so we take 0 ^
q ^ n — 1. Differentiating equation (3.4) I — 1 times while integra-
ting by parts if necessary we have
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(3.6a) Dι~λv = \ΰ ^-'Γi x - y)Dl~2mf{y)dy .

Now let %' be a point, all except one of whose coordinates are the
same as those of x. We shall derive the following representation for
the corresponding difference quotient:

' - y)

I x - xr I

- Dι~2™f(x, y)]dy .

Let Xj be the component of x with respect to which a differentiation
occurs in the operator D2™-1 in (3.6a), so that D2™-1 = {d\dx3)D2m~\
Then, since DxΓ(x — y) = —DyΓ(x — y),

vr - v)]dyj
-co

= - l i m [D2 m-2Γ(aj - 3/) - D2m~2Γ{xf - y)]

+ l i m [D2m-2Γ(x - y ) - D2m-2Γ{xr - y)] = 0 ,

as can be seen from the behavior of Γ at infinity indicated in (3.3)
(using also the mean value theorem in the case n = 2). It follows
immediately that

I α? - x' I
- 1/) - D^-ψjx' - y)

I a? - x ' \

[Dι-2mf(y) - Dι~2mf(x, y)]dy3- ,

where \ d̂ / signifies integration with respect to all variables except
y5. But this integral is absolutely convergent, as can be seen by
applying the mean value theorem to the difference quotient in the
integral, using (3.3), and recognizing that the integrations with re-
spect to components of y may be considered as only over a finite
range (since f(y) has compact support); the order of integration is
therefore immaterial and (3.6b) is valid. Defining Dτ as the deriva-
tive in the direction from x to xf and D2m — ΌfT>2m~x, we subtract
the absolutely convergent integral

_ Dι^2mf(xf y)]dy
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from each side of (3.6b), obtaining on the right an integral which is
bounded in absolute value by const. | x — x' |α[/]?-2m+«. This last
estimate is obtained by the usual process of splitting the region of
integration into the sphere \y — x\ <2\x — x'\ and its exterior, and
applying the mean value theorem in the latter region. Now letting
x' —> x, this bound vanishes, and furthermore the left side of (3.6b)
approaches Dιv(x). Hence

(3.7) Dιv = [B2mΓ(x - y)[Dι-2mf{y) - Dι~2mf(x, y)] .

This integral is reminiscent of the first term on the right of (2.7);
and in fact we shall apply Corollary 2.1 directly in proving the theo-
rem. We identify K(x - y; 0) with D2mΓ(x - y) and g(y) with Dι~2m

f(y); then according to Corollary 2.1, (3.5) will follow from (2.6) if
the hypotheses (2.2) and (2.3a) with t = 0 are true. But (2.2) follows
from (3.3) and (2.3a) from our representation of K as a derivative *
Theorem 3.1 is thereby proved.

4, Boundarytype estimates* In this section L(D) will again be
an elliptic differential operator with constant coefficients containing
only terms of order 2m but now it will be an operator in the n + 1
variables xu , xn, t. Similarly, let Bό{D) (j — 1, , m) be operators
with constant coefficients and only terms of order mό. We assume
L and Bό to satisfy the root condition and complementing condition
stated in [2, § 1]. The concern here will be with the boundary-value
problem

L(Dx,Dt)u=f(x,t) (ί>0)
(4.1)

We initially assume all functions to be infinitely differentiable and
to have compact support; this restiction will be removed at the end
of the section (Theorem 4.6).

First we review some important results from [2] concerning rep-
resentations of the function u(x, t). Let I be any integer with
I ^ max (2m, mά), and P(D) a differential operator, each term of which
is of degree I. Then

(4.2) P(D)u(x, t) = P(D)v(x, t)

- y;

where v(x, t) = y(x — y,t — τ)fN(y, τ)dydτy Γ(x — y, t — τ) is a funda-

mental solution for L, fN is a sufficiently smooth extension of f(x, y)
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to the whole space such that fN has compact support, ψj(x) =
Bj(D)v(x, t) \t=0 and K, are Poisson kernels given explicitly in [2].

Section 3 was concerned with estimating the first term on the
right of (4.2) in terms of properties of / . We shall now consider
the other terms and develop estimates for functions given by

(4.3) w(x, t) = [Kj(x - y; t)φ3(y)dy = Kpψj (t > 0) .

It is proved in [2] that

(4.4) [w\tfa £ C[φj]ΐ-mj+Λ . (l^ mά)

(for the notation see (3.1)). Also it is proved in [2] that

(4.5) [P(D)w]l £

provided P(ξ, τ) (obtained from P(D) by replacing d/dXi by ξt and
d/dt by r) is of the form

where ζι~ms stands for any monomial of degree I — mό in the variables
ξi alone.

(4.4) corresponds to the case q = n; (4.5) to the case q = 0. Our
primary aim in this section will be to supplement these estimates
by (1) extending them to intermediate values of q, 0 < q < n, and
(2) deriving, for q < n, a necessary condition on P(ξ, r) for such
estimates to hold.

First we shall review and develop certain properties of the
Poisson kernels. The kernels are given by

(4.6) Kj(x; t) = A^+s)l2KjtS(x, t) ,

log *±±*L + cΔdτ

, τ)

Here bJtS and cjtS are appropriate constants; M+(ξ, τ) = ΠΓ-iί^ — Tt(ξ))
where τi(ζ)9 k = 1, , m are the m roots of L(ξ, τ) = 0 with positive
imaginary part (L(ξ, τ) is the polynomial obtained by replacing Θ/ίtef

by ξi and d/dt by τ in L(DX, Dt))\ the contour 7 surrounds the m
roots τi(ξ) and lies entirely above the real axis; Nj(ξ, τ) are poly-
nomials in τ such that

(4.7) f MLDMLlLdt = δjk

h M+(ξ,τ)
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In (4.6) and elsewhere below, if n = 1 then 1 dwξ is to be
Jlfl=l

understood as Σ«=±i
We shall state three lemmas concerning integrals such as occur

in (4.6).

LEMMA 4.1. Let F(ξ) be a function of the real vector ξ con-
tinuous on the sphere \ξ | = 1. Let τ0 be a complex constant with
Im τ0 Φ 0, and k an integer ^ 1. Then

w 'F(ξ)(x ξ £ C(\ x\

C depending on τ0, k, and max \ F\,
The proof of this lemma is given in Appendix 1 of [2]. This

same estimate will clearly hold if the integrand is replaced by

where 7 is a finite contour in the complex τ-plane bounded away
from the real axis, and F{ξ, τ) is continuous for r e γ , \ξ\ = 1.

LEMMA 4.2. / / λ ^ mό + s + 1,

(4.8a) I DλKjι81< C(\ x |2 + ty/« <•;+-*> .

If D* is any derivative of order λ ^ 0 in the variables x, then

(4.8b) I DΪB^Kjix; t) | < Ct(\ x |2 +

If h Φ j , λ ^ mό — mk + s, then

(4.8c) I Dλ

xBkKLs(x, t) I < CtQ x |2 +

In all these, C depends only on the ellipticity constant, bounds for
the coefficients in L and Bjf the complementing condition constant,
and all integers mentioned.

Proof. These estimates follow from Lemma 4.1 and the properties
of Nd and are given in [2] (eqs. (2.13)', (2.15)).

LEMMA 4.3. Let the first q (0 ^ q S n — 1) coordinates of n-space
be distinguished as in § 2, and write x = (x, x), ξ — (f, ξ). Writing
L(ξ, τ) = L(f, I, τ), let the polynomial L(ξ, τ) = L(0, f, τ), and simi-
larly Bi(ξ, z) — Bj(0, ξ, τ). Let Kjt8 be the Poisson kernels correspond-
ing to L and Bj in (n — q + ΐ)-space. Let P(D) be a homogeneous
differential operator of order > mά •+ s + q and P the operator
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obtained from P by omitting all differentiations with respect to com-
ponents of x. Then

<4.9) [ P{D)Kjs{χ t)dx = P(D)Kjs(x; t) .
J x—space

This lemma is proved in Appendix A.
The following is an interesting consequence of Lemma 4.3 and

the results of § 2. In this and the other theorems of this section,
C denotes a constant depending only on the quantities listed in Lemma
4.2.

THEOREM 4.1. Corresponding to the function w(x) given by (4.3)
define

w(x, t) = K^φ5(x) = \ A Kj(x - y, t)<Pj(x, y)dy ,
J y—space

so that x appears only as a parameter in the function φjm Also de-
fine W(x, t) = w — w. Then if I Ξ> mjf

(4.10) [FΓ] l 4 β ^ c[φjγt-mj+a ,

where the symbol [. ]ι+cύ is defined as is [. ]?+„, except that the
quantity inside brackets is considered a function of x alone (and
dependence on x is ignored).

This means that w and w differ by a function whose appropriate
derivatives have estimable Holder difference quotients with respect
to all n — q + 1 variables x, t. Actually the proof will show that
only those derivatives whose order with respect to components of x
is greater than I — m, need be excluded.

Proof. Let Dι be any derivative of order I in the variables x
and t. We assume I — m3- to be even; a similar proof goes through
for the odd case. Applying (4.6) and integrating by parts, as is done
in [2], we have

(4.11) Dιw = DιK5*φά = JDij(i/«c+«-H»J)^.β^(i/2)(ϊ-»,)9). β

Prom (4.8a) we know that (2.2) holds for the kernel DιΔ{ll2){nVS-ι+m^Kjt3f

so we may decompose the convolution into two terms as in (2.7):

Dιw =

where

- y; t)
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and satisfies

(according to Corollary 2.1); and

/2 = ί[ D ι Δ { i m { n Λ - s - ι ^
V J a?—space

which, according to Lemma 4.3, is simply

where

J3 = D'^^^^ήKj^I^^-^φjix, y) ,

and

I4 = Z)ίiα/2)^+^-ί+^)^s*i(1/2)^-^)^i(ίg, £) = DιK^φj(xf y) = Dιw(x, t) ,

the operators / and Δ denoting the Laplacian in x and x respec-
tively. Now (3.2) yields the estimate

(4.12) [Δuw—ϊφi®, y)]l £ C M _ m j + α ,

hence the usual boundary estimates ([2], or Theorem 2.1 with q — n}
indicate that

(4.13) [Ϊ3]a £ C[φj]^mj+a .

But since DιW= Ix + /3, (4.10) is proven.
We are now ready to develop the two principal theorems of this

section. The complementing condition states that for every ξ Φ 0,
the m operators Bj(ξ, τ) are, as polynomials in τ, linearly independent
modulo M+(ξy τ). It follows that every polynomial P(ξ, τ) admits a.
decomposition of the form

(4.14) P(ξ, τ) = a(ξ, τ)M+(ξ, τ) + ± a^B^, τ) ,

where a(ξ, τ) is a polynomial in r, but a(ξ, τ) and a,(ξ) are not
necessarily polynomials in ξ.

THEOREM 4.2. (Sufficient condition.) Let the polynomial P(ξ, τ)
be normalized and homogeneous of degree I Ξ> max [m3]. Let q be in
the range 0 ^ q ^ n — 1.* / / there exists a polynomial A0(ξ, τ) and
polynomials aoj(ξ) (of degrees I — mό) such that

* If q = n we know from [2] that (4.16) holds for every p of degree I.
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<4.15) P(0,ξ, τ) = A0(ξ, τ)L(0, ξ, τ) + Σ αOί ( | ) ^ (O, f, τ) ,

(4.16) ,

THEOREM 4.3. {Necessary condition.) Again let 0 <L q <^n — 1.
A necessary condition on P{ξ, τ) {normalized and homogeneous of
degree I) in order that the estimate (4.16) hold for all φi infinitely
differentiate and with compact support is that there exist a poly-
nomial A0{ξ, τ) and functions aoj{ξ), 1 ^ j ^ m, with aQj{—ξ) =
(-iγ-™Jaoj{ξ) such that (4.15) holds.

The difference between the two conditions is that only in the
first case are the aO3 {ξ) assumed to be polynomials. The author is of
the opinion that the condition in Theorem 4.2 is necessary as well as
.sufficient. Theorem 4.3 is proved in Appendix B.

Proof of Theorem 4.2. The case q = 0 is essentially the above-
mentioned result (4.5) obtained in [2]. Therefore assume 1 ^ q <
n — 1. From (4.15) it follows that

P{ζ, τ) = Λ(|, τ)L{ζ, τ) + ±aoj{ξ)Bj{ζ, τ) + Q{ξ, τ) ,

where Q is a polynomial every term of which contains as factor
some component of ξ. We write

P{D)w - Wτ + W2,

where (using (4.3), (4.6)),

W1 = A(Λ Dt)L{D)Kά*φj

(Here s is an integer of the same parity as n such that n + s + m5

— Z > 0.) Since LIT,- = 0, we may write

Also, writing iϋ = Σ ^ i αo;#; + β, we follow the procedure in [2] and
write

if £ — m,- is even, and

dxk

 >s dyk
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if I — mά is odd. For simplicity we consider only the even case.
Theorem 2.1 may now be applied by identifying the u in it with Wx

or W2f g with aojφs or ΔW){ι-m^φh and K with BJKJ or B4{ll*Hn+8mJ-l)

KjιS. Conditions (2.2) and (2.3a) must be verified. The first follows
from (4.8a), and for (2.3a) we use Lemma 4.3 and (4.8b):

\\BάK5dx ^ Ct(\ X

also, using (4.8c) and the fact that Q(0, ξ, τ) = 0 ,

= I R(0, D, A) "IS'

This establishes Theorem 4.2.

COROLLARY 4.2. If Dι is any derivative of order I involving
at least one differentiation with respect to a component of x, then

(4.17) [Dιw]r ^ C\φ&-m^ .

Proof. The operator Dι is a particular case of the type treated
in the theorem but in this case Wx = 0 and R(0, D, Dt) — 0, so t h a t
in applying Theorem 2.1 we see that C2 = 0 and the second statement
in that theorem holds.

We shall now return to the system (4.1). Our object will be to
find operators Q(D) such that Q{D)u will be estimable in various
senses in terms of / and φju Our first result is an immediate con-
sequence of Theorems 3.1 and 4.2. For these we shall think of t as.
the (n + l)-st component of x, t = xn+1, and let [u\Ul denote

[βjffii = Lu.b. I £>>u(x) I + l.u.b.

where the l.u.b.?s are taken over points x, xlf x2 in the domain of
definition of u, and over derivatives Dι which involve at least one
differentiation with respect to a component of x.

THEOREM 4.4. Let the normalized polynomial P(ξ, τ) of degree
I >̂ 2m satisfy (4.15) and u,f, and φά of compact support satisfy
(4.1). Then

(4.18) [P(D)u]l <Z

Furthermore if I > max [mj] and q > 0, then
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(4.19) [a]rϋ ^ c{[f]u~+* + Σ M - . i + « ) .

Proof. We use representation (4.2). Theorem 3.1 yields

mm ^ C[f]Um+« ,

and

The latter is obtained directly for derivatives Dιv containing at least
one differentiation with respect to a component x{ (1 g i ^ n) by
setting q = w; but we may differentiate Lv = f I — 2m times with
respect to #w+1 and solve for dιv/dxι

n+1 in terms of such, thus obtain-
ing the estimate in general.

Thus it follows that

and

m+« ( for Z > m , ) .

The former, together with Theorem 4.2, yields (4.18). To derive
(4.19) we represent

ΐ)ιKό*ψά = Dm)Kά*Dι-msfj ,

then apply Theorem 4.2 with q = n to obtain (4.19).

THEOREM 4.5. All the interior and boundary-type estimates
proved so far {i.e., Theorems 3.1 and 4.-4.4) remain true when the
smoothness requirements of the functions involved are relaxed to the
extent that they have only the differentiability and boundedness
properties implied in the statement of the corresponding estimate.
For example, (4.18) is true if only ue ^Ua, / e f̂-2m+*> d
Ψi e

Proof. The theorem follows from the fact that every function
φ e ^? + α ί may be approximated by functions φs e <έfl+1 in such a way
that lime_o IΦ* |!+« = IΨ |!+«. The φs may, for example, be defined by
<pε(x) = je(^)*φ(^)f where j e is the Friedrichs mollifier, jε(x) = e^j^x/ε),
ii(a?) being a function in <g^+1 with lii(a?)da? = 1, and £ = 0 for
\x\ > 1. Then it is an easy consequence of the "smearing" action
of i ε that I φs $ ^ I ψ |2. Also it is seen that at every point x where
φ is continuous, φε(x) —• φ(x). Since for every δ we can find such a
point of continuity x with | φ(x) \ > | φ \°0 — δ, it follows that
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limε_0 inf | φz |° ^ | φ |°. Combining the two inequalities, we have
lim^o I φs \o — I φ |§. But the same reasoning may be applied to de-
rivatives and difference quotients of φ, since these processes commute
with the convolution. Hence

lim I ψz \U« = I φ \UΛ
ε->o

as stated. Now in treating a typical Theorem such as 4.4, we first
continue u a short distance into the region t ^ 0 as a function with
the same smoothness properties as it has for t > 0, then define us =
js*u, fε = Lus, and φjs = Bάuz | ί=0. Then the theorem is true for utf

/ „ φ^ but [Pus]l -> [Pu], [fs]Um+« - [f]Um+; and [<pitγlMJ+Λ ->

[φjYi-mj+Λt s o it is true as stated.

5. Variable coefficients* The foregoing results concerning equa-
tions with constant coefficients in a half-space permit the derivation
of certain similar results for more general domains and variable coef-
ficients. The procedure we shall use is basically that in [2, § 7];
however, the arguments here will be more involved, and in the case
q < n, the results are much less general.

Let ^ be a domain in (n + l)-dimensional space with boundary
ϋ^, and consider the problem

L(x, D)u = f(x) , x e 3f ,

B3(x, D)n = <pj(x) , xe&r .

L(x, D) is assumed to be uniformly elliptic in 3f with ellipticity
constant E, and to satisfy the root condition of [2]. Also the Bά

are to satisfy the complementing condition of [2] with "determinant
constant" Δ.

As before let q be an integer, 0 S q ^ n9 and I an integer with
I ^ max [2m, m, ]; but now we permit the = sign in this latter in-
equality to hold only in the case m3- < 2m for all j . Let μQ = max
[1,1 — 2m] and μ, = max [1,1 — m.,]. We assume the coefficients of
L and i?,- to belong to classes ^l+lJ^Sί) and ^l+lJί&r) respectively,

and to have | I J ^ and | |;j+Λ norms bounded by the constant H.
In addition to these assumptions on L and Bjf we shall require

that coordinate tranformations may be introduced which, at least
locally, flatten out the boundary ^ , and such that the operators L
and Bj transform into operators of a special type. This special type
is that in which the coefficients of all derivatives of order 2m in L
and those of order ms in Bjf which involve only differentiations with
respect to "undistinguished" variables, be constant on the new flat
boundary. As will be shown in § 6, this assumption involves no loss
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of generality when q — n (this is the case when there is one "undis-
tinguished" direction, and it is normal to &). However for q < n
it limits substantially the generality of the results. There is one
exception however: the case when m = 1, Bx = 1, q = 0, and n = 1 or
2. In this case such transformations as required above are always
possible; however in this case the same a priori estimates may be
obtained much more easily by use of the known maximum principle
for second order elliptic equations.

Theorem 5.1 treats the case when the domain & is the half-
space xn+1 > 0, and L and B3 are of the special type. Theorem 5.4
indicates the same results to hold if L and B3 may be transformed
locally to operators of the special type, 2& at the same time being
flattened locally. Theorem 5.2 treats the case when L and B3 are
of special type throughout 3f\ then the full Holder continuity of /
is no longer required.

Constants appearing in this and the following section which
depend only on E> Δ, H, m, m3, a, and I will all be denoted by the
letter C. Whenever an operator appears with a tilde (~) over it, it is
to be understood that every term of the operator involves at least
one differentiation with respect to a component of x or in a "dis-
tinguished direction.". Symbols such as | \q..fx, where &x is a sub-
domain of ^ , simply mean the same as | |?.., except that the func-
tion in brackets is considered to have only ϋ?\ as its domain of defi-
nition. We shall also use the symbol | u \t+^ as defined on page 526.
An operator Q(x, D) with variable coefficients is said to be normalized
if the l.u.b. of all its coefficients for all x in its domain of definition
is one.

THEOREM 5.1. Let L(x, D) and B3(x, D) satisfy the above condi-
tions, and in addition assume L and B3 to be of the forms

(5.2) L{x, D) = L0(D) + L(x, D) + L^x, D) + lower order terms ,

(5.3) B3(xy D) = Bj0(D) + Bj(x, D) + lower order terms ,x

where Lo and B30 have constant coefficients, and Lx has coefficients
which vanish for xn+1 = 0. Let u{x),f(x), and ψ3{x) satisfy (5.1) in
the half-space xn+1 > 0, and have smoothness and boundedness prop-
erties which will guarantee the norms in (5.5) and in the proof of
the theorem to exist. Let P(x, D) be any homogeneous normalized
operator of degree I with coefficients in ^7+2 whose | |?+2 norms are

1 Terms of the form R(x, D)Bi(x, 0) (i Φ j), R an operator of degree mj - nn, would
also be permissible in the expression for Bf, but if they are present we may replace
Bj by Bj — RBί and ψj by φj — R(x, D)φu obtaining an equivalent boundary-value
problem in which they no longer appear.
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bounded by H, and which may be represented in the form

(5.4) P(x, D) = A(x, D)L0(D) + Σ as(xf D)Bj0(D) + P(x, D) + Px(x, D) m
3

where Px vanishes for xn+1 = 0, ond the aό involve no differenti-
ations with respect to xn+1. Then

(5.5a) I P(x, D)u | ^ CJl/lfiU. + Σ I <Pj |ί- ,+. + I u |s} ,

(5.5b) I u | Γ ϋ ̂  c{\f\ΐ±L+* + Σ I<Pi \ϊ-mj+« + \ n ή .

Proof. The proof will employ the following two lemmas, the
first of which is contained in the results of [2].

LEMMA 5.1. Let u e <g=7.ίί+β,, / e <g"l±}m+Λf φ3- € ̂ °ι-mj be solutions
to (5.1) in an arbitrary domain & with smooth enough boundary..
Then

(5.6) i u ir±i+e s c{\f\τ±L+. + s I <ps ι?- , + I u is}.

Proof. If i > max [2m, m, ] this follows directly from [2, Theorem
7.3]: there sf is identified with ^ , I is replaced by Z — 1, and the

inequalities \f\ΐ±}m-i+* ^ l/|?im-i+ and |9>y|r±i£i+ ^ l^yli-^ are em-
ployed. The other possibility is that max [m,] < 2m and I = 2m. Let
Si and S2 be concentric balls with radii 1 and 2 respectively, and center
in £&. Let a be some number such that the hyperplane xx = α in-

/(f > ^2, , »»+i)df (we may need to ex-
tend/outside & for this to be defined), and Fβ = 0 for β > 1. Then
Theorem 9.3 of [2] is applicable: set p = 2m — 1 and Jϊf = Sx. The
conclusion of that theorem is:

I u |?ii+? ^ C{Σ I Fβ \l+1 S2 + Σ I Ψi I?ίi i-. J + . + I ̂  IS}.

But l ^ l ^ 1 5 2 ^ 4 | / |2 + 1 and Fβ = 0, /9 > 1, so (5.6) holds in this case
also if a superscript Si is adjoined to the norm on the left. But i t
does not appear on the right and its center is arbitrary, so (5.6) is
valid as written.

LEMMA 5.2. Consider again the case when the domain sp is
the halfspace xn+1 > 0. Let b(x) be a function in ^ f ί i such that
b(χ) = 0 for xn+1 = 0, and \ b \f£ < H. Then for every derivative of
order I,

(5.7) \b(x)D*u i r 1 ̂  C{\f\ΐ±L+« + ψ<P, I?-, + I u|S} .
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Proof. Let v — b(x)u. Then

L{x, D)v = bf +

It follows from Lemma 5.1 that

ck(x)Dhu =
l

\1-mj I u 1
and

Φj \ΐ- Σ

Hence from the main boundary estimate of [2] (Theorem 7.3),

I v |f£ ^ C{\ f i r i 1 .^ + Σ I ̂  I?-, + I * 18 + M » .

But since for every derivative Dι we have

bDιu = Dιv + lower order terms

and since the lower order terms may be estimated by (5.6), and also
since | v \°0 ^ C\ u \°0, (5.7) follows.

Now to proceed with the proof of Theorem 5.1, let g% be the
class of homogeneous operators of degree I which have a representa-
tion of the form (5.4), and whose coefficients

(1) are in and have 1 norms bounded by if; and
(2) have first derivatives with respect to xn+1 in < ^ + 1 with norms

I ]£+1 bounded by H. Let If be the subclass consisting of those
operators in gf 0 with coefficients in r^ltl whose | |Γ+i norms are
bounded by H. Let 8 be a fixed number, 0 < δ < 1, which will be
defined later. We define the number M as

M = 4S-* lub I Q(x, D)u \l + lub | Q(x, D)u \l + [u\ΐ£
go %

with the lub's taken over all operators Q(x, D)e&0 and g7 respec-
tively. Then from the definition of | \% there is a point y and an
operator Q(x, ΰ ) G ^ 0 or in g3, or a derivative D\ such that one of
the following four quantities is > JΛf:

I Q(y, D)u{y) \ ,

(5.8)
( f o r s o m e , w i t h . =

(for some
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with U2 and U4 missing if q = 0. We shall carry out the proof first
under the assumption that U2 > J M. The proof for other cases will
then require only slight additional arguments. Therefore we assume
q > 0, Q 6 g% and U2 > Jikf. It may be assumed that | z — y | ^ δ
since if not, the quotient U2 will be < 2δ~° \Qu\l, and there will be
a point y' such that

U[ = 4 3 - I Q(u', i?M»') I > 2δ- I Q^ |°0 > U2

The argument thus reduces to the case when the first of the four
quantities in (5.8) is > JΛf, which case is treated separately.

Let ζ(t) be a ^oo function of a single variable such that ζ(t) = 1
for I ί I < 1 and ζ(ί) = 0 for | ί | > 2. Define

<5.9a) w(x) =

if both 7/ any 2 are further than 28 from <kf\ i.e., both /̂ and z have
(w + l)-st component ^ 2δ; and

(5.9b) W(χ) =

if either /̂ or z is nearer than 25 from £&; here T/̂  is the projection

of y onto &r, so that if y = (yx 2/n+1), ^ = (1/1, ••-,!/», 0).
Let us assume the latter alternative (5.9b) to be the case; the

proof for the former is similar. First, on the basis of (5.4), also
considering (5.2) and (5.3), we may express Q(y, D) as

(5.10) Q(y, D) = Qx(y, D) + Q2(y, D) ,

where Q2 vanishes for y on & and

Q1(y, D) = A(y, D)L'(yB, D) + % aά{y, Ό)B]{yB, D) + Q3(y, D) ,

where L' and B] are those parts of L and Bj consisting of highest
order terms only. Let us decompose the quotient Ϊ72 as follows:

(5.U) ±
8 M<
8 \z-y\

where

Q(z, D) - Q(y, D) u(z)

I, D)u(z) - Qjy, D)u(y) \
z-y\a
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τ - 1 Q>(v, D)fΦ) - Qi(v, DMv) 1
\z-y\"

Owing to the smoothness of the coefficients of Q and to the definiton
of g?0, we have

(5.12) 2\ S Cδ1-* lub | Q(x, D)u(x) |jj ^ C3M .
Qβ2

Theorem 4.4 (4.18), with Theorem 4.5 may be invoked to estimate
T2. In view of the definition of Qlf that theorem tells us the follow-
ing (where we have used u(y) = w(y), u(z) = w(z); notice also that
condition (4.15) "neutralizes" Q3):

(5.13) T2 =
2

l« - v\
^ C{[L'(yB, D)w(x)]U»+* Z ,

(yB, of course, is to be considered a constant when the norms on the
right are computed.) To further estimate the terms on the right,
we introduce the symbol Sδ to denote the sphere of radius 6<? about
yB. First, for any derivative Dl~2m,

(5.14) Dι-*»L'{(yB, D)w = ζDι~*»L'(yB, D)u

From (5.1), (5.2),

(5.15) Dι-^L'(yB, D)u(x) = Dι~^L{x, D)u(x) + Dt^(L(yB, D)

- L(x, D))u{x) - Dι-%mLx{%, D)u(x) + l.o.t.

= Dι~^f(x) + Q*{x, D)u -

+ l.o.t. ,

where

Q*(x, D) = (L(yB, D) - L(x,

Also

(5.16)

Now since the coefficients of L are in "gT+i, Q* is a combination of
derivatives of the form Dι with coefficients bounded in | |^+1 norm
by QHδ, for x e Ss. Since also | ζ |2+1 < Cδ-01, we have

[ζQ*(x, D)u\l ί£ C(δ[u\ΐ+a + δ^[u]J) .

By a standard calculus lemma (see for example [2, § 5]),

[β]? < e[ff]?+β + C(ε) I w [2
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for arbitrarily small ε. Choosing ε = δ°, we have

(5.17) KQ*u\l ^ CδM + C(δ) \u\l.

Lemma 5.1 easily yields

(5.18) [ζ (lower order terms)]: ^ C{|/|?_2w + Σ\φ3 \^mj + |u\°0}

For the same reasons

Combining this result with (5.14-18), we find

[L'(yB, D)w]Um+a ^ CδM + C(fl){|/!?-.*+- + Σ \ <ps |?_m. + | u |0
0}

|u 1

In exactly the same way one obtains

[B's(yB, D)wYι-~J+. £ CδM + C(δ){\f

Combining these results with (5.13), (5.12), and (5.11), we have

(5.19) M£ C2δM + C(δ){\f\U^« + Σ\ΨJ | ! - J + . + Iu|S}

with C2 independent of δ. The last two terms may be estimated
with the use of Lemma 5.2. We shall illustrate the method by
estimating T3. By hypothesis the coefficients of Q2 are in ^f+i and
vanish for xn+1 = 0; hence we may take out a factor xn+1 from each
and have left a function in ^ * + 1 . More specifically, define b(xn+1) to
be an infinitely differentiate function with \b\*?i< H assuming the
values

(ISO.

Then b may be factored out, and we have

Q2(x, D) = b(xn+1)Q4(x, D)

where the coefficients of Q4 are in ί^«+1 with | |;+1 norms bounded
by H. Since b satisfies the hypotheses of Lemma 5.2,

I b(xn+1)Q4(y, D)u(x) \:+ί ^ C{\f\ΐϋm+* + Σ I Ψi IS-., + I u |°0} .
3 J

But since zn+1 = yn+1, we may write

(5.20) T3 - 1 HVn+i)Q*(y> DM*) ~ b(yn+1)Qt(y, D)u(y) \

\% y\*
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_ I b(Zn+i)Q*(v, D)Φ) - b(Vn+ύQ*(y, D)u(y) \
\z - y\«

^ I b(xn+1)Q<(y, D)u(x) \l+1 ^ C{\f\p}m+. + Σ\φ5 |?_w. + | u |?] .

The same estimate holds for the next to last term in (5.19), so that
in all,

-(5.21) M ^ C2δM + C(δ){\f\ΐ±}m+a + Σ\φs | ?_ m j + β + | u |°0} .

If any one of the other three quantities Uu U3, or UA in (5.8) is
assumed to be > JJIf, then an inequality similar to (5.21) with other
constants C19 C8, C4, all independent of δ, may be derived, In the
case Ui > iM, then we define w again according to (5.9) (forgetting
about z). Tx will be missing from (5.11) and T2 and Γ3 are no longer
quotients, but rather 4δ-» \ Qλ{y, D)u{y) | and 4d~« \ Q3(y, D)u(y) \ re-
spectively. Theorem 4.5 again yields (5.13) except for an extra
factor <5~* on the right. Repeating the argument from this point
on, we obtain (5.21) with C2δM replaced by Cβ^M. Us and U4 may
be treated in similar manners.

Now the definition of δ is clear:

<5.22) 8 = min [(2C1)"1/1"a, (2C2)~\ (2C3)-\ (2Q- 1] ,

so that C1δ
1~αi ^ 1/2, and Cfi ^ 1/2 (i = 2, 3, 4). Putting all terms in

M on the left, (5.21) now implies (5.5a). Also since | u \Ui = I S \ΐ±i+» +
\u\Ui = M + I u iΓ-iί+β a n ( i since the last term here may be estimated
with Lemma 5.1, (5.5b) is deduced and the theorem proved.

The condition (5.2) imposed on L is really only a condition on L
at the boundary xn+1; consequently the full Holder-continuity of / is
needed for the estimate (5.5). The following theorem will only utilize
jf's Holder continuity with respect to So; but as a price for it a con-
dition on L analogous to (5.2) is imposed throughout the domain; and
also the class of operators which are estimable is reduced.

THEOREM 5.2. Let L, Bjy u,f, and φά satisfy the hypotheses of
Theorem 5.1, except that f is required merely to be in ^7?-2m+α>, αwd
L(x, D) is of the form

{5.23) L(x, D) = LID) + L(x, D) + lower order terms.

Then

<5.24) I u |?+i ^ C{\f\Um+« + Σ*\<Pi \ϊ-mj+« + I " IS}

Proof. The proof is the same in outline as that of Theorem 5.1;
the following are the only differences. The pseudonorm [uYttl takes
the place of M, so that U1 and U2 are missing from the list in (5.8).
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Taking the case Z74 ̂  l/8[β]Γ£l, Theorem 4.4 (4.18) is again invoked
to yield (5.22). Again this takes the place of (5.13) and the argument
is the same, except that the superscripts n in (5.16-19) are to be
replaced by q, and last two terms in (5.19) are now missing. This
proves the theorem.

Theorems 5.1 and 5.2 were based on the assumption that £& is,
or may be mapped onto, a half-space in such a manner that the
transformed operators L and B3 satisfy certain properties. The fol-
lowing theorem serves to indicate that such a transformation property
of ϋ^, L, and B3 need only be local; i.e., we assume only that every
point in £& near the boundary has a neighborhood which may be
mapped onto a hemisphere, L and B3 being transformed under this
mapping in the desired manner.

Specifically, we assume that some portion Γx of the boundary ϊ&
(it may happen that Γx = <%r) is covered by a network of q families
of "distinguished curves," each of class ^f+i, with no two curves
of the same family intersecting each other, and no two curves from
any two families tangent at any point. Then there will be q curves,
one from each family, passing through each point in Γlm It is
along these curves that we shall assume certain functions to be Holder
continuous. If Γ1 Φ 32, we speak of another portion Γ2 with Γx U Γ2 =
&, and Γ2 overlapping Γx so that the boundaries Γx and Γ2 are
bounded away from each other by some number cZx > 0. We also
assume these q families may be extended in some manner to cover a
subdomain 3f± adjacent to Γu 3fx having the properties that 3fx Π
3ί — Γ19 every point of Sfx is nearer than 2dx to Γlf and every point
of 3ί-3ίx is further than dt from Λ-Γ2.

Our smoothness assumptions on £^will be very much the same
as those made in [2, Theorem 7.3]. First of all, we assume Γ2 to be
of class ^Γ+2 and to satisfy the other requirements which are imposed
in Theorem 7.3 of [2] on the boundary portion Γ spoken of there.
Next, concerning Γx and £&x, we suppose there is some number
d tίdx such that evey point y e 3Pλ has a neighborhood Ny whose
boundary contains a portion of Γx and which may be mapped by a
one-to-one ^Γΐί mapping J7~y onto the hemisphere Sίf (|α?| = 1, xn+1

> 0) of radius 1 and center at origin in (n + l)-dimensional ^-space
in such a manner that the following conditions are fulfilled:

(1) The image of y is closer than 1/3 to the origin.
(2) Ny Π ikf is mapped onto the flat portion <^ 0 of the boundary

of 3$f. Also, denoting the image of Ny (Ί 3fi by Jg^, the distin-
guished curves in Ny n 3f\ are to be mapped onto line segments in
3$fly which are parallel to the first q coordinate axes. In accordance
with our usual practice, the first q coordinates of a point x in
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will be grouped together in x, and the others in x (these will not
be defined outside <%?ly).

(3) L and B3 are transformed into new operators Ly and Bjy

with the same smoothness, ellipticity, and complementing conditions
as the original ones. We assume the same constant H will serve for
the transformed operators independently of y.

(4) The transformed operators Ly and Bjy may be expressed, in
Sίf, in the form:

(5.25) Ly(x, D) = Xy(x)Loy{D) + Ly{x, D) + Lly(x, D)

+ lower order terms ,

where D denotes differentiation with respect to the x9 Loy is an
operator with constant coefficients, Lly vanishes on ^ϋ(i.e., for xn+1 — 0);
and for x e 3ίfly, each term of Ly involves a differentiation with
respect to a component of x (this with be true of all operators below
with a " ~ " ) . Also for xn+1 = 0,

(5.26) Bjy(x, D) = βy(x)Bjoyφ) + Bόy{x, D) + l.o.t.

Note that the ellipticity and complementing conditions guarantee Xy

and βy to be bounded away from zero by a constant depending on H.
Referring back to the original coordinate system, let g" be the

class of operators P(x, D) defined in &r with coefficients in c^ltl,
whose I Ifίi norms are bounded by H, with the property that when
subjected to any transformation _^7, P assumes the form

(5.27) P,(x, D) = Ay(x9 D)Loyφ) + Σa,{x, D)B30yφ) + Py(x, D) + P19(x, D),

where Py and Ply have the same properties as Ly and Lly. Let if
be the subset of g7 consisting of those P which assume the form

(5.28) Pv(x, D) = Py(x, D)

with each transformation J7~ y. Of course for points x in 2$-2$x

there are no distinguished directions and consequently there is no
condition (except smoothness) imposed on P(x, D) there.

The symbol [ψix)]^1 will be used below to denote

(5.29) Mf+?> = lub I D'ψ(x) I + tub ' D ^ ~ D'

where the first lub is over all points x e & x and derivatives of order
I; the second, over all derivatives Dι and points xu x2e &λ such that
whenever x2eNXl, the images xx and x2 have the same components x
(i.e., xx and x2 may be joined by a curve pieced together from portions
of distinguished curves). A similar meaning is attached to | ψ \\£*
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and \ψ\UΪ.

THEOREM 5.3. Let L, BJf and & satisfy the above conditions.
Let u9f, and φs satisfy (5.1) and have the differentiability prop-
erties implied below. Then if P(x, D)e g ,

(5.31) I P(x, D)u|i^i <£ C{\f\ΐlL+a + Σ\Ψj \\X£m + Σ \φ5\tl%

Furthermore, if P e g 7 , then

(5.32) I Pu | :+ 1 ^ C{\f\ΐ+L+« + Σ\φό \U%% + Σ\φj \tl% + \u

Proof. We first define a third class g 0 consisting of all oper-
ators P{x, D) with the same properties a those in g% except that
the coefficients need not be differentiate in any tangential direction.
Nevertheless, they are to be in £f «+1. In other words, when subjected
to any ^ y , the coefficients are to be in ^ £ + 1 and to have Holder
continuous derivatives with respect to xn+1. The corresponding norms
are to be bounded by H. Let δ be a number to be defined later,
and define

(5.33) M = 4δ-« lub | P(x, D)u |§ ̂  + lub | P(x, D)u | ί ^ + lub | Pu \:+1 .

Then there is a point ye£& and an operator Q(x, D)e& (or go) or

an operator Q(x, D)eξf such that one of the following four quan-

tities is >

(5.34) U1 = 4δ-

U __ \Q(z,D)u(z)-Q(y,D)u(y)\

z-VΓ

(for some z e 3fx with z = y for every transformation

U4 = \Q(z,D)u(z)--Q(y,DMy)\ {fo

lί yί &ι, Ux and U2 are missing from the list, and if q == 0, ?72 and
Z74 are missing.

First we assume g > 0 , ye &lf Q e g , and ί72 > &Af. It may be
assumed that z e Ny and that \z — y\^δ (see the proof to Theorem 5.1).
Subject the coordinates to the transformation ^~%. Then | z — y \ ^
δ' = (1/A;)S, where Λ: is the minimum expansion coefficient for the
transformations j ^ \ . We assume δ to be small enough so that δ* ^
i. Define



SCHAUDER ESTIMATES UNDER INCOMPLETE HOLDER 539

<5.35a) w(x) =

if both y and z are further than 2δ' from βg?0; and

(5.35b) w(x) =

if not (here yB is the projection of y onto βg?0). Since | y | ^ i and
,| y — 2 I <* I it follows that w always has support in , ^ .

We assume alternative (5.35b) as the proof for the other is similar.
It is seen from (5.25), (5.27) that after transformation the operator
Q may be written as

(5.36) Q(y, D) = Qx{y, D) + Q2(y, D) ,

where

QiiV, D) = J&J2-L',(yB, D) + Z a i g ' ^ B'jt(y, D) + Q3(y, D) ,

where L'y and B'jy are those parts of Lυ and Bjy consisting of high-
est order terms only, and Q2 vanishes for yn+1 = 0. Then

(5.37) \M ^ Tγ + % + Ts ,

where

τ _ I (Q(z, D) - Q(y, D))u{z) \
1 ιF^¥r '

τ _

τ _

I Qι(y, D)Φ) - Qi(ϋ,

1Q4S, D)Φ) - QJLy,

\z-y\

The smoothness of the coefficients of operators in £? tells us

(5.38) T^CM.

Theorem 4.4 (4.18), with the aid of (5.36), may be applied to yield

,<5 39) Ά = 1 Qjy, D)w(z) -Qjy, D)w(y) \

12-1/1"
^ C{[L'y(yB, D)w]Um+» + X, [B'jy(yB, D)w}^mj+a} .

Ss, be the sphere of radius 6§' about yB, so the support of w is
in Ss>. As in (5.14), we have

Dι-*»L'y(yB, D)w = ζDι-™L'y(yB, D)u + γiΊk
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and from (5.25),

Di-*"L'k(yB, D)u(x) = λ ^ X λ ^ ) ) - ^ ! - 2 - ^ , D)u + Q*(x, D)u(x)

(5.40) + λ ^ X λ ^ ) ) " 1 ! ^ , D)Dι-^u{x)

+ lower order terms ,

where

Q*(x, D)u = {Ly(yB, D)D1-^ - Xy{xB){X{x))-'Ly{x, D)Dι~2™}u .

Since Ly(x, D)u = f(x) and \y is estimable from above and below in.
terms of H, the first term on the right in (5.40) makes a contribution,
to Dι~2mL'y(yB, D)w which is estimable in [•]; norm by C(δ) |/|?_2m+α,
(as in (5.16)). Now Q*(x, D) is clearly the image under ^~y of an
operator in g", and furthermore this operator has coefficients bounded
in | |*+1 norm by Cδ for some C depending only on H. Therefore, as.
in (5.17),

I ζQ*(x, D)u(x)]:+1 ^ CδM + C(δ) I u

Thus by continuing the reasoning we obtain

(5.41) I L'y{yBy D)w]ΐ_2m+« < CδM + C(δ){\f\ΐ_2m+a + Σ\Ψj | U , + I u \°0}

λ ^ ) ) - 1 ! , ^ , D)D*-*»u]l

In the same manner we obtain

(5.42) [B},(ya, D)w]Umj+α £ CδM + C(δ){\f |?_2w +

In this latter we use the fact that

then combine (5.41) and (5.42), estimate Γ3 and the last term irt
(5.41) by Lemma 5.2, define δ to be small enough so that all terms,
involving M may be transposed to the left side of the inequality,
and (5.31) is proved for this case. A similar proof goes through if
the other alternative in (5.35) holds or if U19 U3, or U4 is >\M and
y e ^ i . Finally, if y £ &rl9 the boundary estimates of Agmon, Douglis,.
and Nirenberg [2, Theorem 7.3] may be applied directly to estimate
U3 and U4 in terms of \f\ΐ±lfj and Σ\φj\ι^α. This completes the
proof.

6» The case q = n. In this section we shall see that somewhat
more concerning equations with variable coefficients may be said when
q = n than when q < n. In fact, most of the properties of solutions-
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of elliptic boundary value problems which are true under complete
Holder-continuity assumptions (q — n + 1) of the functions involved
Are also true (or analogs of them are true) under assumptions cor-
responding to the case q = n. Assuming q — n we shall be able (1)
to demonstrate improved versions of Theorems 5.1 and 5.3, and (2)
to prove an existence theorem concerning problem (5.1).

First we consider the problem when 3f is the half-space xn+1 > 0.
The assumption q — n means that all functions concerned are Holder
-continuous in all directions except possibly that of the #w

THEOREM 6.1. Let L and Bj satisfy the ellipticity, complement-
ing, and smoothness conditions stated as hypotheses to Theorem 5.1.
If u(x) e ςf ?+Λf f(x) e <έ?Um+«, <Pj(x) e 9f ?—,+«,, satisfy (5.1) for xn+1 >
€, then

{6.1) \u\ΐ+.+ \u IΓK + ^ C{|/|?_2m+* + Σ\φ3- \^mj+ω +\u\°0}.

Proof. We shall first show that without any further hypotheses,
L and B3 may be put into the form (5.2), (5.3), and that the corre-
sponding set & includes all derivatives Dι. Then an estimate of
the form (6.1), with, however, l/lΓίL+c* replacing |/|Γ_2»+* on the
right, clearly follows immediately from (5.5). With no loss of gener-
ality we may assume the coefficient of d^/dx^ in L(x, D) to be identi-
cally 1. Then setting LQ(D) = d2m/dxT+1 and Lx = 0, (5.2) is obtained.
Since the complementing condition assures us that in each B3 there
is a derivative dmήdxZlx with non-vanishing coefficient, we do the
same thing here (Bj0 = dmj/flαC+i). Also every derivative Dι is trivially
of the form (5.4) with, in fact, Px — 0 and a3 = 0, so is contained
in g\

Lastly we must show that (6.1) is correct as it stands, rather
than with |/|Γ-2m+α> on the right. To do this we refer to the proof
of Theorem 5.1, in particular to (5.19). At that stage the proper
superscript n appears on the right, but it is changed to n + 1 when
the last two terms are estimated (by means of Lemma 5.2). In the
present case, however, these last two terms are absent (we have
mentioned that Lx — 0, and T3 is absent because Q2 = 0 in (5.10)), so
that the superscript n remains, and (6.1) is valid.

We now pass to the analog of Theorem 5.3. In that theorem
q families of distinguished curves were assumed to cover £grlf a
portion of &. It will be more convenient in the present case to
speak of a one-parameter family of ^-dimensional hypersurfaces cover-
ing ^ Ί , the boundary portion Γx = 3ίx Π 3ί being one of this family.
This amounts to the same thing, and the proof is unchanged; moreover
this permits the inclusion of the important case when Γx — !2f but
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£2f may not be covered with an ti-parameter family of curves with,
the required regularity properties holding everywhere (for example,
when ^ is a sphere in 3-space). Along with this change in point
of view, assumption (2) preceding Theorem 5.3 should be changed to
require that these ^-dimensional hypersurfaces be mapped onto hyper-
planes xn+1 = const. We shall discard hypothesis (4) altogether.
Lastly we define a new domain ϋ^2 with the properties that 3fx U
^ 2 = ^ , ^ 0 ^ = Γ2. If Λ = 3ί, Γ2 = 0 and ^ 2 is an interior
domain.

THEOREM 6.2. Let St, &lf &2, L, and Bά satisfy the hypotheses
of Theorem 5.3, with the above modifications, and excluding (5.25),
(5.26). Then if u(x),f(x),φ3- satisfy (5.1) and have the required
smoothness properties,

(6.2) iuirs + iuir^1 ^ αi/ir-iv. + \f\tlf+ι + Σ\φi\τ£J+Λ +1ui».

Proof. Since q = n, any operators L and Bj automatically sat-
isfy (5.25) and (5.26); and in fact with Lly — 0. Also clearly any
derivative Dι is in g% and any such directional derivative involving
a differentiation in a direction tangent to a distinguished hypersurface
is in gΓ. Hence (6.2) would immediately follow from Theorem 5.3 if
the first two terms on the right were replaced by \f\ΐ-L+<* But a&
in Theorem 6.1, the fact that Lly = 0 and that Ply is not needed in
(5.27) results in our not having to require Dι~2mf to be Holder con-
tinuous in the one undistinguished direction, for points in i ^ > ^ 2 .
This completes the proof. This theorem is analogous to Theorem 7.3
Of [2].

The domain ^ 2 was introduced not only for greater generality,
but also because in general such a domain would be needed for
topological reasons; it is not always possible to cover the entire domain
3f with a regular family of hypersurfaces, one of which is &. I t
is therefore important that such a covering be resticted to &fx»
However the theorem may be improved to the extent that / still
need not be fully Holder continuous in £^2 If there is a second
family of distinguished hypersurfaces covering &% in a regular man-
ner, and not necessarily fitting in with the first family in ^ Π ^ 2 ,
then the second term on the right of (6.2) may be replaced by
\f\"JvJ+ay which is of course to be understood as defined with re-
ference to the second family. The proof offers no difficulties but we
shall not give it.

Our final task will be to prove that a solution to the basic prob-
lem (5.1) may be expected to exist under the smoothness hypotheses
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corresponding to q = n, provided one exists under the stronger hy-
potheses corresponding to q — n + 1. But first we consider questions
of uniqueness. It is clear from the remark on page 517 that if
fe ί r r i m + α ^ ) (and ψi e ΐf Γ-mj+«(^)) then any solution u e ^7+Λ^i)
Π ̂ Γΐ i (^ 2 ) to (5.1) is in 9r?ΐ*(^). For any ίth order directional
derivative Dιu written in terms of local coordinate system, which
involves a differentiation in a distinguished direction is completely
Holder continuous; but then the only derivative Dι not involving
such a direction is also completely Holder continuous, for it may be
expressed by means of the differential equation in terms of / and
derivative Dι. Hence under the hypotheses of Theorem 6.2, if problem
(5.1) has at most one solution in ^ Γ ί i ( ^ ) for every fe ^ΐ-L+Λ^)*
then it has at most one solution u e ^Γ+Λ(^Ί) Π ̂ Γ ί i ί ^ ) for every
fe <g"ΐ-2m+a Π ^ r ^

THEOREM 6.3. If uniqueness holds in problem (5.1) with q = n,
then the term \u\°0 may be omitted from (6.2).

Proof. If this were not true, there would be a sequence uv of

functions in <if ? + X^) n <£f ΓΐX^i) with \ IM* \£\J*ll \Lu |?J^+Λ> and
I Bάu

v \γjiJ+a bounded, but | u" |0° and | u |?+J or | u |f+f1 — oo. Define the
new sequence W = t6v/|^v|S Then

but I W |S = 1, and according to (6.2), | Uv |Γίi and | u> \n

x^ are bounded.
From this last fact we know the derivatives of the form DιϊΓ to be
equicontinuous, and there is a subsequence v,k—*u with Dιΰk —*Dιύ,
and Dλύι —> Dλΰ, λ ^ I — 1, all these convergence processes being
uniform. Write L in terms of local coordinates xjf where x =
(xlf " ,xn). Then if a(x) is the coefficient of d2m/dx2™+1 in this ex-
pression, we have dιΰk/Θxι

n+1 = Σ (coeffs.) Dιΰk + lower order terms +
(a(x))-\dι-2mldxι

n-+\m)Lΰk. Since the last term approaches 0 as fc-^oo,
dιΰk/dxn+1 converges uniformly to a function, which will therefore be
dιΰ/dxι

n+lf and U will satisfy

Lΰ = 0 in & ,

Bjΰ = 0 on & .

But ΰ Ξ£ 0, which contradicts the uniqueness assumption, and the
theorem is proved.

THEOREM 6.4. Let &, &rl9 &2, L, and Bj satisfy the hypothe-
ses of Theorem 6.2. Suppose the problem (5.1) has a unique solution
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for every fe <g"i±l»+Λ(3r) and φJe<ϊfΐ-mj+Jk&)- Then
it has a unique solution u e ^*+«(^Ί) Π ̂ ΐ+ii^t) for every fe

Π if fίiW^i) and φj e <&ϊ-mj

Proof. Given any fe ίr?_2 m + α(^i) Π ΐf ? i W ^ ) , let the family
fs(x) be made up of functions in ^-L+A-S?) such that as ε —> 0,
Dkf2—>Dλf,X^l — 2m, for every point in 3! at which the latter
derivatives are continuous; and |/ s IΓ-fLv*—* l/IΓ-flV*. For example,
we could set /ε(#) = je*f with j ε as defined in the proof to Theorem
4.6. By assumption and Theorems 6.2, 6.3, for each ε there is a
unique uΈ(x) e ^?+a(^r) such that

Lus = / ε in

#;^ε = 9>i on

and

I β. i r i 1 ^ +1 ^ ιr+fi ^

Hence the norms | us \ΐ+^ and | uε \"J^1 form bounded sets. We shall
show that the set of functions uz is compact in ^Γ+Λ-^i)- The
boundedness of the norms |Se|Γ+«, shows the set of derivatives Dιus

to be equicontinuous. Denoting by £^δ the portion of 2$λ that remains
after a ^-neighborhood of every point of discontinuity of Dι~2rrιf has
been deleted, it is clear that the Dι~2mfs will be equicontinuous in
^ δ . Solving the differential equation for dιus/(dxn+1)\ the only ίth
order derivative not of the form Dιus, we see that it, hence all DιuZJ

are equicontinuous in i^θ, and a subsequence of the us converges to
a function uh which satisfies the differential equation Lu5 = / in £^δ,
and the boundary conditions BjU& — ψj on &. Now taking a sequence
of positive numbers 3V —> 0 and a diagonal subsequence of the us, we
find that the latter converges to a function u e <if f+*(^Ί) Π ^Γ+iί^j)
which satisfies (5.1).

APPENDIX A. Proo/ o/ Lemma 4.3. What we shall show spe-
cifically is that if the contour 7 and function F(ξ, r) are as in Lemma
4.1, k > q, and ί1 is differentiate with respect to ς for r e 7 , [f | =
1, then

(A.I) ( (βg( dωξ[ F(l I; τ)(aj. + ξ + tτ)~kdτ
J x —space J If 1=1 JY

) ( f c - g - l ) ! Γ ^ f
(fc — 1)! J i f i=i J1)!

With this established, (4.9) will follow as a special case, in view of
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(4.6) (see the definition of bJtS in [2]). The lemma tells us nothing
new in case q — 0. First we prove it for the case q = 1, x = xλ\ an
obvious iteration process will then yield the result for the general
case. First we recognize that

)(χ.ξ + tτ)-kdτ

i \ / i
1 — k dxx J I?ι=i ξ1

where " P F " indicates that the integral is taken in the principal
value sense. This is easily checked by forming the derivative as the
limit of difference quotients. Letting / denote the left side of (A.I),
it follows that

(A.2) / = rr^-τ-W dω,\ J - F(ξu | ; τ){χ.ξ
1 — k Uίf=i J7 ξ1

Now let ζδ(ίi) be an infinitely differentiate function depending on a
small parameter d > 0, such that

ζβ(f1) = O for

!) = l for

The principal value integral (A.2) may be converted into an ordinary
integral by subtracting from the coefficient of ξr1 in the integrand
any even smooth function of fx which takes on the same value as
the original coefficient when ξx = 0. For this function we choose

F(0, ξ(l - 3)-1'1; rJCifOil - ξiy-n+3)l\χ l(l - fϊ)-1/s + ίr)1-^.

Carrying out the subtraction in three parts, we obtain I = Ix + /2 +
73, where

- F(0,1(1 - ^)- 1 / 2; τ)
1 — k Uιeι=i ()y

— As Uiίi=i

(x ξ + tτγ-hd

F(0, |(1 - a

i rr r

— fc Uieι=i



546 PAUL FIFE

The coefficient of (...) 1 + f c in the integrand of Iλ is a continuous and
bounded function of ? on \ξ \ — 1; hence by Lemma 4.1 the integral
is bounded by C(\ x |2 + t2f~k (C possibly depending on <5), which
approaches 0 as a?!—• ±oo. Hence Ix = 0.

Next we use the mean value theorem to write the fraction in
the integrand of I2 as

/I £2\-l/2 1

i ± ^ i ί 6(A! - l)(x& + $ ξ{l- ξYm + tτ)-k ,
SI

and observe that

(Λ £2\-l/2 1

-^ ^ < ?χ for fx < 1/2 .
SI

It is then easy to see that for xλ large enough and fi ^ I #i l~1/2> the
integrand of J2 is bounded by C(x, t) \ xλ |~1/2 independently of ξ and
T. Also for ξλ^\x11~1/2 and x1 large enough the integrand is bounded
by O(δ, x, t) I x& \~k ̂  C(8, x, t) \ xx \~x (since k ^ 2). Both of these
bounds approach zero as x1—• ±oo, so we conclude that /2 = 0.

To analyze I3 we use the fact that

( G(ξl9 ξ)dωξ = [ dξS A G(ξ191(1 - £ )

and obtain, after rearranging terms,

(A-3) / = / , = f
1 — fc J i ί i = i

• Σ(« l + ίrHΓ x& ξ +
r=l U - l

Now changing to a new integration variable ^ = xλξu

First we estimate the last integral. For xx large enough, \ξ1\ > 1 —
2<5, \x£t + α | + tτ\ > ί̂ i/2, so that the integral is less in absolute
value than 2dx1(x1/2y-k = C<5#i+1-fc. For r < fc - 1 this vanishes as

Xl—> +oo, and for r = fc — 1 it remains bounded by Cδ. As for the
first integral,

lim ί*1 (u + x-ξ + tτ)r-kdu = lim (u + ί | + tr) r + 1 -*l β l = 0
βi-^ooj-*! r + 1 — fc J-*i

for r < fc — 1. For r = fc — 1 the same integral
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= limlog ». + g j + fc = T π i .

Hence all terms of the summation in (A.3) vanish except the one
with r = k — 1, and

I = - ^ i - ί Λ dωΛ ^(0,1; r)(δ, I + tr)l-*dr + 0(3) .
fc — 1 J I 5 I - 1 JY

But since 5 may be arbitrarily small, the term here of order δ is
really zero, and we have proven (A.I) for the case q = 1. But if
q > 1 the above procedure may be iterated by integrating successively
with respect to x19 , xq. Thus Lemma 4.3 is proved.

APPENDIX B. Proof of Theorem 4.3. We shall prove that a
necessary condition for (4.16) to hold is that in every representation
(4.14), the a,j(ξ) satisfy

(B.I) α i ( 0 f - D = ( - l ) I - i α i ( 0 f | ) .

That this implies the condition stated may be demonstrated by setting
αoi(l) = aiΦ, I) and showing that there is a polynomial A0(f, r) such
that

α(0,1, r)M+(0, ξ, τ) = Ao(|, r)L(0f I, r) .

Since

P(-f, -τ) = (-l) ! P(ί, τ), M+(-f, - r ) = (- l ) M"(ff r)

where M+(ξ, τ)M~(ξ, τ) = L(ξ, τ), and B^-ξ, - r ) = ( - l ) - ^ , ^)- we
have from (4.14) and (B.I)

α(0,1 τ)M+(0, ξ, τ) + Σ oy(0,1)^(0,1, r)
i

= P(0,£,r) = ( - l ) ι P ( 0 f - £ - τ )
= (~iy+wα(0, - I , -τ)M-(0, £ r) + J? ̂ (0,1)5,(0, | , r) .

Hence

, - I , -τ)ilί-(0, ξ, τ) = α(0, | , τ)M+(0, | , r) .

But for I Φ 0, 7kf+(0, | , r) and Λf~(0, | , τ), as polynomials in r, have
no factors in common; hence ikf~(O, f, τ) must divide α(0, | , r):

α(0,1, τ)M+(0,1, τ) = A0(ξ, τ)M~M+ = Ao(l τ)L(0, | , τ) .

Now we proceed to show that (B.I) is necessary. Assume, on
the contrary, that there is a value f = | 0 such that αy(0, — | 0 ) ^
(—l)*-miα(0, | 0 ) . We shall construct a family of functions
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that [9>5]?-»j+* are bounded as ε —> 0, whereas [Pw*]l are not (here w*
is defined in terms of φ) by (4.3)). We may rotate the coordinate
system so that | 0 is directed along the αvaxis; also since the aά are
homogeneous of degree I - mjf it may be assumed that | ξ01 = 1: f0 =
(0, - . . ,0 ,1) .

Define

η*(s) = 0 for s g - ε ,

= sι~mJ for s ^ ε ,

and smooth it off in the range — ε ^ s ^ ε so that it is an infinitely
differentiable function whose derivatives of orders ^l — m, are mono-
tonically increasing in — ε ^ s <g ε. Our sequence 9>* will be

where ζ(s) is a ^ ^ function with ζ = 0 for | s \ > 1 and ζ = 1 for
I s I < 1/2. It is easily checked that φι-mηdxι-mj)φ)(x) is bounded in-
dependently of ε; hence so is [<^]!_mj+Q>. We shall show that P(D)w*
may be made arbitrarily large by choosing ε and t small. We assume
I — m5 to be even; the proof for odd case is similar. At this point
we apply representation (2.7) to (4.3) after integrating by parts as
before; and for this purpose we redefine x — (xx , xn^)9 x — xn.
Hence

P{D)w* - PJW^s-i+^Kj.AΛ^^'ψjiy) ~ Δ{ι-m^φ\(xx, . ..,&•-!, yn)]

+ \^J{1>2)iι-mM<Xi * -i, VnW*(xn -yn; t)dyn

where

K*(xn; * ) = ( ( " PΔ{m{n+s~ι+mj)KJιS{xf t)dxx dxn^ .

Since the behavior of φ) with respect to the variables x19 , xn-t

is essentially independent of ε, the bracketed expression in the first
term on the right is certainly bounded by const. \x — y \", where the
constant is independent of ε. Hence by the methods of Theorem 2.1,
this first term and its Holder difference quotients are bounded by a
constant independent of ε. Also Lemma 4.3 with (4.6) and (4.14)
tell us

.; ί ) = const. Σ ί P(0> £., r)W0, &., r) dτ

' A ) AΓ+(0, ξ., τ)[xnξn + tτ]

= const. Σ t
« M = ± i J y , ξn, τ)
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const. Σ (».£• + ^o)'1 Φ, ξn, τ)Nj(0, £., τ)

, Σa^O, ξJBijO, ξn, τ)N3{0, ξ%, τ) An.
+ Jf+(0, ?., τ) ώ Γ '

where τ0 is a point on 7 and on the imaginary axis: τQ = i | r o | The
first term on the right may be written as

const. Σ «t dτ[ J^-(xnξn +
ξn=±i Jγ Jr0 M +

hence estimated (Lemma 4.1) by const. t{x\ + ta)~1. By virtue of the
properties of iV3 , the final term may be expressed as

1 + (-». + ίTo)"1

, 1) - a3{0, -1))
j(0, l ) r o ί , Δθj

where Δa3- = α,(0,1) — α/O, —1). Thus

K*(xn; t) = K*(xn; t) + const.
xn - τot

where | Kf \ < const. t{x\ + t2)'1. Therefore, using the fact that

S oo

[tl((%n — VnY + t2)]dVn ^ bounded independently of t and xn, and
—00

Δ{ m{ι~mi)φ){x) is bounded independently of ε, we have (setting x — 0)

, xn)

TΓε + const. (Jαy)Γ ζ(| yn \)^SMl[(Xn ~ yβ) - tτo]^dyn ,

where | Wz\ < const, (independent of ε). Now this last integral may be
written as Iλ + 72, the two parts corresponding to the ranges — ε <
yn < 1/2 and 1/2 < yn < 1 (the integrand vanishes for yn < — ε and
2/Λ > 1). At this point we set xn = 0. Then since (dι~m^'/dyι~mήψ(yn)
= (Z — my)! for yn > ε and | yn — ίr 0 1" 1 < 4 for #Λ > 1/2, I2 is easily
estimated as

|72(0, ί ) | < const. (Z-my)I

For 7L we obtain

S l/2

Dι—η*[-yu - tτJr'dy,
- ε

(-yn - ίrβ)]
ι_'ϊ
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S l/2

_D*-»s+ψ log (-yn - tτo)dyn

= -(Aa,i)(l - mj)l log (-1/2 - tr0)

^ - tτo)dyn .

The first term in the last expression is independent of ε and t. By-

construction, Dι~m^ιη2{yn) is a nonnegative function vanishing for

Z)t-*j+iy*dyn = (ϊ — m,-)!. Since r0 is imaginary,

-I fe l o g ( - v . - ί r Q ) = i I log(yi + I ίr 0p) I ̂  11 log(ε2 + * Ί τ01
2) |

for t and ε small enough and \yn\ < ε. Therefore the last integral
in the expression for iί(0, t) is unbounded as ε and t approach 0, and
the theorem is proved.

BIBLIOGRAPHY

1. S. Agmon, Maximum theorems for solutions of higher order elliptic equations, Bull.
Amer. Math. Soc, 66, No. 2, (I960), 77-80.
2. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions
of elliptic partial differential equations satisfying general bounday conditions I, Comm.
Pure Appl. Math., 12 (1959), 623-727.
3. A. Douglis, and L. Nirenberg, Interior estimates for elliptic systems of partial dif-
ferential equations, Comm. Pure Appl. Math., 8 (1955).
4. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equa-
tions, Interscience Publishers, New York, 1955.
5. L. Lichtenstein, Encyklopadie der Mathematischen Wisscnschaften, II. C. 3, pp.
197-217.
6. J. Schauder, Uber lineare elliptische Differentialgleichungen zweiter Ordnung, Math.
Z., 38 (1934), 257-282.
7. f Numerische Abschdtzungen in elliptischen linear en Differentialgleichungen,
Studia Math., 5 (1934), 34-42.



POWERS OF A CONTRACTION IN HILBERT SPACE

SHAUL R. FOGUEL

Introduction. Let H be a Hubert space and P an operator with
| | P | | = 1. Our main problem is to find the weak limits of Pnx as
n —> co. This is applied to Markov Processes and to Measure Preserving
Transformations.

Markov Processes. Let (Ω, Σ, μ) be a measure space. Let xn be
a sequence of real valued measurable functions on Ω and:
1. μ(xn+a> eAΠ xm+* e B) = μ(xn eAf}xmeB).
2. Conditional probability that xke A given x{ and xjf i < j < k, is
equal to conditional probability that xke A given xJu

Let I(σ) denote the characteristic function of σ. Define P(n) by
linear extension of:

P(n) I(x0 e A) = Conditional probability that xne A given xQ.
Then:

2'. P(n) = P ( l ) \
For details see [1] and [2].

We will study limits of

(P(1Y I(x0 e A), I(x0 G B)) - jt£(a?Λ e A f] x0 e B) .

Many of the results here appear in particular cases in [1,] [2] and [3].

1. Reduction to unitary operators. For every x e H
a. ||p**pκp*χ - p*χ\\* ̂  2 | | P ^ | | 2 - 2Re{P*kPkPnxPnx)

| | 2 - | | P * + ^ | | 2 ) — 0

b. \\PkP*kPnx - P ^ | | 2 ^ ||P**P*P—*α> - P*-^ | | 2 — 0.
n->°°

Therefore:
If weak lim Pnix — y then P*kPky = pkp*ky = y (here and elsewhere
-Ui or mi will denote a subsequence of the integers). This means
| |y | | = | | P * y | | = | | P * * y | | β Notice that if P*Px = x then HPtf||2 =
{P*Px, x) = p | | 2 . On the other hand

||PaH|2 = (P*Px, x)^ | |P*P»II \\x\\ ^ P l l 2 since | | P | | = 1.
Hence if | |Pα?|| = ||aj|| then (P*Px, x) = | | P * P O J | | p | | and thus

P*Pα; = α.

THEOREM 1.1. Let K = {a?|||P*a?|| = ||P**a?|| = \\x\\ k = 1, 2, . •}

Received November 26,1962. The research reported in this document has been sponsored
in part by Air Force Office of Scientific Research, O.A.R. through the European Office,
Aerospace Research, United States Air Force.
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then K is a subspace of H, invariant under P and P*. On K the
operator P is unitary. If x 1_ K then

weak lim Pnx = weak lim P*nx = 0 .
n-*oo n->o°

Proof. It is only necessary to prove the last part. If x ± K and
y = weak lim Pnix then by the preceding remark y e K hence y = 0.
Now from the weakly sequentially compactness follows: weak lim
Pnx = 0.

This theorem is a consequence of Theorem 2 of [9] and was
reproduced here only because of the elementary proof.

If F is the self adjoint projection on K and H is finite dimensional,
then F is the spectral measure of the circumference of the unit circle
in the sence of Dunford's spectral theory, with respect to P. This is no
longer true when H is infinite dimensional and P a spectral operator
(even a scalar type operator) in the sense of Dunford. These remarks
are proved in [4].

LEMMA 2.1. Let y = weak lim Pnix. Then \\y\\2 <Z lim sup \(Pnx, x)\.

Proof. Let x — u + v where u e K and v _L K. Then
y — weak lim Pniu, lim sup \(Pnx, x)\ — lim sup \(Pnu, u)\. Now

\(Vf p*u)\ = lim |(P W % Pku)\ = lim |(P"«-*w, u)\

since ue K. Thus

11 y 112 = lim \(y, Pn*u)\ ̂  lim sup \(P*u, u)\ .

This could also be written in the form

lim sup \{Pnx, z)\ ̂  \\z\\ lim sup \(Pnx, x)\m .

DEFINITION A. Let Ho = {ίc|lim (Pwα?, x) = 0}.

THEOREM 3.1. xe Hoif and only if weak lim Pn# = 0, i/ and only
if weak lim P*nx = 0. T%β sβί i?"0 is α closed subspace of H containing
K1. If T commutes with P or with P* and xeH0 then TxeH0.

Proof. The first parts of the theorem follow from Lemma 2.1
w

TPnx ~ 0.
and Theorem 1.1. Now if TP = PT and Pnx >0 then PnTx =

W Λ

x >0.
Applications.

l Markov processes.
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a. If lim μ(xn eAΠxoeA) = O then lim μ(xn eAf]xoeB) = O and

lim μ(x0 eAf]xneB) = 0 for every set B.

b. Let limμ(xneAf]x oeA) — μ(x0e A)2. Put x = I(x0eA) — μ(x0e A).
(Provided that μ(Ω) <co so that 1 e L2).
Then

(P(l) a, x) = (I(xn eA)- μ(x0 e A), I(x0 eA)- μ(x0 e A))

= μ(xnGin«flG4)- μ(x0ei)2->0.

Thus for every Borel set B:

lim (I(xn eA) - μ(x0 e A), I(x0 B)) = 0

or

μ(xneAf]xoeB)-^ μ(x0e A) μ(x0e B) .

Similarly

μ(xQ eAr)xneB)-> μ(x0 e A) μ(xQ e B) .

2 Measure preserving transformations* Let φ be a M.P.T. on
(β, Σ, μ). If μ{φ~n(A) f]A)->0 then

lim μ(φ~n(A) Π B) = lim j«(A Π 9>—(5)) = 0 .

if lim ^(^-W(A) Π A) = / (̂A)2 and μ(Ω)< oo then

3 Measure theory* Let μ be a positive finite measure on Borel
subsets of (0, 2π). Define the operator P by Pf(if) = eί5/(^). Then ί^
is the set of all functions / such that

Let feH0 and Aζ = {#||/(#)| ^ ε}. Define βrε = 1// on Aε and zero
elsewhere. Finally let

Then jPε commutes with P and by Theorem 3.1

where A= U Az.
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By taking unions of such sets one can prove:
There exists a set B such that for every h whose support is contained
in B a.e.

and this holds only for such functions.

2. Positive contractions* In this section we assume that H is the
real Hubert space L2(Ω, Σ, μ) where μ Ξ> 0 and μ{Ω) = 1. An operator
S will be called positive if:

a. If / ^ 0 a.e. than Sf ^ 0 a.e.
b. SI = 1.

We will assume that P is positive. It is easily seen that so are
P*, P*P*n and P*nPn.

LEMMA 1.2. Let S be a positive operator on L2(Ω, Σ, μ). The space

is generate by characteristic functions of a a subfield, Σr, of Σ:
feL if and only iff is Σr measurable.

Proof. Let Σr contain all σ e Σ such that SI(σ) = I{σ). If Sf = /
then

li/ll2 ^ (SI/I, I/I) ̂ |(S/,/)|HL/Ί|2

hence S|/ | = |/ | therefore if /, g e L so do max (/, g) and min (/, g).
This shows in particular that Σr is a field and since L is closed it is
a σ field.

Now if feL so does / — c for any constant, thus it is enough to
show that

Let /+ be the positive part of /, 2/+ = |/ | + / e L. Thus ε"1 min (e, / + ) 6 L
but as ε—>0 this converges to I{ω\f(ώ) > 0}.

This Lemma was proved in [8].

THEOREM 2.2. The space K is generated by characteristic functions
of a σ subfield Σx of Σ. Ifσe Σ1 then PI(σ) = I(τ) where τ 6 ΣΎf

similarly for P*.

Proof. The space K is the intersection of the space
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{ / 1 1 1 ^ / 1 1 = 11/11}, {f\\\P* f\\ = \\f\\} n = i , 2 , •••

By Lemma 1 each of this is generated by a σ subfield of Σ. Thus
K is generated by the intersection of these subίields.

Now if σeΣ1 then σr = Ω-σeΣ, too. The functions P(I(σ)) and
P(I(σ')) are positive, bounded by 1 and (P(I(σ)), P(I(σ'))) = (P*P(I(σ)),
J(σ')) = (I(σ), I(σ')) = 0. Moreover P(I(σ)) + P(I(<x')) = 1, therefore,
both functions are characteristic functions. As K is invariant under
P these are characteristic functions of sets in Σl9

Let I(A) and I(B) belong to K. Then

min

-On the other hand

or

Therefore

It could be shown that if f, g e K and f-geL2 then P(/#) = P/ Pflf
Thus if P/ = α:/ and Pβr = /5̂ r where | α | = \β\ = 1 then f,geK

and if / flrLa then P(/βr) - α/3/̂ f.
If Pf = α:/ where | α | = 1 let / = |/ |λ then:

"Therefore, P | / | = |/ | necessarily Ph = ah. It follows that

This is a Theorem of [8].
Following [1] let us define:

Doeblin's Condition. There exists a positive finite measure v define
«on Σ, and a positive e such that: If v{σ) < ε then for some n either

or

Using the same arguments as in Theorem 3.11 and its corollaries
<of [1] we conclude.
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THEOREM 3.2. // Doeblin's condition holds then Σ1 = {σlf , σn}
where σ{ are disjoint sets such that

1. \JUσt = Ω
2. P%I(σ()) = I(σ<) = P* (I(σ<)).
3. The operator P(P*) acts as a permutation on the σ{ sets.
4. For each f, g, e L2

lim (P *+-/t g) = ± μiσ,)-1 \ f(a>)μ(dω) \ g(ω)μ(dω)

where PaOi denotes the set whose characteristic function is Pa{I(σ$)*

Thus if xn is a Markov process and μ(Ω) = 1 then

lim μ(xkn+d eAf]xo£B) = Σ K^d'1^^ e i ί l σ^μ(xQ e B Π P ^ ) .

For detailed proves of these results and treatment of the case μ{Ω) —
co in the case of Markov processes see [1] and [3].

Measure Preserving Transformations. Let φ be a measure pre-
serving transformation on (β, Σ9 μ). The operator P is defined on
L2(Ω, Σ, μ) by P/ = g where g(ω) = f(φ(ω)). It is a positive contraction.
Thus the space K is generated by all characteristic functions f
that satisfy | |P* W / | | = | |/ | |, for P is an isometry. Let the restriction
of P to K be denoted by U and let Σx be the Boolean algebra that
generates K. On Σx ψ acts like a measure preserving invertable trans-
formation. (It maps 2\ onto itself).

We will use here the terminology of [5]

THEOREM 4.2. The transformation φ on Σ is ergodic, weakly-
mixing or strongly mixing, if and only if, ψ on Σx is ergodic, weakly
mixing or strongly mixing, respectively.

Proof. It is clear that if P satisfies any of the requirements so
does U. Conversely:

a. Let U be ergodic. If P was not then for some nonconstant
function /, Pf = /. But then Pnf = P*w/ = / and fe K, so U is not
ergodic.

b. Let U be weakly mixing. Given f — fι + f2 where fx 6 Kf2A_K
then for every g

- Σ I(P'/, o) - (/, 1) (i, ff)l s* - Σ l(P'/i, 0) - (Λ, i) (l, 0)1
% 3=0 n 3=0

+ Σ
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The first term tends to zero because U is weakly mixing and g
-can be replaced by the projection of g on K. The second term is equal to

-*£\(PJA,g)\

n J=O

for (/2,1) = 0. Thus it tends to zero with (Pnf2, g).

c. Let U be strongly mixing. Put again / = fx + f2 Pnfλ tends
weakly to (fu 1) 1 = (/, 1) 1 and Pnf2 tends weakly to zero.

COROLLARY. The transformation φ is weakly mixing, if and only
if, P has on the unit circle no eigenvalue except for 1 which is a
simple eigenvalue.

This generalizes the 'Mixing Theorem' in [5] page 39.

Proof. The operator U satisfies the same condition and by the
'Mixing Theorem' is weakly mixing. By the previous theorem so is P.

3. The space Hc.

DEFINITION. HC = {x \ x e K and the set Pnx n — 1, 2, is con-

ditionally compact}.

The set Hc is a subspace of H, invariant under P and P*. Pn%x
•converges for xeK iff (Pnίx, Pnjχ) -* n < > n j ^ \\x\\\ This is equivalent
to (P*nix, P*nΐχ) —> || x ||2 because P is unitary. Thus P could be replaced
by P* in the definition.

THEOREM 1.3. The following conditions are equivalent:
a. xeK and Pnx contains a convergent subsequence.
b. There exists a subsequence m{ such that x — lim Pmix.
c. limsup|(Pχ x)\ = \\x\\\

Proof.
a=>b: Let Pn%x —> y then

P**x, Pn^x) = lim ( P 7 ^ - ^ , x)

because xeK.
Hence 11 x - P»<-»*-iα? 11 -* 0.
6 => c: obvious.
c=>α: Let l im |(P w ^, x)\ — \\x\\* and weak limP n ίx = y. Then

KlΛ ^)l — \\x\\2 while | |y | | ̂  | | Ώ | | hence y ^ ax where \a\ = 1.
From [7] page 79 P f̂l? converges strongly to ax. Finall if Ze Ho then:
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(Z, x) = lim cr\Z9 Pn*x) = lim a^(P^Zf x) = 0 .

It is clear that if xeHc then condition (a) is satisfied hence the*
other conditions. In particular Hc J_ Ho.

THEOREM 2.3. If xeHe and y = lim^*, Pnίx then there exists α~
subsequence k; so that

x = lim Pkiy .

Proof Let k{ be chosen so that

x = limPni*kix

Then

l i m p - Pkίy\\ = lim||P"*α? - y\\ = 0 .

4* Finitely many limits. Let $ be such that the sequence (Pnx, x}
has finitely many limits. Let these be cl9 c2, , cr where \Ci\ ̂  | c < + 1 | .

DEFINITION C. L = {z \ Pnz = z for some w}. If z e L then az e L.
lί zeL and yeL then:

Pw« = ^ , Pmy = y=> Pnm(z + y) =, z + y .

Thus L is a linear manifold, also LczHc.
If zeH let {z}° be the set consisting of z alone and {̂ }Λ be the-

set of all weak limits of Pmy where y e {z}n~ι.
Let x = a?0 + a?! where #0 € iϊ 0 ̂  J_ Ho. Then

(P α, α?) = ( P X α?0) + ( P X , ̂ ) , lim ( P % , α?0)^ 0 .

Thus we will assume that x J_ Ho.

LEMMA 1.4. For some k {x}k n L Φ 0.

Proof. Let 0 ^ | / e {sc}1 then for every w (̂ /, Puα?) is equal to onê
of the values c{ and:

a. For every n ^ 0 (Pwi/, ?/) can assume only the values c %

l ^ i ^ r .
Let (2/, y) = |Ci| If for some k \{Pky, y)\ = (y, y) then Pky = λy

with | λ | = 1. Thus λ must be a root of one for {Pnky, y) — Xn(y, y}
assumes finitely many values. Therefore in this case yeL.

If I (Pny, y) I < (y, y) for every n then

lim sup I (Pny, y) \ < (y, y) .
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Also lim sup (Pny, y,) Φ 0 for y _L Ho. Thus we may choose a
subsequence n{ so that P%iy will converge weakly to z Φ 0. Now 2
satisfies a and | |s | | < ||l/|| by Lemma 2.1.

This procedure cannot be continued more than r times thus at
some stage we must get an element of L.

LEMMA 2.4. If u is the projection of x on L then ueL.

Proof. Let 0 Φ y e {x}k Π L. Then y e {u}k + {x - u}\ Now yeL

and x — u _|_ L. Also L is invariant under P and P* hence {a? — u}k 1_ L
and #e{^}*. By Theorem 2.3 uelP^} which is a finite set in L.

THEOREM 3.4. // the sequence (Pnx, x) has finitely many limits
then x = x0 + x1 where x0 e Ho and x1 e L.

Proof. Let x1 = u + v where ueL (by Lemma 2.4.) and v J_ L.
Now (Pnv, v) = (Pn%l9 #i) — (Pnu, u) has finitely many limits and by
Lemma 1.4 cannot be orthogonal to L unless it is zero.

If limit (Pnx, x) exists then Px1 = xλ.
If L is one dimensional (for instance ergodic transformations) then

the conditions of Theorem 3.4 imply that Pxx = xτ.

THEOREM 4.4. Let A = {x the sequence (Pnx, x) has finitely many
limits). If linear combinations of elements of A are dense in H, then
the eigenvalues of P on the circumference of the unit circle, are roots
o / l .

Proof. Let Px = Xx where |λ| = 1. Let ^ e i and y = Σa^i
where \\x - y\\< l/2||a?||.
Since x ± Ho we may assume that for some integers k{ P

kixi = xiΛ

Hence for k = kxk2 kn we have Pky = y. Thus

Xkmx = Pkmx = y + Pfew(a; - ?/) .

Therefore

This equation cannot be satisfied for all values of m unless Xk is a
root of 1.

5 Semi groups of contractions. Let P(t) be a strongly continuous
semi group of contractions 0 ̂  t. For every <5 > 0 P(δ) defines the
subspace K(δ) as in Theorem 1.1.

LEMMA 1.5. x e K(δ) if and only if
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?|| = | | a ? | | 0 ^ t

Proof. Trivially the condition is sufficient. If x e K(δ) and t ^
nδ then

| | 0 | | = \\P(nd)x\\ = \\P(nδ - t)P(t)x\\ ^ \\P(t)x\\ £ \\x\\ .

Thus \\P(t)x\\ = ||a?|| and similarly | |P(ί)*»ll = ll»l|.

Thus all the spaces K(δ) are the same and will be denoted by K.

THEOREM 2.5. The space K is invariant under P(t) and P{t)*
for all t. On K P(t) is unitary. If x _1_ K then

weak lim P(t)x = 0

ί-»oo

and by symmetry

weak lim P(t)*x = 0 .
t-*oo

Proof It was shown that K = K(t) hence by Theorem 1.1 K is
invariant under P(t) and P(£)* and P(t) is unitary on K.

Let a? J_ ίΓ and let y e H and ε > 0 be given. Choose η so that

\\P(s)x - x\\ < ε. if s ^ η .

Choose w0 so that

I (P(^)a?, ») | < ε if n ^ w0 .

This is possible by Theorem 1.1. If

then

I(P(t)x, y)\^\{P{nη)x, y)\ + \(P(t)x - P(nη)x9 y)\ .

The first term is less than ε because n > n0. The second term
is bounded by

\\y\\ \\P(t)x - P{nη)x\\ = \\y\\ \\P(nη){P(t - nη)x - x ) | |

for 0 ^ t - nrj ^ η.
This is proved also in [9] Theorem 4.
Let us assume in this section:

(*) For some t0 > 0 the operator P(t0) P(ί0)* is the sum of a compact
operator and an operator of norm less then one.
This is equivalent to:
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(**) For some 0 < tQ the point 1 is isolated in the spactrum of
P(t0) P(£o)* and the space of eigenvectors -corresponding to it is finite.

It is clear that (**) implies (*). Now if 1 is not an isolated point
of the spectrum, with finite eigenvectors space, there is a sequence
of orthonormal vectors xn such that

\\P(to)P(to)*xn-xn\\-+O.

(We use here the fact that P(t0) P(t0)* is self adjoint). Let

P(ί0) P(ί0)* = A + B

where B is compact and ||A|| < 1. Then

\\Axn + Bxn-xn\\-+b .

But B is compact hence Bxn —• 0 hence

and 1 is the spectrum of A contrary to assumption.
It is easily seen that P(t) P(t)* satisfy, also, the condition if t > tQ:

P(t) P(tr = P(t - to)P(to)P(to)*P(t - to)*. Let

K(t) = {x\\\P(t)*x\\ = ||a?||} - {x\P(t)P(t)*x = x} .

Then Kfa) c K(t2) if ίx > t2 and K{t) is finite dimensional when
t^t0.

For some s > 0 dim i£(s) is minimal hence K(s) = iί(s + fc) for all
A ^ 0. Let us denote K(s) by if.

LEMMA 3.5. The space K is invariant under P(h)* and P(h) for
all h>0.

Proof. If xeK then xe K(s + h) hence

hence

or P{hYx G K.

Now on the finite dimensional space K, the operator P(h)* is norm

preserving and therefore onto.

If x e K then for some yeK P{h)*y = x and ||α?|| = \\y\\. Thus

P(h)x = yeK.
We may assume that s ^ £0.
The subspace if1 is also invariant under P(t) and P(ί)*. Now
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P(s) P*(s) is quasi compact on K and

(P(s)P*(s)x9x)<l %eKL .

Hence on K1 | |P(β)|| = c < 1:
The operator P(s) is quasi compact on H (in the sense of (*).

Let A be the infinitesimal generator of P(t) then:
1. On K the operator (XIi)A is self adjoint.
2. On K1-

σ(A) c {λ I Re λ ^ α>0}

where

ω0 = l imr 1 log | |P(ί) | | .

See [6] corollary to Theorem 11.5.1
Now

ω0 - lim(ns)-1 log 11 P(ns) \ | ^ lim(^s)-1 log 11 P(s) \ \n ^ s"1 log c < 0 .
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THE STRUCTURE OF THE ORBITS AND THEIR
LIMIT SETS IN CONTINUOUS FLOWS

N. E. FOLAND

1# Introduction. If / is a mapping of a product space X x Y
into a space Z, then the image of (x,y)eXx Y under / is denoted
by xy. A continuous flow j^~ on a metric space X is a continuous
mapping / of the product space X x R, where R is the space of real
numbers, onto X such that (1) for each r e R, xr is a homeomorphism
of X onto X and (2) for each x e X and r,seR, (xr)s = a?(r + s).

For each a e l the sets O(x) = {xr \ r e R}, O+(x) = {xr\r ^ 0},
O-(x) — {xr I r ^ 0} are called the orbit, positive semi-orbit and nega-
tive semi-orbit of x under ^~, respectively. The orbit O(x) is either
(1) a point, (2) a simple closed curve, or (3) a one-to-one and con-
tinuous image of R. In general one can not replace (3) by (3') a
homeomorphic image of R.

Bebutoff [1] has given necessary and sufficient conditions that the
entire collection of orbits of a continuous flow be homeomorphic to a
family of parallel lines in Hubert space. In the second section of
this paper we solve the simpler problem of describing those points
of an arbitrary metric space with orbits homeomorphic to R. These
will be the points which are neither positively nor negatively re-
current.

In the last section we discuss the structure of the orbit family
of continuous flows on a 2-cell, with special attention being given to
the a and ω limit sets of an orbit [5; 6; 7]. The author wishes to
acknowledge the referee's assistance in condensing the original paper.

2* The topological nature of the orbits under a continuous flow.
Consider a metric space {X, p} and a continuous flow ^ on X. The
following definitions are well-known in Topological Dynamics:

DEFINITION 1. A point xeX is said to be a rest point under
j r if

xr — x

for each r e R.

Received December 7, 1961. The material in this paper was included in the author's
Doctoral Dissertation submitted to the University of Missouri, Columbia under the
guidance of Professor W. R. Utz. The research was supported, in part, by the United
States Air Force through the Air Force Office of Scientific Research and Development
Command.
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DEFINITION 2. A point xe X is said to be periodic under JΓ and
J^~ is said to be periodic at x if there is a teR,tΦQ, for which
xt = x. If ^ is periodic at a non-rest point x, then the smallest
positive number w e R for which #w = x is called the primitive
period of #.

DEFINITION 3. A point x e X is said to be positively (negatively)
recurrent under JF if for each ε > 0 there exists a strictly increas-
ing (decreasing) sequence {rj of points of R such that l i m ^ r4 =
+ co(— oo) and

/ofari, a?)< ε

for all i.

THEOREM 1. The point x is neither positively nor negatively
recurrent if and only if Φ: R—>0(x) defined by Φ(t) = xt, teR, is a
homeomorphism.

Proof. Since the mapping /: X x R —> X is continuous, it follows
that Φ is continuous. Assume that x is neither positively nor nega-
tively recurrent. It follows that x is not periodic and thus Φ is a
one-to-one map of R onto O(x). Let {xt{ \ i = 1, 2, •} be a sequence
of points of 0{x) converging to xt0. To prove that Φ~x is continuous it
is sufficient to prove that l i m ^ ί* = ί0. If this is not the case, either
the sequence {£J contains a subsequence which is unbounded and x is
either positively or negatively recurrent or the sequence {£;} contains
a subsequence converging to s Φ ί0, and a? is a periodic point. We
conclude that Φ~x is continuous and Φ is a homeomorphism.

Now suppose Φ is a homeomorphism and suppose x is positively
recurrent. Then there exists a sequence {t{ \ ti e 22, i = 1, 2, •} with
lim^oo U — + co and such that lim ôo xt{ — x. But then, since Φ~ι is
continuous,

oo = lim U = lim φ-\xU) = Φ~\x) = 0 .
i—»oo i—>oo

Thus a? is not positively recurrent. Similarly, x is not negatively
recurrent.

The proof is completed.

THEOREM 2. Let xe X and let O(x) be homeomorphic to R. Then
x is neither positively nor negatively recurrent.

Proof. By assumption there exists a homeomorphism h of R
onto 0{x). Then x is not a periodic point. For if x is a periodic
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point, 0(x) is either a point or a simple closed curve which is homeo-
morphic to a circle. It follows that xtλ = xt2 implies tx = ί2.

Let reR and let h(r) = #£. Then £ is uniquely determined. Let
ψ: R-+ R be defined by ψ(r) = ί. Since fe is an onto homeomorphism,
^ is an onto map and ψ is one-to-one. Let φ:R-^O(x) be defined
by Φ(t) = xt, te R. Then φ is continuous, onto and one-to-one, and
ψ~x — h~λφ and thus ψ~τ is continuous. Now ψ~x is a continuous,
one-to-one, onto map of R onto i? and hence is a homeomorphism.
Since ψ — hψ'1, it follows that Φ is a homeomorphism and from
Theorem 1 we infer that x is neither positively nor negatively re-
current.

3 The stucture of the ct*a.nd 0)-limit sets in a continuous flow
on a 2-celU Let X be an open or closed 2-cell, that is, a homeomorphic
image of the interior of the unit circle or of the unit disk. Let j^~
be a continuous flow on X and let A c X be the set of rest points
under ^~.

We recall the following definition due to Whitney [9] (cf., also,
[8]).

DEFINITION 4. A closed set S c X is a local section of J^ if
there exists a τ e R, τ > 0, such that for each x e S

{xt\\t\^τ} n s = x .

If x e S, then S is called a iocαϊ section through x.
Whitney [9] (cf., also, [5]) proved, for the spaces under discussion,

that for each xe X — A there is an arc S c X such that S forms a
local section of ^ through x. Using this Whitney [9] (cf., also, [5])
proved the following:

LEMMA 1. If x e X — A, then there exists a local section S of
J?~ through x such that the set

E={yt\yeS,\t\^τ}

can be mapped homeomorphically onto the closed rectangle \u\ ̂ 1 ,
I v I ̂  1 in such a way that the arcs {yt | 11 \ ̂  τ}, for yeS, become
the lines v = constant of the rectangle while S has image u = 0,

The local section S of Lemma 1 divides the interior of the set
E into two disjoint subregions.

DEFINITION 5. Let x, S, and E be as in Lemma 1. That one of
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the two regions into which S separates E> which the orbit O(x) of x
enters under increasing values of r, will be termed (after Bendixson
[3]) the positive side S f of S. The other region will be termed the
negative side S~~ of S.

LEMMA 2. Let x, S, and E be as in Definition 5. Then each orbit
which enters E crosses S from S~ to S+ under increasing values of r.

Proof. Suppose the contrary. Then there exists a sequence {y{}
of distinct points of S converging to y e S such that the orbit O(y^
of each y{ enters one of the two regions S+ or S~ under increasing
values of r, while the orbit O(y) of y enters the other region under
increasing values of r. Thus for any t such that 0 < t < τ the points
y{t and yt lie in disjoint subregions of E. This is impossible since
lim^oo y{t = yt.

Let S be any local section of j^~ and let yeS. Let S~ and S+

be as in Definition 5, it follows from Lemma 2 that S~ and S+ are
independent of y. Thus if O(x) is any orbit such that O(x) Γ\ S Φ 0,
then each crossing of S by O(x) is from S~ to S f under increasing
values of r. Let the orbit O(x) meet S in successive points xf and
%" in the positive direction on 0{x), then x is an interior point of
X and (x'x") U Slf where (x'x") and Si denote the subarcs joining
x' and x" of O(x) and S, respectively, is a simple closed curve lying
in the interior of X. Let C = {x'x") U Slf it follows that X - C
consists of exactly two components. Denote by C+ that component
of X— C which lies on the positive side S+ of S along S± and by C~ the
other component of X — C. Any simple closed curve C determined
in this manner will be termed a harbor [7].

LEMMA 3. If C is a harbor, then the positive semi-orbit O + (y)
of each y£C+ lies in C +

 y and the negative semi-orbit O^(y) of each
y e C~ lies in C~.

Proof. If yeC+ and 0+{y)f] C~ Φ 0y then O+(y) must first
cross S on Sλ and hence cross S from S+ to S~~ under increasing
values of r which is impossible. If yeC~ and 0-{y) Π C+ Φ 0, then
O-(y) must first enter C+ on S1 crossing from S~ to S+ under de-
creasing values of r which is also impossible.

Using Lemma 3 one can construct a very short proof of the
following result proved by Bohr and Fenchel ([4], Vol. II, C38).

If x is a positively or negatively recurrent point of X under
^ r , then x is periodic under ^ .

Since the only points of X with orbits not homeomorphic to R
are those which are either positively or negatively recurrent, it follows
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that (3) may be replaced by (3') for continuous flows on 2-cell. Thus
if xe X, then the orbit O(x) is either a point, a simple closed curve,
or a homeomorphic image of R.

DEFINITION 6. A point y e X is said to be an ω-limit (a-limit)
point of an orbit 0(x) c X if there exists a strictly increasing (de-
creasing) sequence {rj of points of R such that l i m ^ r< = +co(—co)
and lim^oo xr{ = y. The set of all ω-limit (tf-limit) points of an orbit
Ό(x) will be denoted by w(x) (a(x)).

THEOREM 3. If x is a nonperiodic point of X under ^ , then
<o(x) Π oc(x) c A.

Proof. Suppose there exists a point y in the set ω(x) Π oc(x) — A.
Choose a local section S of ^ through y. Then, since y e ω(x) f] a{x),
O+(x) and O-(x) must both cross S an infinite number of times near
y. Thus an arc {x'x") of O(x) and a subarc Sx of S form a harbor
C. Let p and g denote the end-points of S and assume the labeling
so that the order p, x\ x", q holds on S. Then the half-open subarc
{pxf) — xf of S lies in C" while the half-open subarc (x"q) — x" of
S lies in C+. Now 2/gSi since O(x) can not cross S on Si. If
y € (p#'), then ?/ ί ω(ίc) since the positive semi-orbit 0+{x") from x"
on lies in C+. Thus y£{pxr). If ye{x"q), then ί / ? φ ) since the
negative semi-orbit O_(#') from a?' on lies in C~. Thus y£(x"q).
This is a contradiction of the fact that # e S and y e ω(x) Π a(x).
Hence the theorem is proved.

Throughout the remainder of this section X shall denote a closed
2-cell. Then X contains at least one point a such that a is a rest
point under the continuous flow J^" [2]. Thus A Φ 0. Let F denote
the family of orbits {O(x) \ x e X — A}. Then each member of F is
either an open arc or a simple closed curve. Since X is compact
each of the sets ω(x), a{x) for any x e X is a non-null closed and con-
nected subset of X and is the union of points of A and curves of F
;[8]. It follows from a theorem due to Kaplan [5] that ω(x){a(x)) is
identical with any nondegenerate periodic orbit contained in ω(x)
(a{x)). Thus the set ω(x)(a(x)) is either the union of points of A
and open arcs of F or a simple closed curve of F.

THEOREM 4. Let A be a totally disconnected set. If z is a non-
periodic point in O(x) — 0{x), then O(z) is an open arc whose closure,
0{z), is either a closed arc with end-points in A or a simple closed
curve consisting of the orbit O(z) together with a point of A.
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Proof. The theorem will be proved when it is shown that a)(z)
c A and a(z) c A, since each of the sets ω(z), a(z) is connected and
A is totally disconnected.

Thus suppose y e ω(z) — A and let S be a local section of J^~
through y. Then O+(z) must cross S an infinite number of times
near y. Thus there exists successive points z\ z" in the positive
direction on O+(z) such that z e O-(z') — z' and z\ z" e S. Let C be
the harbor formed by the arc (z'z") of O(z) and the subarc Si of S
between z' and z". As in the proof of Theorem 3, y and 0+{z") — 2"
lie together in C+ while O_(«) c C~. Since O(a?) — O(cc) Φ 0, α? is a
non-periodic point. Thus, by Theorem 3, z is in exactly one of the
sets Q)(x), a(x). z e ω(x) implies O(z) c ω(x) and z e a(x) implies O(z) c
a(x). If z e ω{x), then O+(x) must cross S entering C+ under increas-
ing values of r. By Lemma 3, O+(x), from where it enters C+ on,
lies in C+. Then α>($)cC+ which is impossible since 0(z)aω(x)f

0-{z)aC~ and a(z) φ 0. Thus 2 6 φ ) . Let U(z) be a neighborhood
of z such that Z7(z) c C~, and let α?' be a point on O(a?) in U{z).
Then, by Lemma 3, 0-{xr)aC~. This together with yeC+ implies
y ί α:(ίc) which is a contradiction of O(z) c α($). Hence 2; g α(aj). But
2 is in one or the other of the sets Q)(x), a(x). Thus the assumption
that ω(z) — A Φ 0 is false and ω(z) a A. In a like manner a(z) c A.
It follows that lim^+oo zt = ω(2;) e A and lim -̂βo zt = a(«) G A. Thus
O(js) = O(«) U o)(z) U α(«) is a closed arc with end-points in A or a
simple closed curve consisting of O(z) and a point of A according as
ω(z) Φ a(z) or ω{z) — a(z).

The proof of the theorem is completed.

THEOREM 5. Let A be a totally disconnected set and let xe X —
A be such that 0{x) ί l A ^ O . Let a e ω(x) n A (a(x) f] A), and suppose
ω{x) Φ a (a(x) Φ a). Let G(a) = {O(z) \0{z) = O(z) Ua,ze O(x) - 0{x),
z Φ a}. Then G(a) is an at most countable set of open arcs, and if
G(a) = \Jn=iDn ^ infinite, and if {yn} is any sequence of points with
yn e Dn, then l i m ^ yn = a.

Proof. Let DeG(a). It follows that D is the orbit of a point

z e 0{x) — O(x) — A, and D = D U a is a simple closed curve. For
each DeG(a), let JO* denote the interior of D. Then if D3 and Dfc

are distinct members of G(α), the sets D) and Z)̂  are either disjoint
or one is a proper subset of the other. If Ό) c Dι

k9 then Dfc must
contain G(a) — Dk, since then 0{x) c Z>ί. Such a member of G(a) will
be termed a boundary arc of G(a). Clearly G(a) can contain at most
one boundary arc. Also, if Όά and Dk are distinct members of G(a),
neither of which is a boundary arc of G(a), then D) and Dι

k are
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disjoint. It follows that G(a) consists of an at most countable set
of open arcs.

Suppose that G(a) = \Jζ=1 Dn is an infinite set of open arcs. Let
{yn} fce any sequence of points with yn e DnJ and let lim%_co yn = z.
The proof of the theorem is completed by showing z — a. In order
to show z — a, it is first shown that zeA. If z g A, let S be a local
section of j ^ ~ through z. If Dk is not a boundary arc of G(α), then
z ί Dl. Since G(a) has at most one boundary arc, the removal of a
boundary are will not alter lim^^y^ Thus suppose G(a) has no
boundary arc. Then zeX — H, where H = U~=iD%

n. No Dn can
cross S more than once, since Dn is an orbit and Dn is a simple closed
curve. For each n, let Z^ denote the exterior of Dn. Then if S
crosses Dn, S must pass from Dι

n to Dp

n. But then S can cross at
most two Dn$. Hence ze A, for limπ_oo yn — z implies that an infinite
number of O(yn) = Dn intersect S. That z — a is shown next. Con-
sider the subarcs of Dn joining yn and a. From this sequence of arcs
we can choose a converging snbfequence converging to a set B. I t
follows that both z and a are in B. If be B, a Φ b Φ z, then b is
the limit of a sequence {^ J with y'njc e Dnjc. Thus, by the same
argument used to show ze A, it can be shown that be A. But the
set B is connected [10] and A is totally disconnected, hence z =
α = B.

This theorem is a generalization of a theorem due to Kaplan [7],

THEOREM 6. Let Abe a totally disconnected set and let xe X — A
be such that ω(x) Π A = UίUi °̂  iaix) n i = UίUi °O. T ^ w ω(x) (a(x))
consists of a finite number of open arcs, each of which is an orbit
joining distinct elements of \Jl=1 an together with |J^=i G(an)

Proof. Consider the sets G{an), n = 1, 2, ••-,&. Let G*(an) de-
note the point set union of all open arcs in G(an). One can easily
show that the point set closure of G*(an) is G*(an) U an and that
G*(a,i) Π G*(αy) = 0 for α, Φ αy. The set w(x) (a(x)) is connected. By
Theorem 4, the orbit of any point in ω(x) — Uί-i G(αw) ( φ ) — UίUi
G(an)) is an open arc terminating at distinct points of Un=i ctw. Thus
each α* must be joined to some a5 (i Φ j) by the orbit of some point
in o)(x) (a(x)). Clearly, no two an's are connected by more than two
such arcs. Hence, w(x) (a(x)) contains only a finite number of arcs
joining distinct αn 's. Thus the theorem is proved.
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ANALYTIC MEASURES

FRANK FORELLI

1. In this note we consider from a measure-theoretic point of
view the Helson-Lowdenslager generalization to compact abelian groups
of the F. and M. Riesz theorem on analytic measures [3]. Our con-
tribution to this matter is the proof of Theorem 1. From Theorem
1 the Helson-Lowdenslager generalization readily follows. That which
is new here is the proof of Theorem 1. For the most part, the state-
ment of Theorem 1 can be obtained from the generalization in [3] of
the F. and M. Riesz theorem.

We have a second theorem (Theorem 2) which is about analytic
measures (Theorem 1 is not) and which adds to the information about
analytic measures given in [3]. Although Theorem 2 does not appear
in [3] it can be obtained from the generalization in [3] of the F. and
M. Riesz theorem, and we will indicate how this may be done at the
end of the proof of Theorem 2. In recent work (completed before
our work was undertaken) de Leeuw and Glicksberg have found a
generalization of the F. and M. Riesz theorem which includes Theorem
2 and much more. Nevertheless, it is hoped that the proof of Theorem
2 given here will be of interest.

Although the proof of Theorem 1 is given in the language of
harmonic analysis, we wish to point out that the argument is valid
in the more general context of Dirichlet algebras. This however is
not true of Theorem 2.

2 Throughout G will denote a compact abelian group with Haar
measure σ and with dual group Γ. Following [3], a subset S of Γ
is said to be a half-space if S is closed under multiplication and if
for each χ in Γ one and only one of the following occurs:

v c C

We will assume that Γ contains half-spaces and in all that follows S
will denote a fixed half-space in Γ.

M(G) is the space of all regular Borel measures on G. v in M(G)
is said to be analytic (more accurately analytic with respect to S) if
the Fourier transform v vanishes on S:

iv = 0

Received August 10, 1962. This work was supported by N.S.F. grant G-14362.
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for χ in S.
A is the algebra of continuous analytic functions on G: f belongs-

to A if and only if / belongs to C(6) and

f(X) - \ϊfdσ = 0

for χ in S. A nonnegative measure μ in M{G) with total mass one;
and such that

\fgdμ =

for all / and g in A is called a representing measure for A. Among
the representing measures is the measure σ.

It is important that the linear space of analytic measures is an
A-module: if v is analytic and / i s in A, then fv is also analytic.

The classical example of this abstract situation is the case in which
G is the circle group, Γ the integer group, and S the positive integers.
A is then the algebra of continuous functions on the circle whose
Fourier coefficients vanish for negative indices, and the representing
measures (other than normalized Lebesgue measure and the unit point
masses) are the Poisson kernels μr (0 < r < 1) and their translates:

μr - Prσ

Pr(x)

The celebrated theorem of P. and M. Riesz [4] states: An analytic-
measure on the circle is absolutely continuous with respect to Lebesgue
measure.

As usual, | | / | U is the supremum norm of / for / in C{G), \v\ is

t h e total variation of v and \\v\\ the total variation norm of v for v•

in M(G), and * is convolution.

3* THEOREM 1. Let μ be a representing measure for A and let
v be any measure in M(G). Then there is a sequence fn in A such,
that

(1) IIΛIU^i
(2) / . — I a.e. μ

(3) \\f,v-v.\\-*0

where

v = va + vs

is the Lebesgue decomposition of v with respect to μ:

va < μ , v.±μ.



ANALYTIC MEASURES 573

Both the statement and proof of Theorem 1 should be compared
with earlier work done by Helson in [2] for the circle group.

Because vs is a regular measure singular with respect to μ, we
may choose a sequence En of compact sets such that

•(4) \

(5)

Now choose a second sequence Fn of compact sets such that En and
Fn are disjoint and

( 6 ) μ(G ~ Fn) S 1/n4 .

Let vn be a real continuous function on G such that

(7) -2n ^vn^0 on G

( 8) vn = 0 on Fn

( 9 ) vw = -2w on En

and let ί/% be a real trigonometric polynomial such that

(10) -2n ^ gn ^ 0 on G

(̂ rw may be obtained by convolution of vn with an approximate identity
consisting of trigonometric polynomials).

Denote by gn the trigonometric polynomial conjugate to gn. Here
we mean conjugacy relative to the half-space S: conjugate to the
trigonometric polynomial

Σa(X)X

is the trigonometric polynomial

Σ-ie(χ)a(χ)χ

where

1 if X e S

e(χ) = 0 if χ = 1_

- 1 if χ e S.

Now let

Then kn belongs to A, the real part of kn is gn, and
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(12)

Finally let

fn = ̂ n .

Then fn also belongs to A and, because of (10), satisfies (1).
(9) and (11) give

l/ l ^ β - on

and thus

From (1) and (4)

and combining this estimate with the previous estimate leads to

(13) ll/Λll-0.

From (8) and (11)

t \9n\2dμ^l/n\

and from (6) and (10)

JG-Fn

Combining these two estimates gives

(14)

Now, since

2gn = K + kn ,

we have

(15) 4J| gn \
2dμ = 2^\kn \>dμ + ψndμ + ψndμ .

Moreover, since μ is a representing measure for A and because of (12),

(16) ψndμ = {^gndμj ^ 0 .

(15) and (16) combine to give
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and this inequality together with (14) shows that the sequence kn

converges to zero in the norm of L\μ). Therefore, passing to a sub-
sequence if necessary, we may assume the sequence kn converges to
zero almost everywhere with respect to μ, and now the sequence fn

satisfies (2).
The conditions (1) and (2) and the dominated convergence theorem

imply

(17) II/A-HJI-O.

Finally, (13) and (17) give (3).

Because the space of analytic measures is an A-module, statement
(3) of Theorem 1 gives the Helson-Lowdenslager theorem on analytic
measures [3, Theorem 7]:

COROLLARY 1. If v is analytic, then so are va and vs.

Helson and Lowdenslager found more than just the statement of
the corollary. They showed [3, Lemma 3]: If v is an analytic measure
singular with respect to Haar measure, then v has mean value zero.
This too follows from Theorem 1, but more is true.

THEOREM 2. Let v be an analytic measure which is singular
with respect to Haar measure. Then v*μ is singular with respect
to Haar measure for every representing measure μ.

Since v is singular with respect to σ, Theorem 1 (with σ in place
of μ) provides a sequence fn belonging to A such that

(18) I I Λ I U ^ i
(19) Λ - l a.e. σ

(20) I I Λ H I - o .

Now because v is analytic and μ is a representing measure for A,

(21) surely holds if v is replaced by a member of A. But since v is
analytic, v is in the weak-star closure of Aσ, and since convolution
is continuous in the weak-star topology for M(G), (21) continues to
hold for v.

This inequality and its proof are of course not new.
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(20) implies

and so because of (21)

\\(fn*μ)(v*μ)\\-*0

and this implies, passing to a subsequence if necessary,

(22) /.*/*-> 0 a.e. v*μ .

On the other hand, (18) and (19) imply, using dominated convergence,

(23) | | Λ - 1 | |

and therefore

(24) \\(f.*μ) - ill = II(Λ - i ) * j « | | - o .

Because of (24) we may assume, again passing to a subsequence if
necessary,

(25) fn*μ->ι a.e. a .

(22) and (25) show that v*μ and a are carried on disjoint sets,
and so they are mutually singular.

We mentioned in the introduction that Theorem 2 can be obtained
from the generalization in [3] of the F. and M. Riesz theorem. Indeed,
all that is required in our proof of Theorem 2 is a sequence belonging
to A and satisfying (20) and (23), and the existence of such a sequence
is implied (by using a standard argument) by Lemma 3 and Theorem
7 of [3].

4. Corollary 1 and Theorem 2 applied to the circle group give
the F. and M. Riesz theorem. For if v is an analytic measure on the
circle, the singular part with respect to Lebesgue measure, vs, is also
analytic. But vs*μr is absolutely continuous with respect to Lebesgue
measure. Therefore v8*μr is the zero measure, and this implies, as
fir does not vanish at any point of the integer group, that vs is the
zero measure.

There is also an F. and M. Riesz theorem for finite Borel measures
v on the real line R, which is sometimes proved by mapping a half-
plane conformally on the unit disk and using the F. and M. Riesz
theorem for the circle. We wish to show that Theorem 1 applied to
the Bohr compactification B of the line leads to an easy and, we believe,
natural proof of the Riesz theorem for the line.

v in M(R) is said to be analytic if
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3(ί) = (" e~utdv(s) = 0
J-oo

for ί < 0. B is the compact abelian group dual to R when R is given
the discrete topology. The mapping π of R into B defined by

(πs, ί) = eist

is a continuous isomorphism of R into #, and the image Bo of /ϊ is
a dense subgroup of B. Using the transformation on measures which
carries v in M(R) into v π~γ in M(B) we may identify M(R) with
those measures in iH(β) which are carried on Bo. Moreover the Fourier
transform of v in M(R) is the same whether we consider v as an
element of M(R) or as an element of M(B). For 0 < r < 1, the Cauchy
measure μr is the measure carried on Bo defined by

βr(t) = r"« .

Each Cauchy measure is a representing measure for the algebra A of
continuous analytic functions on B (here S is the set of positive real
numbers), and the Cauchy measures and Lebesgue measure are mutually
absolutely continuous.

With this brief description of B it is now easy to show: An
analytic measure on the line is absolutely continuous with respect to
Lebesgue measure.

Assume v is an analytic measure carried on Bo, and denote by σQ

Lebesgue measure (transferred to Z?o). Since the Cauehy msasures
and Lebesgue measure are mutually absolutely continuous, Theorem 1
provides a sequence fn belonging to A such that

(26) I I Λ I U ^ i
(27) fn -> 1 a.e. σ0

(28) l l / > - v α | | - > 0

where va is the absolutely continuous component of v with respect to

Consider a Cauchy measure μr. Because of (28)

(29) W(fn

Also, since v is analytic,

(30) (/̂

Now fn*μr converges pointwise to 1 on BQ, and this is important.
This is because of (26) and (27) and because a null set of μr remains
a null set when translated by an element of Bo.

Since v is carried on Bo, v*μr is also carried on BQ (and indeed
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σ0) and therefore, because / n *μ r converges boundedly to 1 on BQτ

(31)

From (29), (30), and (31) we obtain

v*μr = va*μr

which implies

^ = K

since μr does not vanish at any point of R.

5 Corollary 1 and Theorem 2 when applied to the Bohr group
give: If v is an analytic measure on B and v*μr is absolutely con-
tinuous with respect to Haar measure (for some 0 < r < 1), then v
is absolutely continuous. This is due to Bochner [1].
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ON A CLASSICAL THEOREM OF NOETHER
IN IDEAL THEORY

ROBERT W. GILMER

A classical result in the ideal theory of commutative rings is
that an integral domain D with unit is a Dedekind domain if and
only if D is noetherian, of dimension less than two, and integrally
closed. [8; 275]. The statement of this theorem is due essentially
to Noether [6; 53], though the present statement is a refined version
of Noether's theorem. (See Cohen [1; 32] for the historical develop-
ment of the theorem above.) Noether did not, in fact, require that
the domain D contain a unit element. By imposing greater restric-
tions on the prime ideal factorization of each ideal, she showed that
D must contain a unit element.

This paper considers an integral domain J with Property C:
Every ideal of J may be expressed as a product of prime ideals.

In particular, it is shown that an integral domain J with property
C need not contain a unit element. However, factorization of an ideal
as a product of prime ideals is unique and J is noetherian, of dimen-
sion less than two, and integrally closed.1 A domain without unit
having these three properties need not have property C. If J does
not contain a unit element, J is the maximal ideal of a discrete
valuation ring V of rank one such that V is generated over J by the
unit element e, and conversely. The structure of all such valuation
rings V is known. [4; 62].

If J is an integral domain with quotient field k, then J* will
denote the subring of k generated by J and the unit element e of k.
We will assume that all domains considered contain more than one
element.

If D is an integral domain, not necessarily containing a unit, and
if k is the quotient field of D, the definitions of fractionary ideals of
D, of sums, products and quotients of fractionary ideals, and of the
fractionary ideal (uu u2y , ut) of D generated by finitely many
elements uu u2, * ,ut of k, are generalized in the obvious ways. In
particular, D* is a fractionary ideal of D and if Sf is the collection
of all nonzero fractionary ideals of D, S^ is an abelian semigroup
under multiplication with unit element D*. A fractionary ideal F of

Received January 22, 1963. This research was supported by the Office of Naval

Research under contract number NONR G 00099-62.
1 A domain D with quotient field k is integrally closed if D contains every element

x of k with the following property: There exist elements do, di, "m,dn of D such that

xn+ι + dnx
n + + dix + do = 0 .
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D is said to be invertible if F has an inverse when considered as an
element of sf. A nonzero principal fractionary ideal is invertible and
(d)~x = (1/d). A product of fractionary ideals is invertible if and only
if each of the factors is invertible. [S; 271].

The following two lemmas may be proved by making minor changes
in the usual proofs given in the case of a domain with unit.
[8; 272-273]. While the proof of Theorem 1 is definitely a modification
of the usual proof for a domain with unit, the author feels enough
difficulties arise to prove Theorem 1 here.

LEMMA 1. If A is an invertible fractional ideal of the integral
domain D, then A~λ — D*: A. Further, A has a finite module basis
over D.

LEMMA 2. Suppose A is a proper ideal of the domain D such
that A may be expressed as a product of invertible prime ideals of
D. This representation is unique if DcD*, or unique to within
factors of D if D = D*.

Henceforth in this paper, J will denote an integral domain with-
out unit such that J has property C.

THEOREM 1. Every nonzero proper prime ideal of J is inver-
tible and maximal.

Suppose first that there exists a nonzero proper invertible prime
ideal P of J such that P is not maximal. We chose a such that
P c P + (a) c J. We express P + (a) and P + (α2) as products of prime
ideals: P +(α) = JkP1 --* Pr, P+ (a2) = JlQx. Qs where each P, and
each Qj is a proper ideal of J. In J — J/P we have: (a) = JkP1 Pr,
(a)2 = JtQ1 Qs. By Lemma 2, s — 2r and by proper labeling P{ =
Qn-i — Q*i If J does not contain a unit element, then Lemma 2 im-
plies also that t — 2k so that P + (a2) = [P + (a)]2. If J contains a
unit, then (a) = JkP1 Pr so that r is positive and (a) — P1 Pr.
Similarly, (α)2 = Qx Qs. Therefore [P + (a)]2 = PI.. P2 = P + (a2).
For either case, therefore, P + (α2) = [P + (a)]2. The remainder of
the proof of the theorem is the same as the proof appearing in [8; 273].

THEOREM 2. J is a noetherian domain.

We first show that / is finitely generated. Thus if J contains
a proper nonzero prime ideal P, then P = (plf , ps) is maximal and
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finitely generated by Theorem 1 and Lemma 1. Therefore if de J,
dgP, then J = (plf -—,ps, d). If (0) is the only proper prime ideal
of J, then given de J, d Φ 0, (d) — Jk for seme integer fc^l. Then
J is invertible, and hence finitely generated.

It follows that every prime ideal of J is finitely generated. Since
J has property C, every ideal of J is finitely generated.

THEOREM 3. Every nonzero ideal of J is a power of J and, in
fact, J is a principal ideal domain.

Since J is noetherian and J c J*, J2dJ. [5; 172-73], We choose
x e J, xgj\ Because J has property C, (x) is prime. We shall show
that (x) = J. We suppose that (x) c J. Because (x) is invertible and
J c J * , (ft) Z) (ft) J ID (ft2). If A is any ideal such that (x) ZD A z> (ft2)
and if P is a prime factor of A, then P a (x) so that P = (ft) or P =
J. Because (ft) Z) A ID (ft2), A = (a?)J& for some k^l. But ft£j2 so
that x2 & (x)Jk for & ̂  2. Therefore & = 1 and (x)J is the unique
ideal properly between (x) and (x2).

We next show that (x2) is a primary ideal. Thus if α, beJ,
ab e (x2), and a g (a?), then 6 e (α). Hence (a2) C (x\ b) S (a?). Now (α)
is maximal and prime in J so that J7(a?) contains a unit element C
Because a£{x), uag (x) so that uax g (#2) and therefore u$ 6 (#2, δ).
This means {x2, b) g> (a?) J so that (#2, b) = (x2) by the preceding para-
graph. Hence b e (x2) and (x2) is primary.

Now ua — ae (x) so that (ua — α)36 (x2). If zeJ, then ^(^α — af =
α3(ί^ — «) G (a?2) where ί is a fixed element of J independent of z.
Since a*g(x) and (x2) is primary, ίz — ZG(X2) for each seJ"—i.e.,
Jj{x2) contains a unit element. This means, however, that V = (x)/(x2)
is a vector space over the field Jj(x). There is a one-to-one correspond-
ence between subspaces of V and ideals of J between (x) and (x2).
Hence V has exactly one nonzero proper subspace, which is impossible.
Therefore J = (x) as asserted.

If P is a proper prime ideal of J, the argument above shows that
P^J2 = (ft2). This means for some ideal A of J, P = A(ft). Since P
is prime, P = A. Now (ft) = J c J* so that P is not invertible and thus
P — (0). Hence J is the only nonzero prime ideal of J. Therefore if
A is a nonzero ideal of J, A — Jk — (xk) for some positive integer k.

A ring R with at most two prime ideals is called a primary ring.
Theorem 3 shows that J is a primary domain. The author has in-
vestigated primary rings in [3].

THEOREM 4. J* is a discrete valuation ring of rank one. Con-
versely if D is a discrete valuation ring of rank one with maximal
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ideal M and if D = M*, then M is a domain without unit having
property C.

The proof will use the following.

LEMMA 3. Suppose S is a ring with unit e and that R is a
subring of S such that S is generated by R and e. A subset of R
is an ideal of S if and only if it is an ideal of R. S is noetherian
if and only if R is noetherian.

For the proof of the lemma, see [3],
To prove the theorem, we let ξzk, the quotient field of J*. For

some elements a and b of J, ξ = a/b. By Theorem 3 the ideals (a)
and (6) of J compare—i.e. a/beJ* or 6/αeJ*. Therefore, J* is a
valuation ring. Because J* is noetherian, J* is discrete and of rank
one. [9; 41].

If M is the maximal ideal of J* then J — Mr for some r. Then
Mr+1 c J implies Mr+1 = (Mr)s for some integer s so that r -\- 1 ~ rs
and r = 1 — i.e., J — M. Hence J*/J is a field. Because J* is gener-
ated over J by e, J*/J = Zftp) for some prime integer p.

The proof of the converse is an immediate consequence of Lemma
3 and of the fact that a discrete valuation ring of rank one is a
Dedekind domain. [8; 278].

It is possible to classify all discrete valuation rings V of rank
one such that V = M* where M is the maximal ideal of V, for if
V has this property, so does the completion V of V. [2; 60], If now
p is a fixed prime, if 77 denotes the prime field with p elements,
x an indeterminate over π, if Vx — Z{p) and V2 = (Π[x]){x) then
V± and V2 are discrete valuation rings of rank one and with residue
field 77. Further V1 and V2 are regular and unramified in
Cohen's sense. [2; 88]. Thus V1 and V2 are so-called p-adic rings.
[2; 59-60, 89]. Now Vλ has characteristic zero (unequal characteristic
case for Vx and its residue field) and V2 has characteristic p (equal
characteristic case). The within isomorphism, Vλ and V2 are the only
two p-adic rings of dimension one having residue class field 77. [2; 89].
Now Vx is simply the domain of HenseΓs p-adic integers and V2 is
the domain of formal power series in one indeterminate over the field
77. [7; 242-243]. Finally, V is an Eisenstein extension of Vx or V2,
and in case V has characteristic p, V = V2. In short we have: If
V has characteristic p, then to within isomorphism V is a ring between
V2 and V2. If V is unramified of characteristic 0, then F ^ F g Fx.
If V is ramified of characteristic zero, then V is isomorphic to a
valuation ring contained in an Eisenstein extension of F1# Conversely,
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if V is a ring having any of the three properties just described, V
is a discrete valuation ring of rank one having residue field /7. [2;
59-60].

We add the following remarks:
In the last paragraph of the proof of Theorem 2, it is not neces-

sary to use the fact that Jhas property C to conclude J is noetherian.
That J is noetherian follows from a theorem of Cohen [1; 29] if all
prime ideals of J are finitely generated.

In the proof of Theorem 3, it is not true in general that if Dj{x)
is a field, that the ring Dj{x2) contains a unit element, and hence
that (x)/(x2) is a vector space over Dj(x). One can take D to be the
ring of even integers and x = 6.

Theorem 3 implies that J is noetherian and of dimension less
than two. Using Theorem 4, it is easily seen that J is integrally
closed. That these three conditions do not imply that a domain D
has property C may be seen by taking D to be the domain of even
integers. Theorems 3 and 4 imply a bit more than the above. They
even imply that J is a noetherian integrally closed primary domain.
It can be shown that a noetherian integrally closed primary domain
D without unit is the Jacobson radical of D*, which is a semi-local
ring, and that further, D*/D = Z/ip^ pk) for some distinct primes
Pu "> Pk [3]. However, D need not have property C as can be seen
by choosing D as the Jacobson radical of ZM where M consists of all
integers relatively prime to 6. An analog to the classical Noether
theorem cited earlier in the case of a domain without unit, while
obtainable, now seems not as desirable to the author as Theorem 4.

REFERENCES

1. I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math.
J. 17 (1950), 27-42.
2. , On the structure and ideal theory of complete local rings, Trans. Amer.
Math Soc, 59 (1946), 54-106.
3. R. W. Gilmer, Commutative rings containing at most two prime ideals, submitted to
Michigan Math. J.
4. H. Hasse and F. K. Schmidt, Die Struktur diskret bewerteter Korper, J. Reine
Angew. Math., 17O (1934), 4-63.
5. S. Mori, ϋber Ringe, in denen die grossten primarkomponenten jedes Ideals ein-
deutig bestimmt sind, J. Science Hiroshima U., Ser. A, 1, (1931), 160-193.
6. E. Noether, Abstrakter aufbau der Idealtheorie in algebraischen zahl- und Funk-
tionenkorpern, Math., Ann., 96 (1927), 26-61.
7. B. L. van der Waerden, Modern algebra, v. 1. Ungar, New York, 1949.
8. O. Zariski and P. Samuel, Commutative algebra v. 1, von Nostrand, Princeton, 1958.
9. , Commutative algebra, V. 2, Von Nostrand, Princeton, 1960.





PARTIAL ISOMETRIES

P. R. HALMOS AND J. E. MCLAUGHLIN

CL Introduction* For normal operators on a Hubert space the
problem of unitary equivalence is solved, in principle; the theory of
spectral multiplicity offers a complete set of unitary invariants. The
purpose of this paper is to study a special class of not necessarily
normal operators (partial isometries) from the point of view of unitary
equivalence.

Partial isometries form an attractive and important class of ope-
rators. The definition is simple: a partial isometry is an operator
whose restriction to the orthogonal complement of its null-space is an
isometry. Partial isometries play a vital role in operator theory; they
enter, for instance, in the theory of the polar decomposition of arbit-
rary operators, and they form the cornerstone of the dimension theory
of von Neumann algebras. There are many familiar examples of
partial isometries: every isometry is one, every unitary operator is
one, and every projection is one. Our first result serves perhaps to
emphasize their importance even more; the assertion is that the
problem of unitary equivalence for completely arbitrary operators is
equivalent to the problem for partial isometries. Next we study the
spectrum of a partial isometry and show that it can be almost any-
thing; in the finite-dimensional case even the multiplicities can be
prescribed arbitrarily. In a special (finite) case, we solve the unitary
equivalence problem for partial isometries. After that we ask how
far a partial isometry can be from the set of normal operators and
obtain a very curious answer. Generalizing and simplifying a result
of Nagy, we show also that if two partial isometries are sufficiently
near, then some natural cardinal numbers (dimensions) associated with
them are the same. This result yields a partitioning of the metric
space of all partial isometries into open-closed sets, and we conclude
by proving that these sets are exactly the components.

For any operator A with null-space 5JI we write v(A) = dim 9ΐ
and we call v{A) the nullity of A. If A is a partial isometry with
range 5R, we write 4o(A) = dim3ί and p'(A) = dim SR1; the cardinal
numbers p(A) and p\A) are the rank and the co-rank of A. The
subspace 5ft1 is the initial space of A] the range 3ΐ (which is
the same as the image A3lL) is the final space of A. If A is a
partial isometry then so is A*; the initial space of A* is the final
space of Af and vice versa. It follows that v(A*) = p'{A) and

Received February 21, 1963. Research supported in part by grants from the National.
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//(A*) = V(A).
It is natural to define a partial order for partial isometries as

follows: A g B in case B agrees with A on the initial space of A.
(This implies that the initial space of A is included in the initial
space of B.) A partial isometry is maximal with respect to this order
if and only if either its initial space or its final space is the entire
underlying Hubert space. It follows that every partial isomstry can
be enlarged to either an isometry or a co-isometry (the adjoint of an
isometry). A necessary and sufficient condition that a partial isometry
possess a unitary enlargement (i.e., that there exist a unitary operator
that dominates it) is that its nullity be equal to its co-rank. If the
underlying Hubert space is finite-dimensional, this condition is always
satisfied; in the infinite-dimensional case it may not be.

1. Reduction. If A is a construction (i.e., if | |A| | g l ) on a
Hubert space ξ>, then 1 — AA* is positive, and, consequently, 1 — AA*
has a unique positive square root A'. Assertion: if M = M(A) is the

( A A'\Q Q J, interpreted as an operator on ί? © §, then

M is a partial isometry. One quick proof is to compute MM* and
observe that it is a projection; this can happen if and only if M is
a partial isometry. Consequence: every contraction on a Hubert space
can be extended to a larger Hubert space so as to become a partial
isometry.

THEOREM 1. If A and B are unίtarίly equivalent contractions,
then M(A) and M(B) are unitarily equivalent; if, conversely, A and B
are invertible contractions such that M(A) and M(B) are unitarily
equivalent, then A and B are unitarily equivalent.

Proof. If U is a unitary operator that transforms A onto B,
then U transforms A* onto J5*, and therefore U transforms A' onto
B'; it follows that (V £Λ transforms M(A) onto M(B).

Suppose next that A and B are invertible and that M(A) and
M(B) are unitarily equivalent. The range of M(A) consists of all
column vectors of the form ( * "t g\ This set is included in the
set of all column vectors with vanishing second coordinate; the inver-
tibility of A implies that the range of M(A) consists exactly of all
column vectors with vanishing second coordinate. Since the same is
true for M(B), it follows that every unitary operator matrix that
transforms M(A) onto M(B) maps the subspace of all vectors of the
form (£) onto itself. This implies that that subspace reduces every
such unitary operator matrix, and hence that every such unitary
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operator matrix is diagonal. Since the diagonal entries of a diagonal
unitary matrix are unitary operators, it follows that A and B are
unitarily equivalent, as asserted.

The theorem implies that the problem of unitary equivalence for
partial isometries is equivalent to the problem for invertible contrac-
tions. The latter problem, in turn, is equivalent to the problem for
arbitrary operators. The reason is that by a translation (A —> A + a)
and a change of scale (A—>βA) every operator becomes an invertible
contraction, and translations and changes of scale do not affect unitary
-equivalence.

Here is a comment on the technique used in the proof. There
are many ways that a possibly "bad" operator A can be used to

manufacture a "good" one (e.g., A + A* and ( Λ* Λ ) ) . None of
V \ / i U / /

these ways has ever yielded sufficiently many usable unitary in-
variants for A. It is usually easy to prove that if A and B are
unitarily equivalent, then so are the various constructs in which they
appear. It is, however, usually false that if the constructs are uni-
tarily equivalent, then so are A and B. In the case treated by
Theorem 1 this converse is true, and its proof is the less trivial part

ιθf the argument.

2* Spectrum* What can the spectrum of a partial isometry be?
fSince a partial isometry is a contraction, its spectrum is included in
the closed unit disc. If the partial isometry is invertible (i.e., if 0
is not in the spectrum), then it is unitary, and therefore the spectrum
is a non-empty compact subset of the unit circle; well known con-

structions prove that every such set is the spectrum of some unitary
operator. If the partial isometry is not invertible, then its spectrum
contains 0; what else can be said about it? The answer is, nothing

-else. This answer was pointed out to us by Arlen Brown; its precise
formulation is as follows.

THEOREM 2. If a compact subset of the closed unit disc contains
the origin, then it is the spectrum of some partial isometry.

Proof. It is sufficient to prove that if A is a contraction, then
the spectrum of M(A) is the union of the spectrum of A and the
singleton {0}. (This is sufficient because every non-empty compact
subset of the closed unit disc is the spectrum of some contraction.)
It is easy enough to see that 0 always belongs to the spectrum of
M(A); indeed every vector of the form (Λ is in the null-space of
M{A)*. It remains to prove that if λ Φ 0, then a necessary and
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sufficient condition that ( "Γ Λ ) be invertible is that A — λ be

invertible. This assertion belongs to the theory of formal determinants
of operator matrices. Here is a sample theorem from that theory: if
C and D commute and if D is invertible, then a necessary and suffi-

cient condition that („ jΛ be invertible is that AD — BC be inver-
tible. For our present purpose it is sufficient to consider the special
case C = 0, in which case the commutativity hypothesis is automatically
satisfied; we proceed to give the proof for that case. If A is inver-
tible, then ( Q 2)) c a n be proved to be invertible by exhibiting its

/ Λ-i Λ~1BD~1\
inverse: it is Λ n _ x . (Recall that the invertibility hypothesis

(A B\on D is in force throughout.) If, conversely, ( Λ n ) is invertible,,
(P O\ ^ '

with inverse ί τ> g) say, then

AP+ BR
DR

AQ + BS\
DS )

PA

~ \RA
PBΛ
RB-

-QD\
\-SD

(1

\0

0

1

It follows that DR = 0; since D is invertible, this implies that R = 0 r

and hence that AP — PA = 1. The proof is complete.

3 Multiplicity^ For finite sets what the preceding argument
proves is this: if Xlf , Xn are distinct complex numbers with | λ* | ^
1 for all ΐ, and if λ< = 0 for at least one i, then there exists a
partial isometry whose spectrum is the set {Xlf •• ,λw}. The partial
isometry that the proof yields acts on a space of dimension 2n and
has a large irrelevant null-space. There is an alternative proof that
yields much more for finite sets.

THEOREM 3. If Xu •• ,λw are complex numbers (not necessarily
distinct) with | λ* | g 1 for all i, and if λ< = 0 for at least one i,
then there exists a partial isometry on a space of dimension nf.
whose characteristic roots are exactly the λ's, each with the algebraic
multiplicity equal to the number of times it occurs in the list.

Proof. The proof can be given by induction on n. For n = 1,
the operator 0 on a space of dimension 1 satisfies all the conditions.
The induction step is implied by the following assertion: if an n x n
matrix U with 0 in its spectrum is a partial isometry, and if | λ | ^ 1,
then there exists a column vector / with n coordinates such that

( Q £ J is a partial isometry. To prove this, observe that, since 0 is in

the spectrum of U, the column-rank of U is less than n. This makes
it possible to find a non-zero vector / orthogonal to all the columns.



PARTIAL ISOMETRIES 589

of U; to finish the construction, normalize / so that | | / | | 2 = 1 — | λ |2.

4. Equivalence. In at least one case, a very special case, the
unitary equivalence problem for partial isometries has a simple and
.satisfying solution.

THEOREM 4. // two partial isometries on a finite-dimensional
space are such that 0 is a simple root of each of their characteristic
•equations, then a necessary and sufficient condition that they be uni-
tartly equivalent is that they have the same characteristic equation
{i.e., that they have the same characteristic roots with the same alge-
braic multiplicities).

REMARK. The principal hypothesis is that 0 is a root of multi-
plicity 1 of the characteristic equation. If this were replaced by the
hypothesis that 0 is not a root of the characteristic equation at all
(i.e., is a root of multiplicity 0), then the statement would become
the classical solution of the unitary equivalence problem for normal
•operators on a finite-dimensional space.

Proof. The necessity of the condition is trivial. Sufficiency can
be proved by induction on the dimension. If the dimension is 1, the
assertion is trivial. For the induction step, if the dimension is n + 1,
represent the given partial isometries by triangular matrices with 0
in the northwest corner, and write the results in the form

u'Λ, V=Γ
0 \) \0

Λvhere Uo and Vo are n x n matrices, and / and g are w-rowed column
sectors. Since both U and V are partial isometries with first column
0 and rank n, it follows that, in both cases, the remaining n columns
constitute an orthonormal set, and hence, in particular, that / is
orthogonal to the columns of Uo and g is orthogonal to the columns
of Vo. The thing to prove is that if Uo and Vo are unitarily equiva-
lent, then so also are U and V. Suppose therefore that Wo is unitary
and WQUQW* = Vo. Assertion: there exists a complex number θ of
modulus 1 such that W = ( / Λ transforms U onto V. Indeed, if
! 0 I = 1, then

wuw -(y > W J ) ,

Since this matrix is a partial isometry with first column 0 and rank n,
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it follows that ΘW0/is orthogonal to the span (of dimension n — 1) of the
columns of Vo. Since g also is orthogonal to the columuns of Vo, it follows
that θ can indeed be chosen so that ΘWof = g. The only case that gives
a moment's pause is the one in which Wof = 0. In that case / = 0r,
and therefore | λ | = 1; this implies that 0 = 0, and all is well.

5. Distance* Since the unitary equivalence problem is solved for
normal operators, it is reasonable to approach its solution in the general
case by asking how far any particular operator is from normality.
The figurative "how far" can be interpreted literally, and its
literal interpretation yields a curious unitary invariant. Let N be
the set of all normal operators, and for each (not necessarily normal)
operator A consider the distance d(A, N) from A to N. The distance
here is meant in the usual sense appropriate to subsets of metric
spaces: d(A, N) — inf {|| A — JV|| : Ne N}. The definition makes sense
for all operators, and, in particular, for partial isometries. We pro-
ceed to study one of the simplest questions that the definition suggests:
as U varies over the set P of partial isometries, what possible values-
can d(U, N) attain? The answer we obtain is rather peculiar.

THEOREM 5. The set of all possible values of d(U,N), for U in
P, is the closed interval [0, 1/2] together with the single number 1.

Proof. We begin with the assertion that if a partial isometry
U has a unitary enlargement, then d(U, N) ^ 1/2. The proof consists*
in verifying that if W is a unitary enlargement of U, then

II [/-JLwHI _λ.
II 2 II ~~ 2

Indeed, if ϋft is the null-space of U, then U is equal to 0 on Jί and

to W on 5TC1; it follows that U- — W is equal to - — W on % and

to — T7 on Sft1. This implies that U- —W is 1/2 times a unitary
Δ Δ

operator and hence that its norm is 1/2.
It is easy to exhibit a partial isometry U such that d( U, N) — 1/2;

in fact this can be done on a two-dimensional Hubert space. A simple
example is the operator Uo given by the matrix (Q Δ. That f70 is
a partial isometry can be verified at a glance. (Its matrix is obtained
from a unitary matrix by "erasing" a column.) The preceding para-
graph implies that d(UOf N) ^ 1/2; it remains to prove that if N is
normal, then || Uo — N\\ ^ 1/2. For this purpose, let/be an arbitrary
unit vector and note that
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III ϋo/ll - II UQ*f\\ I ̂  III ϋo/H - II Nf\\ I + III N*f\\ - II ϋoVII I
£2\\U0-N\\.

(Recall that, by normality, || Nf\\ = || iSΓ*/||.) If / is the column

vector L j , then || C/0/ll = 1 and || Z70*/H —0; the proof is complete.

For each number t in the interval [0, 1] write V = i/l — t2.

The mapping t—*Ut = ln π is a continuous path in the metric space
\ U U / /I Ax

P, which joins the partial isometry Uo to the projection ίΛ ϊ j (a

normal partial isometry). Conclusion: as Z7 varies over all partial

isometries, d{U9N) can take (at least) all values between 0 and 1/2

inclusive. (The technique of the preceding paragraph can be used to

show that d(ϋu N) = — V.

For the next step we need the following lemma: if P is a pro-
jection, and if A is an operator such that P + A is one-to-one, then
v(A) ^ p{P). To prove this, observe that the null-spaces of P and A
have only 0 in common, so that the restriction of P to the null-space
yi of A is one-to-one. It follows that the dimension of 31 is less than
or equal to the dimension of the entire range of P, which is the
desired conclusion. (We use here the assertion that one-to-one bounded
linear transformations do not lower dimension; cf. [2, Lemma 3].)

Suppose now that U is a partial isometry such that v(U) < ρ'{U).
Assertion: no operator at a distance less than 1 from U can be in-
vertible. Suppose, indeed, that || U- A | | < 1, so that \\U*U- U*A\\ <
1. Write P = 1 — U*U; since U is a partial isometry, P is the pro-
jection onto the null-space of U. Since J7* U- !7*A = 1 - (P + ί7*A),
it follows that P + £7*A is invertible, and hence, from the lemma of the
preceding paragraph, that v(U*A) ^ p(P) = v(U). If A were invertible,
then U*A and Z7* would have the same nullity, and it would follow
that v(U*) ^ v(U). This contradicts the assumption on U, and it follows
that A cannot be invertible.

Since the closure of the set of all invertible operators includes
N, it follows from the preceding paragraph that if U is a partial
isometry with v(U) < p'(U), then d(U, N) ^ 1. This result quickly
implies some minor improvements of itself. To begin with, the hypo-
thesis v{U) < ρ'(U) can be replaced by v(U) Φ p'{U). (If v{U) > p'(U),
then p'(U*) > v(U*), and the original formulation is applicable to Z7*.)
Next, the conclusion d(U, N) ^ 1 can be replaced by d(U, N) = 1.
(Since 0 is normal, no partial isometry is at a distance greater than
1 from N.) Finally, the result implies the principal assertion: if U
is a partial isometry such that d(U, N) > 1/2, then d(U, N) = 1.
Indeed, if d(U, N) > 1/2, then v(U) Φ ρ'(U), for otherwise U would
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have a unitary enlargement, and therefore, by the first paragraph of
this proof, U would be at a distance not more than 1/2 from N.
The proof of Theorem 5 is complete.

6. Continuity. Associated with each partial isometry U there
are three cardinal numbers: the rank p(U), the nullity v(U), and the
co-rank p'(U). Our next purpose is to prove that the three functions
p, v, and p' are continuous. For the space P of partial isometries we
use the topology induced by the norm; for cardinal numbers we use the
discrete topology. With this explanation the meaning of the continuity
assertion becomes unambiguous: if Z7is sufficiently near to V, then Z7and
Fhave the same rank, the same nullity, and the same co-rank. The
following assertion is a precise quantitative formulation of the same
result.

THEOREM 6. If U and V are partial isometries such that
|| U- V\\ < 1, then p{U) = p(V), v{U) = v(V), and p'{U) = ρ\V).

Proof. The null-space of U and the initial space of V can have
only 0 in common. Indeed, if / is a nonzero vector such that Uf=0
and || Vf\\ = | | / | | , then || Uf - Vf\\ = | | / | | , and this contradicts the
hypothesis || U — V\\ < 1. It follows that the restriction of U to the
initial space of V is one-to-one, and hence (see [2] again) that the
dimension of the initial space of V is less than or equal to the
dimension of the entire range of U. In other words, the result is
that p(V) ^ p(U); the assertion about ranks follows by symmetry.
This part of the theorem generalizes (from projections to arbitrary
partial isometries) a theorem of Nagy (see [4, § 105]), and, at the
time, considerably shortens its proof. The original proof is, in a sense,
more constructive; it not only proves that two subspaces have the
same dimension, but it exhibits a partial isometry for which the first
is the initial space and the second the final space.

The assertion about v can be phrased this way: if v(U) Φ v(V),
then \\U— VΊ| ^ 1. Indeed, if v{U) φ v{V), say, for definiteness,
v(U) < v(V), then there exists at least one unit vector / in the null-
space of V that is orthogonal to the null-space of U. To say that / is
orthogonal to the null-space of U is the same as to say that / belongs
to the initial space of U. It follows that 1 = 11/11 = 1 1 ^ 1 1 = 1 1 ^ -
Vf\\^\\U— V\\, and the proof of the assertion about nullities is
complete.

The assertion about co-ranks is an easy corollary: if || U — V\\ < 1,
then || Z7* - V*\\< 1, and therefore p'(N) - v(C7*) - v(V*) = ff(V).

If the dimension of the underlying Hubert space is <5, then the
rank, nullity, and co-rank of each partial isometry are cardinal numbers
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p, v, and ft such that p+ι> = p + f? = δ. If, conversely, p, v, and
p' are any three cardinal numbers satisfying these equations, then
there exist partial isometries with rank p, nullity v, and co-rank p'.
Let P(p, v, pr) be the set of all such partial isometries. Clearly the
sets of the form P(p, v, pf) constitute a partition of the space P of
all partial isometries; it is a consequence of Theorem 6 that each set
P(p, v, ρf) is both open and closed.

7. Connectivity Φ We proved in § 5 that there is a continuous
path in the space P joining a normal partial isometry (in fact a pro-
jection) to one whose distance from N is 1/2. On the other hand,
§ 6 shows that P is not connected, and this suggests the question of
just how disconnected P is. The following assertion is the answer.

THEOREM 7. For each p, v, and p', the set P(ρ, v, ρf) of all
partial isometries of rank p, nullity v, and co-rank p' is arcwise
connected.

Proof. The principal tool is the theorem that the set P(p, 0, 0)
of all unitary operators is arcwise connected. This is a consequence
of the functional calculus. Indeed, if U is unitary, then there exists
a Hermitian operator A such that U — eiA, If Ut = eitA, 0 5Ξ t S 1,
then t —> Ut is a continuous path of unitary operators joining 1 (— UQ)
to U(= UT). Since each unitary operator can be joined to 1, it
follows that any two can be joined to each other. This settles the
case P(p, 0, 0). A useful consequence is that if two partial isometries
are unitarily equivalent, then they can be joined by a continuous
path. Indeed if Z70 and Uλ are partial isometries, and if V is a unitary
operator such that F* Uo V = Ul9 then let t —> Vt be a continuous path
joining 1 to V, and observe that t —> Ff* Uo Vt is a continuous path
joining Uo to Ux.

For the next step we need to recall the basic facts about shifts
{see [1] or [3]). A simple shift (more precisely, a simple unilateral
shift) is an isometry V for which there exists a unit vector / such
that the vectors /, Vf, V2f, form an orthonormal basis for the
space. A shift (not necessarily simple) is, by definition, the direct
sum of simple ones. It is easy to see that every shift is an isometry
whose co-rank is the number of simple direct summands. Two shifts
are unitarily equivalent if and only if they have the same co-rank.
The fundamental theorem about shifts is that every element of
P(p, 0, p') (i.e., every isometry of co-rank pr) is either unitary (in
which case pf = 0), or a shift of co-rank p', or the direct sum of a
unitary operator and a shift of co-rank pf.

Suppose now that Uo and Ux are in P{py 0, p'), with p' Φ 0. If
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both Uo and J7i are shifts, then (since they have the same co-rank)
they are unitarily equivalent, and, therefore, they can be joined by
a continuous path.

Suppose next that Uo is a shift (of co-rank p') and that Uλ ==•
FjφWj, where Vλ is a shift (of co-rank p') and Wx is unitary..
Since the dimension of the domain of Uo is />' ^0> and since ί70 and
U1 have the some domain, it follows that the dimension of the
domain of Wλ is not more than ρ'-)£o. If p' > \ftOf then break up
Wx into pf direct summands, each on a space of dimension fc$0, and
match these summands with the ff simple direct summands of Uo and
UΊ. The result of this procedure is to reduce the problem to the
problem of joining a simple shift U to the direct sum of a simple
shift V and a unitary operator W on a space of dimension ^ 0 or
smaller.

If the dimension of the domain of W is n (< ^ 0 ) , the problem
is easy to describe and to solve in terms of matrices. The shift U
is unitarily equivalent to (and therefore it can be joined to) an oper-
ator with matrix

/0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

and, similarly, the direct sum 7 φ W can be joined to an operator

with matrix

/I 0 0 0 0 \

0 1 0 ••• 0 0

0 0 1 0 0

0

0

0

0

0

0

0

1

0

0
1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

It remains to prove that the first of these two matrices can be joined
to the second. For this purpose, note that the (unitary) permutation
matrix (with n + 1 rows and columns)
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1°
1

0

0

\o

0
0

1

0

0

0
0 •••

0

0

0

0
0

0

0

1

1\
0

0

0

ol

can be joined to the identity matrix (with n + 1 rows and columns).
Let t —> Mt be a continuous path of unitary matrices that joins them,
and let P be the projection matrix (with n + 1 rows and columns)

The "product" path t

11

0

0

0

lo

0
1

0

0

0

MtP

10

1

0

0

,0

0

0

1

0

0

0

0 ••

1

0

0

joins

0

0 ••

0

0

0

0

• 0

0

1

' 0

0

• 0

0

0

1

o\
0

0

0

oj

tn
0

0

0

0)

to P. Use this path in the northwest corner (of size n + 1) of the
infinite matrices to obtain a path joining the matrix of U to the
matrix of VφW.

If the dimension of the domain of W is ^Q, the solution is easier.

It is easy to verify that the operator matrix L Q) (considered as

an operator on the direct sum of the underlying space with itself) is
/ W 0 \unitarily equivalent to U, and the operator matrix ( 0 JJ ) is uni-

tarily equivalent to 7 0 W. Since W can be joined to the identity

can be joined

path of numerical unitary

by a continuous path, it remains to prove that L
t o (π ττ\ If ^ —* (^ x) is a continuous path o

matr ices t h a t joins ( ? V) t o f ϊ ? ) , t h e n t-+>(%* χTT) is a con-

t inuous p a t h of par t ia l i sometries t h a t joins L Q j t o (Q
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What we have proved so far (after successive reductions) implies
that any two isometries can be joined by a continuous path, i.e., that
the set P(/>,0, '̂) is arcwise connected.

To prove that P{p, v, pr) is always arcwise connected, it is suffi-
cient to consider the case v ^ p\ (Argue by adjoints.) If Uo and Ux

are in P{p, v, pf), then they can be enlarged to isometries Vo and Vτ.
Such enlargements are far from unique; what is important for our
purposes is that Vo and Vx can be found so that they have the same
co-rank. If Po and P1 are the projections onto the initial spaces of
Uo and Uι (i.e., Po = U0*U0 and Px = UfU,), then Po and Pλ have the
same rank and co-rank. It follows that there exist paths t—>Vt and
t -> Pt joining Vo to V1 and Po to Px. Since Uo = V0PQ and Ux = V1Plt

this implies that t —* VtPt is a continuous path joining Uo to UΊ. The
proof of Theorem 7 is complete.

The following consequence of Theorems 6 and 7 is trivial, but
worth making explicit: the components of P are exactly the sets
P(P, v, P').
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MAXIMUM MODULUS ALGEBRAS AND LOCAL

APPROXIMATION IN Cn

A. E. HURD

1. In [4] W. Rudin established an important result concerning
maximum modulus algebras A of continuous complex-valued functions
defined on the closure K of a Jordan domain in the complex plane (see
also [5]). Rudin's result states, under the assumptions (a) A contains
a function Ψ which is schlicht on K, and (b) A contains a non-constant
function φ which is analytic in the interior, int K, of K, that every
function in A is analytic in int K. In this note we will establish
conditions under which assumption (b) alone yields the desired conclusion
in a slightly more general setting. We assume that K is a compact
set, with interior, of a Riemann surface, but also assume that int K
is essentially open in the maximal ideal space ΣA of A (A being regarded
as a Banach algebra with the sup norm | | / | | = snppeκ\f(p)\; see [2]).
This means that each point of int K, excepting a set of points having
no limit point in int K> has a neighborhood in int K which is open in
ΣA under the natural mapping of K into ΣA. Under these assumptions
it is easy to show, using the Local Maximum Modulus Principle of
H. Rossi [3; Theorem 6.1] and Rudin's results, that (b) is sufficient to
guarantee that A consists only of analytic functions. Our main purpose,
however, is to establish the result by a geometric method, independent
of Rudin's work, which is based on an appropriate local approximation
in Cn. Unfortunately the geometric approach being used here only
allows us to make the desired conclusion for twice continuously
differentiable functions in A whereas the use of Rubin's results would
give a proof valid for any function in A. However it is hoped that
our method will be of some interest in itself.

The basic idea of the proof is as follows. For simplicity let K be
the unit circle {ze C: \z\ ̂  1} in the complex plane, and let / and g
be nonconstant functions in the maximum modulus algebra A. Suppose
that ΣA — K. Use/and g to map K into C2 (the space of 2 complex
variables) in the obvious way. If / and g are twice continuously
differentiable in the neighborhood of a given point in int K then the
image of this neighborhood in C2 will be a two (real) dimensional surface
possessing a tangent plane at the image p of the point. Let π be
the two (real) dimensional tangent plane to this surface at p. If this
plane is nonanalytic (Definition 1) then we can find a polynomial in
the coordinates w± ane w2 of C2 which locally peaks [3] at p when

Received November 1, 1962. This research was (partially) supported by the Air
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restricted to the surface. The results of Rossi and the Arens-
Calderon Theorem [1] then show that this will contradict the maxi-
mum modulus property. Thus π cannot be nonanalytic. This gives
a relation between the complex derivatives of / and g which, in
particular, implies that both functions are analytic at the pre-image
of p if one of them is analytic there. In § 2 the essential geometric
lemma is established and in § 3 it is used to prove the main result.

2. Let F:M-^Rn be an immersion (a regular map in the sense
of Whitney [6]) of a two (real) dimensional twice continuously differ-
entiable manifold M into real Euclidean w-space Rn. Let peM and
let (U, h) give local coordinates about p, where U is an open set in
M, and h is a homeomorphism from U onto D = {(u, v) e R2: u2 + v2 < 1},
with h(p) = (0, 0). If Xj (j = 1, , n) is a coordinate function in Rn then
the functions Φj(u, v) — x5oFohr\u, v)(j = 1, , n) are differentiate
and give a map Φ\D—>Rn defined by Φ(u, v) = (Φ1(u, v), , Φn(u9 v)).
Since F is an immersion, the 2 by n matrix

du dv

has rank 2 and the mapping Φ is one-to-one in some disc V =
{{u, v) e R2: u2 + v2 < r2 < 1}. Further, the set Φ(V) is a surface
element having a tangent plane at 0(0, 0)).

We can suppose for our purposes that 0(0, 0) is the origin 0 in Rn.
The tangent plane π to Φ(V) at 0 is then given parametrically by

(2.1) Xj = -p-u + -p-v (j = 1, , n) ,
du dv

where the derivatives are evaluated at u = v ~ 0. A change of local
parameters from u and v to u' = u\u, v) and vf = v'(w, v) with
0(u', v')ld(u, v) Φ 0 (the inverse transformation being given by % =
u(u\ v') and v = v{uf, v') in some neighborhood of u = v — 0) yield new
functions 0X%', vf) = Φj(u(u', vr), v(u', v')) and a new parametrization of
the tangent plane, namely,

Xj = - — ^ - ^ ' H £i-i/

'^, 02/, , 9ώ, dv

dv duf / V du dv* dv dv'

(j = 1, •••, w) .
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Note that the rank of the matrix (dφj/du, dφj/dv) is the same as that
•of (dφ'jldvf, dφ)ldvf) since d(u', v')ld(n, v) Φ 0.

Now u and v parametrize both the surface element Φ( V) and the
tangent plane (given by (2.1)). Let rjj and 7))(j = 1, 2, n) denote
the coordinates in Rn of the points B and B1 on π and Φ( V), respectively,
corresponding to the parameters u and v (u2 + v2 < r2). For sufficiently
.small u and v,

η> ^ Mu + 2
2\du? dudv

where the first derivatives are evaluated at u = i; = 0 and the second
derivatives are evaluated at ιιf — θu, vf — θv for some θ satisfying
0 < θ < 1. Since ikf is twice continuously differentiate, the second
derivatives of φ, are bounded in absolute value in some sufficiently
.small neighborhood of (0, 0) and we obtain

and so

(2.2)

where K and L are constants depending on these bounds and on n,
and u and v are sufficiently small. These estimates will be used later.

Suppose now that n — 2m. One can define complex coordinates
Wj = x2j-x + ix2j making Rn into complex Euclidean space Cm. Also
the (u, i;)-plane can be formally complexified by writing z = u + iv,
z = u — iv. We then have a mapping UP": F—* Cm defined by Ψ(z, z) —
{wl9 , wm) where

Wj = ψj(z, z) = φ2jji±^, ^=A) + i^f ^ +

' 2ΐ
(j = 1, . . m) .

An elementary computation shows that in this formalism the tangent
plane π to Ψ(V) at the origin 0 is given parametrically by

where the derivatives are evaluated at z = 2 = 0. Furthermore, under
a change of local coordinates in the parameter plane from z and z to

and z'=u' — ΐΐ/, the tangent plane is given parametrically by

02'

= ίdψs dz , ΘΨ, θz\z, . ίdΨj dz dΨ3 dz \ ?,
\ dz dz' dz dz'/ \ dz dz' dz dz' r
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where Ψ]{zf, z') — Ψj(z(z'', z'), z{zf, z)). Since, as a short calculation shows,

the complex rank of {dΨ άjdz, dWj/dz) remains unaffected by a parameter
change. We now make the following definition.

Definition l The two (real) dimensional plane in Cm defined
parametrically by w3- = aάz + βάz (j — 1, 2, , m) is said to be non-
analytic if the rank of the 2 by m (complex) matrix (ajf β3 ) is 2.

The preceding remarks show that if π is nonanalytic in one co-
ordinate parametrization then it remains so under any change of co-
ordinates in the parameter plane. We want to establish the following..

LEMMA. Suppose the tangent plane π to Ψ{V) at the origin in
Cm is nonanalytic. Then there is a polynomial in the coordinates w3

whose absolute value takes on a local maximum at the origin when
restricted to Ψ{V).

Proof. Since π is nonanalytic there exist new coordinates w\ —
Σ ? = i ^ Λ ( ^ - If v>m)> where the matrix (τ o ) is nonsingular, such
that in the ^^-coordinates π is given parametrically by w[ = z,w'2 — z,
and Wj = 0 (m ^ j ^ 3). Now let B and B' be points on π and Ψ{V)r

respectively, corresponding to the parameters u and v. Let ηs and
7)'3> (j = 1, , 2ri) be the real coordinates of B and B' (with Cm regarded
as R2n) in the new coordinate system. Clearly η1 = u,η2 = v, τjz = ur

ηA = —Vf and η3- = 0 for 5 ^ j ^ 2n. Let η'3 — η3- = e3- (j = 1, , 4).

Now consider the function P(Wi) = 1 — w[w'2 (a polynomial in
Wi, — ,wm). When restricted to π, P(w{) is real-valued and has a
maximum in absolute value at the origin. We would like to show that
\P(Wi)\ also has a local maximum at the origin when restricted to a
sufficiently small neighborhood of the origin on Ψ{V). This will be
true essentially because π has a contact of order at least 1 with Ψ(V)
at the origin (here we will use the estimates (2.2)).

We have, at the point B',

= 1- 2(u2 + v2) + (u2 + v2) + 2Q{u, v) [u2 + v2 - 1]

+ [Q(u, v)]2 + [u(ε2 + ε4) + ^(ε3 - ε,)]2

where

Q{u, v) = u(ε1 + ε3) + v(ε2 — ε4) + ε ^ — ε2ε4 .

Using inequalities (2.2) for \Sj\ (j = 1, , 4) we obtain
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\ P ( B ' ) \ 2 ^ 1 - 2(u2+ v2) + M(\u\ + \v\f

r g l - [l-M(\u\+\v\)](\u\ + \v\)2

for u and v sufficiently small and some constant M. If | u | + | v \ <
1/M we see that \P(B[)\ < 1 unless Bf = 0.

3, Let K be a compact subset, with nonempty interior, of a
Riemann surfce M.

DEFINITION 2. An algebra A of continuous functions on K is said
to be a maximum modulus algebra on K if for every feA there is a
point p on the boundary OK of iΓ such that \f(q) \ S \f(p) I for all q e if.

As remarked in [4], we can suppose without loss of generality that
A is uniformly closed and contains the constants and so is a Banach
algebra with identity and norm | | / | | = sup^e* \AP)\- It is well known
that there is a natural continuous mapping i: ΛΓ—> ΣAf where ΣA is the
maximal ideal space of A (with the usual Gelfand topology), defined
by point evaluation (which is not 1:1 unless A separates points in ΣA).

THEOREM. Let A be a uniformly closed algebra of continuous
functions, containing the constants, on the compact subset K (with
nonempty interior) of the Riemann surface M. Suppose that there
is a set D of points in int K having no limit point in int K, such
that each p e int K — D has a neighborhood U for which i( U) is open
in ΣA. Suppose further that A contains one nonconstant analytic
function g = g1 + ig2. Then any function f = f1 + if2 in A such that
f1 and f2 are twice continuously differentiate is analytic in int K.

Proof. Let S be the discrete subset of int K on which the differ-
ential dg vanishes. For any point p in int K — S there is a neighborhood
containing p and contained in int K — S and in which g is one-to-one.
Thus for any point p e int K — (D (J S) there exists a neighborhood U
containing p which is mapped homeomorphically by ί onto an open set
W in ΣA and hence local coordinates in U may be transferred to W.
Define the mapping F: ΣA — C2 by F{q') = {f(q'), g(q')), q' e ΣA (where
we have used the letters / and g to denote the extension, via the
Gelfand representation, of / and g, defined on i(K), to ΣA). For any
point q* in W we have /(?') = fifr^q')) and g(q') = g(%-\q')) so that F
can be regarded as a mapping defined on U by F(q) = (f(q), g(q))>
qe U. F defines an immersion of W since in the local coordinates z =
u + iv the matrix

fl fl 9\ g\

fl fl ΰl 9l
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(here the subscripts u and v denote partial differentiation) is of rank
2 due to the nonvanishing of the differential dg = dg/dz dz—apply the
Cauchy-Riemann equations to the matrix

g\ g\

g\ g\

Since A contains the constants we can suppose without loss of generality
that F(p) is the origin 0 in C\ We have thus a mapping F: ΣA —• C2

which maps a neighborhood W of i(p) onto a two-dimensional surface
element F(W) having a tangent plane π at 0.

We now note that π cannot be nonanalytic. For if this were the
case then by the lemma of § 2 there would be a polynomial in the
coordinates wΎ and w2 oί C2 taking on a local maximum in absolute
value at 0 when restricted to F(W). By the Arens-Calderon theorem
[1; Theorem 3.3] there would then be a function keA taking on a
local maximum at i(p), and finally, by Rossi's Local Peak-Point Theorem
[3, Theorem 4.1] there would be a function keA taking on its maximum
value exactly at i{p), contradicting the fact that A is a maximum
modulus algebra.

Thus the rank of

'**. o\
dz

dz dz

(the derivatives being evaluated in the local coordinates at p) must
be 1 and this implies that df/dz = 0. The same conclusion could be
drawn for any p e inf K — (D (J S) and so by the theorem of Riemann
on removable singularities, / is analytic in int K.
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MODULE CLASSES OF FINITE TYPE

J. P. JANS

l Finite type. In this paper we consider only rings with mini-
mum condition on left and on right ideals. Also, we only consider
finitely generated modules over these rings (such modules always
possess a composition series of submodules).

There have been several papers [3, 4, 5, 10, 11, 12] on the problem
of constructing indecomposable modules over such rings. Most of
these papers are devoted to showing that certain rings have an in-
finite number of non-isomorphic modules of a given composition length
for each of an infinite number of composition lengths. In this paper
we shall consider a finiteness condition, not on the class of all finitely
generated modules but on certain subclassses of that class.

DEFINITION. If C is a class of modules over the ring R we shall
say that C is of finite type if for each integer n there are only a
finite number of non-isomorphic modules in C of composition length
less than n.

We shall study conditions under which the following classes of
modules are of finite type:

1. LT the class of left modules which are submodules of pro-
jectives. From the results of [1], it is clear that these are the
torsionless modules.

2. LW the class of left T7-modules, these modules A for which
ExtUA, R) = 0

3. LN the non-torsionless left modules
4. LQ the torsionless left modules which are not duals of right

modules.
5. LD the class of duals of right modules.
6. LR the class of reflexive left modules [1].
7. LTW the class of torsionless flP-modules.
In the above definitions the dual of a module A is HomΛ (A, R)

denoted by A*. Also, A is reflexive if the natural homomorphism
A—>A** is an isomorphism. See [7].

The corresponding classes of right modules (RTy RW, etc.) are
defined analogously. All the theorems we prove go through with
left and right interchanged.

A useful tool in our study is the following theorem proved by
Morita and Tachikawa in [9] and also mentioned by Brauer in [2].

Received January 9, 1962. Work supported, in part, by NSF contract No. G11098.
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THEOREM A. If P is protective and if the diagram

(1) \e

rows αwcί ΐ/ θ is an isomorphism, then the diagram can-
he embedded in the commutative diagram

0 — X — P->A->0

(Γ) 4 4 [θ

where p and μ are also isomorphisms.

It should be noted that the proof of Theorem A requires our
standing hypothesis that every module under consideration has a
composition series.

Before we deduce some corollaries from Theorem A, we need
some additional information. Let I be the left composition length of
the ring R and let r be the right composition length. Note that I
and r need not be equal. Let C(A) be the composition length of the
module A.

LEMMA 1.1. If the left module A has C(A) — n then there
exists a free module Fn, the direct sum of n copies of R considered
as a left module, of composition length In such that Fn —> A —• 0 is-
exact.

The proof, an in induction on n, is essentially the same as
the proof of Lemma 2.6 of [6]. By dualizing the above sequence we
obtain

LEMMA 1.2. // the left module A has C(A) = n then A* has
composition length ^ nr.

Proof. The sequence of Lemma 1.1 induces 0—>A*—>F% exact.
The module F* is a direct sum of copies of R considered as a right-
module [7] and hence C{Ft) — nr. Since A* is a submodule of
F*, C(A) ^ nr.

LEMMA 1.3. If the left module A is torsionless with C(A) = nyι

then A can be embedded in a free module F such that C(F) ^ nrl.
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Proof. By Lemma 1.2 C(A*) ^ nr and by Lemma 1.1 there exists
.a free right module Fo (the direct sum of nr copies of R) of com-
position length nr2 such that Fo —> A* —> 0 is exact. This dualizes to

0 —> A** —• î 0* exact ,

whereby the proof of Lemma 1.2 C(F$) = nrl. But since A—>A**
is a monomorphism, this can be used to embed A in F£. The idea
of the above proof is due to Bass [1], although, being in a more
.general situation he was not concerned there with composition length.

It should be noted that the inequalities of Lemma 1.2 and 1.3
are, for most rings, quite crude. Using the above lemmas, and
Theorem A have the following results.

THEOREM 1.4. / / LN is of finite type then so is LQ.

Proof. Suppose that for some n there were an infinite number
of non-isomorphic modules {TΛ} in LQ all of composition length n.
Then by Lemma 1.3 we can embed them all as submodules of a free
module F of composition length nlr. Consider the infinite collection
of factors {FjTa}. By [1, 7] these are modules in LN all having
composition length n(lr — 1).

But the hypotheses of the theorem require that there are only a
finite number of non-isomorphic modules in LN of each composition
length. Thus for some a Φ β F\TΛ^ F\Tβ and by Theorem A we
have Ta = Tβ. This contradicts the assumption that the collection
{Tω} consists of non-isomorphic modules.

The following theorem is modeled on the duality Theorem 1.1 of

[7]

THEOREM 1.5. LT is of finite type if and only if RT is of
finite type.

Proof. By right-left symmetry it is sufficient to prove the
statement in one direction only.

Suppose that RT is of finite type and {ΓJ is an infinite collection
•of non-isomorphic torsionless left modules all of composition length
n. By Lemma 1.1 there is a free module F of composition length
In and an infinite collection of short exact sequences

Now form the dual exact sequences.

0 > Tt ^L F* > F * / Γ * > 0 .
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The right modules F/TS are torsionless right modules [1; state-
ments 4.2 and 4.4] and each of these modules has composition length
less than m. Since RT is of finite type there exist two indices a
and β such that F*jTϊ θ > F*/T$ is an isomorphism. Using Theorem
A we construct the exact commuting diagram

0 v T* * . 771* . Έp*IΓF* v A

4 I" I
>lβ > t > £ l l β >i)

with vertical isomorphisms. This gives the commutative diagram

**

[p* [μ*

In this situation /m/iβ** coincides with the natural image of Tβ in.
Γ^* and the similar situation holds for the subscript a. Then com-
mutativity then implies that Ta is isomorphic with Tβ via the iso-
morphism μ*. This contradicts the assumption that the collection
{Ta} consisted of non-isomorphic modules.

2* A dual to Theorem A A dual to Theorem A would state
that if two submodules of a free module F were isomorphic, then
the isomorphism can be extended to an automorphism of F. This is
not, in general, true as we shall show by an example. However, by
assuming enough extra conditions we can obtain the desired con-
clusion. Recall that X is a W-module if Exti(-3Γ, R) — 0; see [8].

THEOREM 2.1. // in the diagram

θ is an isomorphism, F is a free module and F/A and F/B are W
modules, then the diagram can be embedded in a commutative diagram»

0
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with all the vertical maps isomorphisms.

Proof. Consider the dual sequences

0 — (F/A)* — F* — A* — 0

0 — (F/B)* -> F* — £ * — 0

The exactness at A* and B* comes from the fact that F/A and
FjB are W-modules. Also θ* is an isomorphism because θ is one.
By Theorem A there exists an automorphism p of F* SO that the
diagram

is commutative.
Now dualize again to obtain the commutative diagram

0-+A** — F**

Since both A, B are torsionless and F is reflexive [1, 7] we can
identify A and J5 with their images in A** and 2?**. Also the
mappings with two stars on them, when restricted to these images,
coincide with the original maps. Thus, identifying F with F**, we
have the commutative diagram

0 —> A _» F -

l I"* I"
0 — B —* F—> FjB —> 0

where /o* induces μ on F/A to F/5. All the vertical maps are
isomorphisms.

COROLLARY 2.2. If LT is of finite type then so is LW.

Proof. Suppose {Wa} is an infinite collection of nonisomorphic
Tf-modules such that C(Wa) = n. By Lemma 1.1 they are all epimorphic
images of a free module F, F^> W0—*O and C(F) = In. The sub-
modules Ker πΛ of F all satisfy C(ker 7rα) = (I — X)n and by the
assumption that LT is of finite type there exist two indices a Ψ β
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such that Ker πΛ = Ker πβ. Now Theorem 2.1 implies that Wa = Wβ

contradicting the assumption that the elements in the collection {WΛ}
were non-isomorphic.

COROLLARY 2.3. LTW is of finite type if and only if LR is
of finite type.

Proof. For the "if" part of the proof we proceed exactly as in
the proof of Corollary 2.2. We use this fact, proved in [3], that if
W is a torsionless VF-module and

0—Kerτr — F-> W-* 0

is exact with F free then Ker π is reflexive. Then the proof of 2.2
with the class LR replacing LT works here.

Conversely, if LTW is of finite type and if {Qa} is an infinite
collection of reflexives with C{Qa) — n, then by Lemma 1.3 they can
all be embedded in a free module F with C(F) ^ Inr,

But by [8] this embedding of the reflexive Qa results in FIQω being
a torsionless PF-module. Hence by assumption there exists a Φ β such
that FIQΛ = F/Qβ. Then Theorem A implies QΛ = Qβ contradicting
the assumption that the collection {Qa} consists of non-isomorphic
modules.

We conclude with an example which shows that Theorem 2.1. does
not hold without the hypothesis that F/A and F/B are ΉF-modules.
Let R be the ring of matrices

with x, y, z in a field K having more than 2 elements. R is com-
mutative and is an indecomposable free module over itself. The
radical N of R is the direct sum of two simple modules, N — Sx © S2.
If a, β are two distinct nonzero elements of K there is an auto-
morphism θ of N which is "multiplication by a on St and multiplica-
tion by β on S2". Any extension of θ to a if-linear transformation
on R will have two distinct eigenvalues. However, since R is in-
decomposable every module endomorphism (or automorphism) has only
one eigenvalue, therefor θ cannot be extended to R.
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ON DENSITIES OF SETS OF LATTICE POINTS

BETTY KVARDA

l Introduction* Let A be a set of positive integers, and for
any positive integer x denote by A(x) the number of integers of A
which are not greater than x. Then the Schnirelmann density of A
is defined [4] to be the quantity

For any k sets Al9 , Ak of positive integers, k ^ 2, let the sum
set Ax + + Ak be the set of all nonzero sums aγ + + ak for
which each aif i = 1, , fc, is either contained in A{ or is 0. Let kA
be the set A + + A with k summands.

Schnirelmann [4] and Landau [2] have shown that if A and B are
two sets of positive integers with C — A + B, and if α, β, Ί are the
Schnirelmann densities of A, B, C, respectively, then 7 ^ a + β — aβ,
and if a + β ^ 1 then Y = 1. They have also shown that if A is a
set of positive integers whose Schnirelmann density is positive then
A is a basic sequence for the set of positive integers, or, in other
words, there exists a positive integer k such that every positive integer
can be written as the sum of at most k elements of A.

We will show that by using extensions of the methods employed
by Schnirelmann and Landau the above results can be generalized to
certain sets of vectors in a discrete lattice (for definition and discussion
see [3, pp. 28-31] or [5, pp. 141-145]). Without loss of generality it
may be assumed that the components of the vectors in such a lattice
are rational integers. The usual identification of algebraic integers
with lattice points then gives an immediate extension of these results
to algebraic integers.

2 Notation and definitions* Let Qn be the set of all ^-dimensional
lattice points (xl9 , xn), n ^ 1, for which each xit i — 1, , n, is a
nonnegative integer and at least one x{ is positive. Define the sum
of subsets of Qn in the same manner as was done for sets of positive
integers, and for any subsets A and B of Qn let A — B denote the set
of all elements of A which are not in B. If A and S are subsets of
Qn and S is finite let A(S) be the number of elements in A Π S.

DEFINITION 1. A finite nonempty subset R of Qn will be called a

Received August 10, 1962, and in revised form February 27, 1963. The author is
indebted to the referee for a suggestion which has greatly simplified the proof of Theorem 2.
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fundamental subset of Qn or, briefly, a fundamental set, if whenever
an element (rl9 , rn) is in R then all elements (xlf , xn) of Qn such
that Xit^ri9i = l, " ,n, are also in R.

DEFINITION 2. Let A be any subset of Qn. The density of A is
defined to be the quantity

Qn(R)

taken over all fundamental sets R.

3«. Extension of the Landau-Schnirelmann results* Throughout
this section we let A and B be subsets of Qn with C — A + B, and
let a, β, 7 be the densities of A, B, C, respectively.

THEOREM 1. // a + β ^ 1 then 7 = 1.

Proof. Assume 7 < 1. Then there exists a fundamental set R
for which C(R) < Qn(R), which in turn implies that there exists an
element (x°l9 •••,«£) in Qn — C. Let iϋ0 be the set of all elements
(xlf , xn) in QTO for which αs^ccS, i = l, , ti. Then for any (a?x, •••,»»)
in iί0 either (^, , xn) is in A, or (xl9 , α?Λ) = (a??, , x°n) - (bu •••,&»)
for some (6^ , &n) in JB Π i20, or neither, but not both. In particular,
(a??, , x°n) is neither. Hence,

B(R0) ^ Qn(R0) ~

and

which is a contradiction. Therefore 7 = 1.

THEOREM 2. y ^ a + β — aβ.

Proof. Let ωifl ^i ^n, be that vector in Qn for which the ΐth
component is 1 and the other components, if any, are 0. If any one
of the vectors colf , ωn is missing from A then a = 0 and the theorem
is trivial. Hence we assume all the vectors ωu , ωn are in A. We
must show

for all fundamental sets R. If C(R) = Qn{R) then (1) holds, since
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(1 — a) (1 — β) ^ 0 implies 1 ^ a + β — aβ. Therefore we assume
C(R) < Qn(R) and, consequently, A(R) < Qn(R).

Let H—R — A. We will show that there exist vectors α(1), , α ( s )

in A and sets Llf "*,LS with the following properties.
( i ) Li £ if and Li is not empty, ΐ = 1, , s.
(ii) The sets L\ = {# — α ^ l ^ e L J are fundamental sets.
(iii) Li Π Ly = Φ for i ^ j .
(iv) i ί = Lx U U Ls.
Let the elements of R be ordered so that (xlf , xn) > {x[, , x'n)

if xλ > x[ or if cCi = α?ί, ,xp = x'p, xp+1 > x'P+1. For every h = (Λj, , hn)
in H, let AΛ be the set of all (a19 , an) in A such that each ê  ^ hi.
The sets AΛ are not empty since ω{e A for i = 1, , t^. The AA are
finite sets, hence they contain (in our ordering) a largest vector. Let
α(1), , α ( s ) be all the distinct vectors that are largest vectors in any
Ah. Let Li be the set of all vectors x in H such that a{ί) is the
largest vector in Ax.

That (i), (iii), and (iv) are satisfied follows immediately from this
definition of the L{. To prove (ii) consider a vector y — (yu * ,2/%)
such that

(2) xj ^ Vj ^ af ,

where α? = (xl9 •••,»») is in L { and ]/ ^ α ( ί ). Suppose yeLk, k Φ ί.
Then

(3) x3 ^ ^ ^ αjfc)

and α(&) έ a{i). But (2) and (3) and xeL{ imply α(&) ^ a{i\ hence α(fc) =
α ( ί ). Similarly, ye A implies y — a{i). This proves (ii).

If b e B Π L[ then a{i) + b is in C Π L ,̂ hence in C - A. Therefore,

+ B(L[) + .

+ /StQ^Lί) + + QΛ(LI)]

- A(R) + /SIQ^LO + + Q.(LS)]

- A(R) + β[Qn(H)]

- (1 - β)A(R)

^ (1 - β)a[Qn(R)] + β[Qn(R)] ,

and

C(R)

Qn(R)

which completes the proof.

^ a + β - aβ ,
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COROLLARY 1. Let Alf , Ak be any k subsets of Qn, k ^ 2, let
a{ be the density of At for i — 1, , k, and let d{Aλ + + Ak) be
the density of Ax + + Ak. Then

1 - d(Ax + . . . + Ak) ^ (1 - ax) . . (1 - ak) .

Proof. If fc = 2 then Theorem 2 implies that 1 — d(Ai + A2) g
1 — α^—α2+α1α:2 = ( l — α j (1—a2). Hence assume 1 — d(Aλ + + Ak^ g
(1 - O (1 - α,_0. Then

1 - d(A1 + + A ^ + Afc) ^ [1 - d(Λ + + Ak^)](l - ak)

COROLLARY 2. // A is αϋί/ subset of Qn with density a > 0
exists an integer k > 0 swcfc ί/̂ αί fcA = Qn.

Proof. There exists an integer m > 0 such that (1 — a)m ^ 1/2.
Let d(mA) be the density of mA. Then Corollary 1 implies that 1 —
d(mA) ^ (1 - a)m S 1/2, or d(mi) ^ 1/2. From Theorem 1, d{mA) +
(ί(mi) ^ 1 implies d(2mA) = 1, or 2m^4 = Qn.

4Φ Remark. We may identify Q2 with the set of nonzero Gaussian
integers x + yi for which x and y are both nonnegative rational integers.
Luther Cheo [1] defined density for subsets of this Q2 as follows,
using our notation.

DEFINITION 3. Let x0 + yoi be any element of Q2 and S the set
of all x + yi in Q2 such that x ^ x0 and y tί y0. Then for any subset
A of Q2 the density of A is the quantity

Cheo proved Theorem 1 for his density and also a theorem which
implies that if ji is in A for all j = 1, 2, , and if α0, /3C, 7C are the
Cheo densities of A, B, C = A + B, respectively, then

We cannot remove the requirement that all ji be in A by means of
an argument like that used to establish Theorem 2 since it would be
necessary to partition H in such a way that the sets L) are of the
type S used in defining the Cheo density, and this is not always possible.
Consider, for example, the set R — {x + yi: x + yi is in Q2, x ^ 4, y gΞ 3},
and let A Π i? = {1, i, 3 + 3ΐ}. Then H= R— A cannot be so partitioned,
as the reader can easily verify.
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A GEOMETRIC CHARACTERIZATION FOR A CLASS OF

DISCONTINUOUS GROUPS OF LINEAR FRACTIONAL

TRANSFORMATIONS

H. LARCHER

Let S3 = {V, I V<z = (a,z + δ,)/(c<s + dt); a A - he, = 1, i = 1,2, . •}
be a group of linear fractional transformations, where aiy b{, ci9 dι (i =
1,2, •••) denote complex numbers. As indicated we use V{ and F;£
to denote transformations and we use (linear) transformation in short
for linear fractional transformation. A point z of the plane (by plane
we mean, of course, plane of complex numbers) is called a limit point
of 25 if there exists a point z0 and an infinite sequence of distinct
transformations of 23, say, {Ϊ7J such that Ufa —> z as i —• co. A point
of the plane which is not a limit point is called an ordinary point of
the group. A discontinuous group is one for which there exists an
ordinary point. If c{ Φ 0, we define I(Vi) = {z\\CiZ + dt\ = 1} and
K(Vi) — {z\\CiZ + di\ < 1}, called the isometric circle and isometric
disk of Vi9 respectively. The main result is contained in the follow-
ing theorem which is proved in Part I of this paper.

THEOREM 1. Let S3 be a group of linear fractional transfor-
mations all of whose elements (except the identity) possess isometric
circles whose radii are bounded. Then S3 is discontinuous if and
only if there exists an open set of points in the plane that is exterior
to the union of all isometric circles.

According to the theorem discontinuity for the class of groups in
question could be defined in terms of the geometry of the isometric
circles. In addition, it will be shown that the set of points exterior
to the union of all isometric circles could be used to construct a
fundamental region for these groups. This last result removes certain
restrictions on a known result which is found in [1] (p. 39-49). There
Ford shows that if a group is discontinuous and if infinity is an
ordinary point, then the radii of all isometric circles are bounded
and some neighborhood of infinity is exterior to the union of all iso-
metric circles. The set of points exterior to the isometric circles he
uses to construct a fundamental region for the group. In Ford's
proof the fact that infinity is an ordinary point is crucial. For the

Received May 16, 1962. This paper originated while reading parts of J. Lehner's
forthcoming book on "Discontinuous Groups and Automorphic Functions" which I had
the privilege to do. The notation used here is partly his, and I feel indebted to him for
his permission to use it.
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class of discontinuous groups characterized by Theorem 1 we remove
that distinguished role of infinity. We would like to mention that
Ford uses the concept of 'proper discontinuity' rather than disconti-
nuity as defined here. However the results carry over, since the two
concepts are equivalent ([2]).

In Part II of this paper we give an example for a group 33 of
linear transformations for which the closed disks K(Vi) (ΐ = 1, 2, •)
cover the plane. By Theorem 1 it follows that 33 is not discontinuous.
This shows that the set of groups of linear transformations which
satisfy the hypotheses of Theorem 1 and whose isometric circles cover
the plane is not empty. This group is also discrete; it is therefore,
like the Picard group, an example of a discrete group which is not
discontinuous.

PART I

We say that the plane is almost covered by closed disks if the
points that are exterior to the union of all the disks do not comprise
an open set of the plane. In the following for cover or almost cover
we write in short 'cover'. First we prove

THEOREM 2. Let 33 be a group of linear transformations all of
whose elements save the identity possess isometric circles. If the
isometric disks K 'cover' the plane and if their radii are bounded,
then 33 is not discontinuous.

It is no restriction to assume that the number of transformations
in 33 is denumerable, since this is a necessary condition for disconti-
nuity of 33. First we prove six lemmas about the group S3. We as-
sume throughout that the hypotheses of Theorem 2 hold.

LEMMA 1. If z0 is an elliptic fixed point of order n > 1, then
every point z equivalent to z0 under 93 is an elliptic fixed point of
order n.

The proof is easy and we omit it here.

LEMMA 2. Let {In} be a sequence of isometric circles of infinitely
many distinct transformations of 53 with radii rn (n = 1, 2, •). If
the centers of the In converge to the finite point d, then the sequence
{rn} is a nullsequence.

Proof. Let Unz = (anz + bn)j{cnz + dn) be the elements of 33 for
which I{Un) = In {n — 1, 2, •••). Since the radii are bounded, the
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sequence of positive constants {rj has at least one limit point. Let
r be a limit point, and let us assume that r > 0. Then, on a subse-
quence, we have lim,--*, ri — lim^oo (1/| cά1) = r. The sequence {cQ },
where c3- = (l/r^e^j, has a finite limit point c Φ 0; and, on a subse-
quence, Yvca^n ck — c. To every ck of the last subsequence corresponds
a Uk whose isometric circle has center —dk/ck. By hypothesis we have
lim^oo (—dklck) — 8. On noting that UtU^ Φ I and that the matrix
of the transformation UkUζlλ is of the form ί -, x „ , Ί , where

KCkUjc+i ~ ck+i&k x/

the x stands for certain complex numbers, we deduce that for
sufficiently large k \ckdk+1 - ck+1dk | = | (dk+1/ck+1 - djck)ckck+1 \ < ε, where

ε is arbitrarily small and positive. But this is impossible, since all
elements of 53 (except I) possess isometric circles whose radii are bounded.

LEMMA 3. If zQ lies within infinitely many isometric circles,
then it is a limit point of 53.

Proof. Since the radii of the isometric circles are bounded, every
neighborhood of infinity contains centers of isometric circles. Thus
infinity as an accumulation point of such centers is a limit point of
53. This in turn implies that the centers of all isometric circles are
limit points of the group.

Let gn denote the center of In (n = 1, 2, •). Let K be a positive
real number such that rn < K for n = 1, 2, , and let {g3} be a
sequence of centers of those isometric circles that satisfy the hypo-
theses of the lemma. Since \z0 — g3r| < K or | g3-1 < K + \zo\, the
sequence {g^} is bounded. We pick a limit point δ. Then, on a subse-
quence, we have limfc_ββ gk = δ. Let the sequence {Ik} correspond to
the last subsequence. Since | z0 — gk | < rk and since by Lemma 2
lim^oo rk — 0, we deduce lim^oo gk = z0. Thus z0 as accumulation point
of limit points of 53 is itself a limit point.

LEMMA 4. // every neighborhood of a point z0 contains arcs of
infinitely many isometric circles, then z0 is a limit point of 53.

Proof. Since the lemma certainly holds when z0 is an accumulation
point of centers of isometric circles, we assume that these centers
are bounded away from z0. Let C be a circle with center z0 and of
radius p so that the centers of all isometric circles lie outside C; let
C" be a circle with center z0 and of radius p/2. We consider the infi-
nite set of isometric circles φ — {In | In Π C" Φ Λ; n = 1> 2, •}, where
A denotes the empty set. Their radii rn > p/2 (n — 1, 2, •). The
sequence {gn} consisting of the centers of the isometric circles in φ
is bounded (see proof of Lemma 3). If δ denotes a limit point of {gn}
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then I δ — z0| i> p, and, on a subsequence, we have lim^oo gk = <5. To
this subsequence corresponds the sequence of isometric circles {Ik}
whose centers accumulate at δ only. By Lemma 2 the sequence {rk}
is a null sequence, which contradicts rn > p/2 for all w.

When every neighborhood of a point z0 contains arcs of isometric-
circles we say that z0 is an accumulation point of arcs of isometric
circles. We observe that Lemma 4 includes the case where infinitely
many of the circles pass through z0. In view of the hypothesis that
the isometric circles 'cover' the plane, a consequence of Lemma 4 is

LEMMA 5. If zQ is exterior to all isometric circles, then it is a
limit point of 33.

LEMMA 6. If z0 is not an accumulation point of arcs of isometric-
circles and if it does not lie within an isometric circle, then z0 lies
on at least three isometric circles.

Proof. Clearly, z0 cannot be exterior to all isometric circles. Thus
it lies on at least one isometric circle. If only one or two circles
were to pass through z0 we could construct a neighborhood of zQ

sufficiently small so that all other isometric circles lie outside thia
neighborhood. In either case the neighborhood contains an open set
that is exterior to all isometric circles. Observing that three circles
passing through z0 can be arranged so that all points in a sufficiently
small deleted neighborhood of z0 lie within a circle the lemma follows.

These preliminary results we use now in the proof of Theorem 2.
Let Jίf be the set of limit points of 33 on the Riemann sphere. Then
jSf, which is a closed set ([1], p. 43), contains

( i ) the centers of all isometric circles (see proof of Lemma 3),
(ii) the nonelliptic fixed points of all transformations of 33 (we

assume that 93 contains elliptic transformations of finite order only,
since, if that were not the case, the theorem would be trivial),

(iii) the points that lie outside all isometric circles (see Lemma 5),
(iv) the points which are accumulation points of arcs of isometric

circles (see Lemma 4).
Suppose that there is a point zί^f. Since then every point in

a sufficiently small neighborhood of z is an ordinary point of S3 (the
set of ordinary points on the Riemann sphere is open, since £f is
closed) and since the number of elliptic fixed points is at most denu-
merable, it is no restriction to assume that z lies within an isometric
circle and that z is not an elliptic fixed point. The isometric circle
within which z lies we denote by /(C/Ί). Ux carries z into zu where
zx φ z and where zt lies outside /(J7Γ1). Furthermore, zxi Sif, since^
an ordinary point is not mapped on a limit point. Either zx lies within
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isometric circles, in which case we pick one of them and call it I(U2),
or, according to Lemma 6, it lies on at least three isometric circles.
In the latter case I(U2) denotes any one of them. Certainly U2 Φ Ur1.
In the same manner we proceed with z2 = Ό2zx — (U2 U^)z. Again, be-
cause of Lemma 1 z2Φ z19 and z2g^f. If z2 does not lie within an
isometric circle and if z1 lies on I(U2), then z2 lies on /(ZT^1). By
Lemma 6, it is then possible to pick I(U3) Φ IiUf1), and hence U3 Φ
Uf1. Continuing in this manner we obtain an infinite number of
transformations Wn = ΌnTJn-x £7ί (w = 1, 2, •), where t/iETi-i Φ I
(i — 2, 3, •)• Because of Lemma 3 the proof of Theorem 2 will be
complete if we can show that z lies within I(Wn) for n — 1, 2, •••.

Let UiZ = (dp + bi)l(CiZ + d{), and let δ(Uif z) = \ctZ + dt \~\ called
the deformation of Ut ([2]). Then δ(Ui9z) is greater than, equal to,
or less than one according as z lies within, on, or outside I(Ui). It
is readily verified that

<1) δ(UjUi,z) = δ(Uj, U^(Uifz),

and by an induction argument the formula can be extended to a
product of any number of transformations. For w M we have
$(Wn, z) = δ(Un . . Ul9z) = δ(Ulf z)δ(U2, Uxz). δ(Un, Un^ Uxz) > 1,
since δ(Ult z) > 1 and every other factor δ(Uk, Uk-X Uλz) ̂  l(fc = 2,
• , n). This implies that z lies within I(Wn) (n — 1,2, •). Hence
ze£f\ a contradiction.

If, however, the isometric disks K of 33 do not 'cover' the plane
we have the following theorem.

THEOREM 3. Let 35 be a group of linear fractional transfor-
mations all of whose elements {except the identity) possess isometric
circles. If there exists an open set of points that is exterior to all
isometric circles, then 35 is discontinuous.

Proof. Let & be the open set in the hypothesis. Pick z0 in &,
where z0 is finite. There exists a ε-neighborhood NΈ of z0 such that
zeNs implies ze&. For any transformation V in 35 (Vφ I) Vz0

lies within I(V~λ), or | Vz0 — zQ\ > ε. Thus zQ is a standard point of
35 ([3], p. 38). Since every standard point is an ordinary point ([3],
p. 47), 35 is discontinuous.

This completes the proof of Theorem 1, since Theorems 2 and 3
imply the former.

Next, the remark about the fundamental region in the introduction
calls for further elucidation. Let 35 be a discontinuous group that
satisfies the hypothesis of Theorem 1 and for which infinity is a limit
point (for the case in which infinity is an ordinary point the follow-
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ing is well known). Let K{ (i = 1, 2, •) be the isometric disks of
93, let έ? be the set of points exterior to the set U; Ki9 and let ^
denote the set of ordinary points of 93. Then έΌ and ^// are open
sets. Furthermore, έ? c t ^ is an immediate consequence of the proof
of Theorem 3. Here, we do not intend to give a definition for a
fundamental region. However, we want to show that ^ has the two
properties that are customarily used in any definition; namely,

( i ) no two points of ό9 are equivalent under 93 and
(ii) every point in ^/Z is equivalent to some point in 0\ the

closure of the set <5ϋ.
As for (i) we note that if ze ^ and Fe93 (V φ 1), then Vz lies

within /(F"1) and hence is exterior to ^ \
The gist of our proof of (ii) is the same as that of the corres-

ponding proof in [2], where infinity is considered to be an ordinary
point of the group. In our proof we make use of the following lemma,,
where we use primes to denote derivatives.

LEMMA 7. Let f{(z) (i = 1, , k), where k is an integer greater
than 1, he nonvanishing holomorphic functions in a domain &, and
let for j Φ i fi(zo)fj(zo) - f}{z0) f{{z0) Φ 0 and \UzQ) | = \fj(z0) | (i, j =
1, , k) for some point z0 in J3? . Then every neighborhood of z0 in
2$ contains a point z* such that |/;(z*) | Φ \fj(z*) | for j Φ i(i, j =•
1, - , fc).

Proof. For i, j = 1, , k and i < j we define the functions
fiAz)=fi(z)lfAz) We observe that \fM\ = 1 and f;,(z0) Φ 0. We
choose the (circular) neighborhood N(z0) of z0 so small that the map-
pings fij(z) are one-to-one. For each function fij(z) the level curve
\fij(z) I — 1 consists of a finite number of disjoint analytic arcs in N(zQ).
If we pick a point z* in N(z0) that does not lie on any level curve
the conclusion of the lemma holds.

Let z0 e „///? and zQ & έ?. In view of Lemma 3 zQ lies within or on
a finite number of isometric circles. Let Ui (i = 1, , n) denote the
transformations in S3 whose isometric circles /(Ui) have this property.
Since every element of 93 (save the identity) possesses an isometric
circle, no two of the /(ίJ^'s coincide.

We divide the proof into two parts.
( i ) We assume δ(U19 z0) > 3(17̂  zQ)(i = 2, , n). Then Uλz0 lie&

in &. For suppose that Uλzύ lies within or on some isometric circle
I(V). Using (1) for the deformation of the transformation VUλ we
deduce δ(VUlf z0) - δ(V, U&) δ(U19 z0) ^ δ(Ul9 z0). This would imply
that z0 lies within or on I{VU^). Hence VUX = U{ for some i with
1 < i <^ n; which contradicts the maximum property of δ(Ulf zQ). We
remark that the proof still holds for n = 1.
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(i i) We assume δ( Ulf z0) = δ( C/2, z0) = . - - - δ( Uk, z0) > δ( Uif z0) for

k < i S n(l< k ^n). Let N(z0) be a neighborhood of z0 containing
only ordinary points of 33 and being so small that 8(Ujf z) > δ(Ui9 z)
(j — 1, , k; i — k + 1, , n) holds for all z in N(z0) and that N(z0)
does not intersect any isometric disk other than the K(Ui) (i = 1, , n).
As one readily verifies the functions U (z) (j = 1, •••, k), where the
prime denotes the derivative, satisfy the hypothesis of Lemma 7 with
N(z0) in place of &. Thus we conclude that every neighborhood of
z0 contains a point z* having the property that, for some integer m
with 1 ^ m ^ fc, δ(Um, z*) > δ(Ujf z*) (j = 1, - , k; j Φ m). By part
(i) of this proof it follows that Um(z*) e έ?\ and by continuity we have
Um<(z0) e £?' for some suitable m* with 1 fg m"β ^ /c. This completes
the proof about the two properties of έ?.

We conclude this part with a remark. Let sΰ be a nondiscontinu-
ous group of linear transformations satisfying the hypotheses of Theorem
2. For Fe23 we denote by 7* the 2 x 2 matrix that can be associ-
ated with Vz. Then 55* = {± V \ Ve 33} is a group under matrix
multiplication. Since every element of 2̂ ~ (save the identity) possesses
an isometric circle and since all the radii are bounded, in every matrix

(a 7 j of S3* (save the two identity matrices) c Φ 0 and all the c's are

bounded away from 0. This implies that 93* is discrete; that is, 33*
does not contain a sequence of distinct matrices {Fπ*} such that Fw* —*/*
as n-+tt>, where f = L Λ Thus all the nondiscontinuous groups
characterized in Theorem 2 are such that the corresponding groups
of matrices are discrete. That nondiscontinuous groups, as considered
here, exist is not a trivial fact. We dovote the second part of this
paper to the construction of a group of this type.

PART II

Here we give an example of a group of linear transformations
that contains only elements with isometric circles which have the
property that the closed isometric disks cover the plane. We divide
the construction into three parts.

1. We construct a covering of the plane by closed disks K such
that the open disks K are mutually disjoint. To begin with, we draw
circles of radius unity and with centers at the points with coordinates
(2m + 1, 2n + 1) (m, n = 0, ± 1 , ±2, •). After drawing circles of
radius (l/ΊΓ— 1) units and with centers (2m, 2n) (m, n = 0, ± 1 , ±2, •),
there remain the interiors of congruent triangles whose sides are
circular arcs uncovered. Within every triangle we construct a circle
touching all three sides, and we continue in this manner. The follow-
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ing proof1 shows that by this construction every point of the plane
lies within or on a circle.

Diagram 1 shows a triangle we encounter in our construction,

Diagram 1.

Diagram 2.

1 This proof I owe to F. Herzog.
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where Ilf J2 and J3 denote the circles whose arcs form the sides of
triangle ABC. Let z0 be any point in the interior of the triangle,
and let S be a linear fractional transformation such that SzQ = oo.
Depending on the relative sizes of the image circles Γk of Ik under
S(k = 1, 2, 3), we distinguish two cases. Either, (i) we can construct
a circle Γ such that the Γk (k = 1, 2, 3) are tangent internally to Γ as
indicated in Diagram 2. Then S"1 maps Γ on a circle 7 that touches
the three sides of triangle ABC and contains z0 in its interior.

Or (ii) no circle Γ as assumed in (i) exists. Then the configuration
of the circles Γk (k — 1, 2, 3) resembles the one in Diagram 3, where
triangle A'B'C is the image of triangle ABC under S.

Let tx be the common tangent to I[ and J3' through J3', and let
t2 be the common tangent to Ii and I3' through C. Clearly, the two
tangents intersect in a point that lies within triangle A'B'C. Let t
be that common tangent to I{ and Ii which is shown in Diagram 3.
We construct the circle K[ which is tangent externally to the II

Diagram 3.
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(k — 1, 2, 3) and which lies outside triangle A'B'C Next we construct
the circle K2' which is tangent externally to //, /2' and K(. We con-
tinue this process until we come across the first circle, say, K's that
is tangent externally to //, // and iζf-i and that intersects or touches
the line t. That the K[ exists follows from the fact that the radii
of successive circles K{ (i = 1, -, s) increase. Rigorous arguments
for this we omit, in order not to lengthen the paper unduly. Finally
we construct the circle /' which contains the circles //, /2' and Kf

s in
its interior and which is tangent with each of them. In the case
when Ks touches the tangent line t, Γ is the degenerate circle t.
Under the mapping S^1 we obtain a chain of circles within triangle
ABC, each Kif where K{ = S~xKί9 being tangent externally to I19 I2

and Ki-r (i = 2, , s). S"1/' = / is the circle that is tangent ex-
ternally to Ilf I2 and Ks and that contains z0 in its interior. In the
degenerate case / will pass through z0. This completes the proof.

2 In order to associate linear transformations with the covering
circles we group them in pairs of circles of equal radii. The circles
with centers (2n, 0) (n = 0, ± 1 , ±2, •) and with radii (l/ΊΓ— 1) units
we pair in some way so that all are used up. The remaining circles
whose interiors intersect the y-axis are mapped under reflection in
the £-axis on congruent circles. Each circle we pίair with its image
under this reflection. Under reflection in the τ/-axis all the remaining
circles are mapped on congruent circles, and we pair them accordingly.

With every pair of circles I and /', with centers a and β, re-
spectively, and with radii r, we associate a linear fractional transfor-
mation V such that / is the isometric circle of V and /' that of V"1.
It is readily verified that V is of the form

Vz = [{βjτ)eiφz - ((aβ/r)eiφ + re-iφ)]l[(l/r)eiφz - (a/r)eiφ] ,

where φ may be chosen arbitrarily and where we used the normali-
sation det. V = 1.

Since every circle contains a point with rational coordinates, the
number of transformations is denumerable. We denote them by Vl9

Vr\V2,Vr\-- . Let G< = {V?|fc = 0 , ± l > •-.} {V? ^ I) and let
33 = * JJ. Gif the free product of the cyclic groups G> If U; G% "denotes
the union of the Gίf then U G* = S3 ([2]).

3 There remains to be shown that each element (Φ I) of 53 has
an isometric circle and that the radii of all circles are bounded. These
properties are consequences of the following lemma.

LEMMA 8. Let {Tn} be an infinite sequence of linear transfor-
mations which with every Tn contains T"1, and all of whose elements



A GEOMETRIC CHARACTERIZATION FOR A CLASS 627

possess isometric circles. Let Kn denote the isometric disk K(TV)
and let A denote the empty set. If K{ Π Kk = A for k Φ i {%, k =
1,2, •••), then Kniz> K, the isometric disk ofW= T^T^ Tn±,
where n1} , ns are arbitrary positive integers, not necessarily dis-
tinct, except that Tn.+iTn. Φ I.

Proof. For i = 1, • -, s we put Tn% = Si9 J< = I(S{), H -

and K[ = KiSr1)' Let z be any point outside Ix. Then Sλz lies in
Kl, and hence outside I2. S2{Sλz) lies in Kiy and hence outside /3.
By an induction argument it follows that Wz lies in K'9. Since at
each step lengths in the neighborhood of z or its images are decreased
the lemma follows.

Let {Un} be a sequence comprising the transformations Vlf Vr\
V2, Vf\ •••. Then {Un} satisfies the hypotheses of Lemma 8 and, in
addition, the radii of the isometric circles of the Un do not exceed
unity. Hence we conclude that the radii of all elements of the cyclic
groups Gi (i = 1, 2, •) as well as those of 35 do not exceed unity.

We close with a remark. That the free product *Πi£r; is &n

isomorphic image of U; Gi is ^ n easy consequence of Lemma 8.
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SIMPLE PATHS ON POLYHEDRA

J. W. MOON and L. MOSER

In Euclidean cZ-space (d ^ 3) consider a convex polytope whose
n(n ^ d + 1) vertices do not lie in a (d — l)-space. By the "path
length" of such a polytope is meant the maximum number of its
vertices which can be included in any single simple path, i.e., a path
along its edges which does not pass through any given vertex more
than once. Let p(n, d) denote the minimum path length of all such
poly topes of n vertices in d-space. Brown [1] has shown that
p(n, 3) ^ (2n + 13)/3 and Grϋnbaum and Motzkin [3] have shown that
p(n, d) < 2(d — 2)n" for some a < 1, e.g., a = 1 — 2~19 and they have
indicated how this last value may be improved to a = 1 — 2~16. The
main object of this note is to derive the following result which, for
sufficiently large values of n, represents an improvement upon the
previously published bounds.

THEOREM.

p(n, d) < (2d + 3)((1 - 2/(d + l))n - (d - 2)) l o g 2 / l o g d - 1 < 3d nlos2llos*.

When d = 3 the example we construct to imply our bound is
built upon a tetrahedron which we denote by GQ. Its 4 vertices,
which will be called the Oth stage vertices, can all be included in a
single simple path. Upon each of the 4 triangular faces of Go erect
a pyramid in such a way that the resulting solid, Glf is a convex
polyhedron with 12 triangular faces. This introduces 4 more vertices,
the 1st stage vertices, which can be included in a single simple path
involving all 8 vertices of Gx. We may observe that it is impossible
for a path to go from a 1st stage vertex to another 1st stage vertex
without first passing through a Oth stage vertex.

The convex polyhedron G2 is formed by erecting pyramids upon
all the faces of G2. Of the 12 2nd stage vertices thus introduced at
most 9 can be included in any single simple path since, as before, no
path can join two 2nd stage vertices without passing through an
intermediate vertex of a lower stage and there are only 8 such vertices
available.

The procedure continues as follows: the convex polyhedron Gk,
k Ξ> 2, is formed by erecting pyramids upon the 4.3fc~1 triangular faces
of Gk-X. Making repeated use of the fact that the method of con-
struction makes it impossible for a path to join two vertices of the
jth stage, j ^ 2, without first passing through at least one vertex of
a lower stage we find that at most 9.2j~2 of the 4.3i~1 vertices of the
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jth stage, j = 2, 3, , fc, can be included in a single simple path
along the edges of Gk. This and the earlier remarks imply that
GkJ k ^ 1, has 2 3ft + 2 vertices and at most 9 2 f c l — 1 of these can
be included in a single simple path.

For any integer n > 4 let k be the unique integer such that

(1) 2-3* + 2<n^ 2 3fc+1 + 2.

Next consider the convex polyhedron with n vertices which can be
obtained by erecting pyramids upon n — (2 3fc + 2) faces of Gk. Then,
from considerations similar to those given before, it follows, using
(1), that

(2) p(n, 3) ^ 9-2* - 1 < 9((n - 2)/2)log2/log3 - 1 .

This suffices to complete the proof of the theorem when d = 3 since
the result is trivially true when n = 4.

In the general case the construction starts with a cί-dimensional
simplex. Upon each of its (d — l)-dimensional faces is formed another
d-dimensional simplex by the introduction of a new vertex on the
side of the face opposite to the rest of the original simplex in such
a way that the resulting poly tope is convex. This process is repeated
and the rest of the argument is completely analogous to that given
for the case d — 3. It should be pointed out that the result of
Griinbaum and Motzkin holds even for graphs all of whose vertices,
but for a bounded number are incident with 3 edges, while in the
polytopes described above the distribution of valences is quite different.

In closing we remark that the path length of any 3-dimensional
convex polyhedron with n vertices is certainly greater than

(log2 n/\og2 log2 n) — 1 .

Suppose that there exists a vertex, q say, upon which at least
log2 nβog2 log2 n edges are incident. Let the vertices at the other ends
of these edges be p19 p2J , pt, arranged in counterclockwise order.
Each pair, (pίf pi+1)9 i = 1, , t — 1, of successive vertices in this
sequence determines a unique polygonal face containing the edges
pi+1q and qp{. Traversing this face in a counterclockwise sense gives
a path from p{ to pi+1 involving at least one edge. Since these faces
all lie in different planes it is not difficult to see that these paths
may be combined to give a simple path from q to px to pt whose
length is at least t ^ log2 n/\og2 log2 n. If there is no vertex upon
which this many edges are incident then the required result follows
from the type of argument used by Dirac [2; Theorem 5] in showing
that the path length is at least of the magnitude of logn if only a
bounded number of edges are incident upon any vertex.
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REPRESENTATION OF A POINT OF A SET AS SUM OF
TRANSFORMS OF BOUNDARY POINTS

T. S. MOTZKIN AND E. G. STRAUS

In a previous paper [1] we established a condition (Theorem I) for
real numbers such that, in a linear space of dimension at least 2,
every point of a 2-bounded set can always be represented as a sum
of boundary points of the set, multiplied by these numbers. It is
natural to ask for the corresponding condition in the case of complex
numbers. Multiplication of a point by a real or complex number can
be regarded as a special similarity. A more general theorem in which
these similarities are replaced by linear transformations, or operators,
will be proved in the present paper.

DEFINITION. Let B be a real Banach space with conjugate space
B'. Let ScB and x'eB', \\x'\\ = 1. The x'-width of S is

Wχ-(S) = sup (x — y)x' , wx,(Φ) = — co .
x.ves

The width of S is w(S) = inf wx.(S).
Let SΆ be a linear transformation of B and 2ί* the adjoint operation

on B' defined by a?(α'2l*) = (xl\)x\ Then #'<>i* = 0 or we can define

In the following all sets are assumed to be in a real Banach space.

LEMMA 1. (1) If S is bounded then wx(S) is a continuous
function of x\

(2) wx (S + T) = wx,(S) + wx(T) (with the proviso that -co
added to anything—even +co—is -co).

(3) If S has interior points then u(S) > 0.
JO if x'tx* = 0

(4) w(S*) j

The proofs are all obvious.

LEMMA 2. Let T be a connected set so that no translate of —T
is contained in the interior of S, then S + Tcz T + bdS.

Proof. Let s e S, te T; then s + t — T contains s e S but is not
contained in the interior of S. Hence (s + t — T) Π bd S is not empty
a n d s + Γ c Γ + bdS.
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634 T. S. MOTZKIN AND E. G. STRAUS

LEMMA 3. If S is bounded and — clScint T then no translate
of — clT is contained in int S.

Proof. For one-dimensional spaces this is obvious since the hy-
pothesis implies diam S < diam T. If the lemma were false then
a — cl T c int S for some point a. The mapping x —> a — x leaves the
lines through α/2 invariant and the contradiction follows from the
fact that the inclusion is false for the intersection of the sets with
such lines I for which I Π int S Φ φ.

LEMMA 4. Let wx,(S) < •<», let T be a connected set, and let
U=(S+ T)\(T+MS)f then

wAU) £ wAS) - wAT) .

Proof. If wAT) = co then S+TczT+bdSbγ Lemma 2. If
wx,(T)< co let a = mΐsessx', 6 = sups€Ssx', c — mίteτtx', d — s\i^teτtx

f.
If s e S, teTso that (s + £)#' < a + d then s + £ — T contains s in
S and inftler(s + ̂  — £i)#' < α so that s + t — Γ contains points in the
complement of S. Since s + t — T is connected it follows that
(s + t - T) n bd S Φ Φ or s + t e T + bd S. Thus infw€Z7 WB' ^ α + cί.

Similarly, if seS, te T and (s + t)x' >b + c then s + t - Γ
contains s e S while sup ί l€Γ (s + t — Qx' > 6 so that s + ί — T contains
points in the complement of S. Hence (s + t — T) Π bd S Φ Φ and
s + t e T + bd S. Thus supweσ ux' <; 6 + c, and hence

= sup w#' — inf ucc' ^ (6 + c) — (α + d) = (b — a) — (d — c)
ueσ ueσ

DEFINITION. Let S be a bounded connected set in B. The
set, oS, of S is the complement of the unbounded component of the
complement of S and the outer boundary, obd S, of S is the boundary
of oS. Clearly obdScbdS and if dimi? Ξ> 2 then obdS is connected.

THEOREM 1. Let Sl9 S2, •• ,SW be bounded connected sets in B
with dim 2? ^ 2 so that no translate of — cl oSτ is contained in
int oSi (i = 2, , w). Then

wA(Si + S2 + + SJVobdSx + obdS2 + - + obdSJ)

- wAS,) wASn) .

Proof. By repeated application of Lemma 2 we have Sx + +
Sπ c oSi + + oSn c oSχ + obd S2 + + obd Sn and the theorem
follows from Lemma 4 where oSx plays the role of S and obd S2 +
• + obd Sn that of T.
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COROLLARY. If Su •• ,SW satisfy the conditions of Theorem 1
-and in addition for each i there is an x\ so that wx,t(Si) < ΣJV*

 wχfi(Sj)
then S1 + + Sn c obd S1 + + obd Sn.

DEFINITION. Let B be a real Banach space with dim B^2. A
set of bounded linear operators 2ίx, , SίΛ is admissible if for every
bounded set SczB and every point p e S there exist outer boundary
points xl9 - , xn G obd S such that

p = a ^ + + a.a* .

THEOREM 2. // α set 21 0/ operators 21̂  , 2ln is admissible then
( i ) 2ΪX + + 2IΛ = ^ , ί/Z'β identity.
(ii) JF'or eαcfe i there exists an x' eBf, x' φ 0

// J5 is finite dimensional, dim I? ^ 2, αtid 21 satisfies (i)

Jor all x' G JB' ίfee^ 21 is admissible.

Proof. The necessity of (i) and (ii) is nearly obvious. If 2^ +
••• + 9 I Λ = £ ^ , let peB be a point which is not invariant under
21, + . . . + 2IΛ and let S = {p}.

If S is the unit ball of B and

0 = x&x + - + a ? A , II xx II - = II xn \\ - 1

then

or

< V

Now if inf,!x,,=1 ||α;2Ii || = 0, then for every ε > 0 there exists an
x' with II x' [I = 1 and || x'%t \\ < ε and (ii) is trivial. If inf,,.,,̂  || x% \\ > 0
then 21* is onto and we can pick x' so that H ί̂c'21* || = ||ίc'2If || and
hence || xWf \\ S Σ ^ II *flWϊ II ̂  Σ i ^ II *Wt \l

To prove the sufficiency of (i) and (ii') we may restrict attention
to connected sets since we may consider the component of p in S.
Let Si = S2Ii. If for each Si there is an Sj so that j Φ i and no
translate of — cl Sj is contained in int S{ then according to Lemma 2
we have
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SdS1+ + Sn c oS1 + +oSn

c obd Sx + (oS2 + + oSw)

c obd Sι + obd S2 + (oS3 + + oSw) c •

c obd S1 + + obd Sn .

Since B is finite dimensional we have obdS* = (obdS)2I; so that

S c (obd S)2IX + • • + (obd S)3W

which was to be proved. We may therefore assume that — clSy has
a translate in int Si for each j — 2, , n. Then according to Lemma 3
and Theorem 1

(1) wAiS, + • + SJ\(obd Sx + + obd Sn))

wASn) .

Since Si has an interior 21̂  and hence 21?, are regular and we
can choose x' so that wx.χ(S) = w(S) where x[ = ^2I*/|| α'21? ||. By
part (4) of Lemma 1 we have wx,(Sj) ^ w(S) || a 'SIy ||. Thus (1) becomes

χ + SB)\(obd S, + + obd S.)) g

so that (Si + + Sn)\(obd Si + + obd Sn) has no interior points
and is therefore empty since obd Sx+ + obd Sn is closed. So we
have again

ScSι+ ••• + S n c o b d S 1 + •••

REMARK. The hypothesis that B is finite dimensional can be
dropped if we assume that the mappings 21; are onto. If the 2ί; are
similarities of B onto itself then (ii) and (ii') have the same simple
form

(ii") I I ^ I I ^ Σ I I δ l / l l ί = l, --,n.

We thus have the following:

THEOREM 2'. A set of similarities 2IX, , 2fw of a Banach space
B of dimension at least 2 onto itself is admissible if and only if it
satisfies conditions (i) and (ii").

In the manner analogous to that used in [1] we can generalize the
validity of Theorem 2 to a class of linear spaces which we define as
follows.
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DEFINITIONS. Let B be a linear space and let ^ be a family
of linear transformations of B onto itself so that ^ is transitive on
the nonzero elements of B. A B-space S is a linear subspace of a
(finite or infinite) direct product of copies of B that is closed under
simultaneous application of JΓ to the components of a point. If x9

y e S and y φ 0 then {x + yF\ Fe J?~} is a Bsubspace of S. The B-
subspaces can be given the topology of B by the association x+yF*-*zF,
ze B, z Φ 0 where the choice of z is arbitrary due to the transitivity
of j ^ ~ . We can therefore define boundedness in l?-subspaces (if bound-
edness is defined in B) and a set in S is B-bounded if through every
point of the set there is a I?-subspace whose intersection with the set
is bounded.

THEOREM 3. Theorem 2 remains valid for B-bounded sets in a
B-space where B satisfies the conditions stated in Theorem 2. // B
is one-dimensional then the same theorem holds for sets which are
2-bounded (in the sense of [1]) and satisfy the other conditions of
Theorem 2.

This is an immediate consequence of Theorem 2 if we consider
the bounded intersection of S with a J5-subspace through a point p
of S.

Theorem 3 applied to the conditions of Theorem 2' subsums the
results of [1]. As one application we give the following:

THEOREM 4. Let f(z) be analytic in a proper subdomain D of
the Riemann sphere and continuous in cl D. Let alf , an be complex
numbers satisfying

(i) aλ + . . . + an = 1

and

(ϋ) | α < | 5 * Σ I « i l .

Then for every zoe D there exist zl9 , zn in bd D such that

/(So) = «i/(Si) + + OC%f(zn) .
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AN ANALOGUE OF KOLMOGOROV'S THREE-SERIES
THEOREM FOR ABSTRACT RANDOM VARIABLES

R. P. PAKSHIRAJAN

1. Introduction, (β, ^/ί, P) is a probability space i.e. Ω is an ab-
stract set of points w, . /ί\$ a tf-field of subsets of Ω and P is a nonnega-
tive countably additive set function defined on Λί such that P(Ω) = 1.
G is a locally compact Hausdorff abelian metric topological group.
The group operation in G, as well as in the several other groups to
be dealt with, will be denoted by +. Let e denote the identity element
of G. By the Borel sets of G we mean the sets belonging to the σ-
ring generated by the class ^ of compact subsets of G. Let £& be
the class of subsets of G whose intersection with every compact set
is a Borel set. Notice that 3f is a σ-field containing the open subsets
of G. The character group of G will be denoted by G. A single
valued mapping / of Ω into G will be called a generalised random
variable (g.r.v.) if f"\A) e ^ whenever A e &. An immediate
consequence of this definition is that if / is a g.r.v. then rj{f) is an
ordinary (complex valued) random variable for every ηeG. A finite
or a countably infinite collection of g.r.v.'s is said to be independent
if and only if for every finite subset {Xif i = 1, 2, , n} of distinct
members of the collection and for every choice of sets Aj e £?, j =
1, 2, , n it is true that P{w: X&w) e Aiy ί = 1, 2, - , n} = Πί P{w.

If G is the real line, G is the real line too. For t e G and x e G,
t(x) = exp (ίtx). Given the random variable X and any real number
c > 0 we define a new random variable Y = toa where t0 — c/π and
a is the principal amplitude of exp (iπX/c). The two sets
{w: —c< X(w) S c) and {w: X(w) Φ Y(w)} are then seen to be equal.
Denoting by N the interval (—c, c], the classical three series theorem
[2] may be stated thus: If {Xn, n — 1, 2, •} is a sequence of inde-
pendent real valued random variables then ΣΓ X* exists with prob-
ability 1 (a.e.) if and only if, for some c > 0, the following three
series converge.

( i ) Σ*
(ii) Σ
(iii) ΣΓ var Yn.
E and var denote respectively the mathematical expectation and
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variance. an is the principal amplitude of exp(iπXJc) and Yn = tQan.
The convergence of the above three series is easily seen to be equivalent
to the convergence of

( i ) Σ,TP{w:Xn(w)^N}
(ii) Σ?Elogt(Xn) and
(iii) ΣΓ v a r logί(-aΓn) for every ίeG, \ogt(Xn) being defined to

be equal to iθn where θn is the principal amplitude of exp (itXn). It is
in this form the classical three series theorem lends itself for extension
to the case of generalised random variables. In § 2 three lemmas are
proved leading to the generalisation. In § 3 we give a neccessary
and sufficient condition for the convergence almost everywhere of ΣΓ Xn

in terms only of characters and not using characterstic functions.
The following two known results are quoted for the sake of

completeness and ready reference.

THEOREM A. (Cor. (2.1) [4]).

If {hny n = 1, 2, •} is a sequence of continuous homomorphisms
on a topological group Gx to a toplogical group G2 which converge
pointwise to h throughout some Baire set of the second category then
h is continuous.

THEOREM B. (§2.21 [3]).
Let G be a locally compact abelian group. Let N be a compact

symmetric neighbourhood of e. Let G' be the subgroup of G gene-
rated by N. Then G' contains a discrete subgroup D with a finite
number of generators such that the quotient group G'jD is compact
and D Π (N + N + N) = {e}.

2. For a sequence of real or complex numbers gn, n = 1, 2,
we say that ΠΓ On exists if ΠΓ 9k is nonzero for sufficiently large n.

LEMMA 1. For ηeG, a necessary and sufficient condition that
ΠΓ V(Xn) exists a.e. is that ΠΓ Eη(Xn) exists.

Proof. If ΠΓ V(Xn) exists a.e. then, by the bounded convergence
theorem, Y[T Eη(Xn) exists.

Conversely let ΠΓ Eη(Xn) exist. Hence ΠΓ I Eη{Xn) \ exists. Let
rj(Xn(w)) = exp (iθn(w)) where θn(w) is the principal value of the
amplitude. Hence θl9 θ2, is a bounded, independent sequence of
real valued random variables. Let θ'n be the symmetrised version of
θn and let θ'n (1) be θ'n truncated at 1. One has (p. 196, [2]) var θ'n
(1) ^ 3{1 - I Eη{Xn) |2}. Hence ΣΓ var θ'n (1)< « . By the classical
three series theorem it follows that ΣΓ θ'n converges a.e. Consequently
(p. 250, [2]) there exist constants an such that ΣΓ (θn — an) exists
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a.e. or equivalently Y[~ exv(—ian)Eη(Xn) exists. This implies the
convergence of ΣΓ^n since ϊ[? Eη(Xn) is assumed to converge. We
now conclude ΣΓ Θn exists a.e. or, what is same, ΠΓ V(%n) exists a.e.

LEMMA 2. For a given ηeG, the following two sets of conditions
are equivalent.

(2.1) Π Eη(Xn) exists; Σ var η{Xn) < oo
1 1

(2.2) Σ Eθn converges; Σ v a r θ* < °°
1 1

where η(Xn) = exp (iθn), θn being the principal amplitude.

Proof. Suppose (2.2) holds. Therefore by the three series theorem
on the line, ΣΓ θn exists a.e. This implies that ΠΓ V(Xn) exists a.e.
Hence ΐlΓ Eη(Xn) exists by the bounded convergence.

Let now an == Eθn; βn = var θn and θn = an + yn. As in the last
lemma, Eη(Xn) = (1 + dJ3J2) exp (ian) where | d n\ ^ 1.

E\η{Xn) - EV(Xn) |2 = E\exp(iyn) - (1 + dj8./2) |2

^ c/3ra where c is an absolute constant

= c var θn .

Hence ΣΓ var y{Xn) < oo.
Conversely, suppose (2.1) holds,

var y(XJ = E\ exp (iy.) - (1 + djβ.,/2) |2

= 1 + 11 + djS./212 - 2 real part of £"(1 + dnβj2) exp (%„)

= 1- |1 + dJ3J2 \\

Hence ΣΓ {1 - 11 + dw/3J212} < oo. Now, 11 + dj3J21 is the absolute
value of the expectation Eexτp(iyn) and hence is less than or equal
to 1. It follows therefore that ΣΓ {1 - 11 + dJ5J21} < « As 1 -
11 + dnβj21 ^ βJ2, this implies that

Σ β* < m i e. Σ var ί, < « .
1 1

From the convergence of ΠΓ Eη(Xn) and ΣΓ/5W and the relation
Eη{Xn) = (1 + d»/8n/2) exp (ίαj, we see that ΣΓ ##„ = ΣΓ *n converges.
Thus (2.1) implies (2.2).

LEMMA 3. A necessary and sufficient condition that ΣΓ Xn exist
a.e. is that ΐ[Γy(Xn) exists a.e. for every ηeG, and for some com-
pact neighbourhood N of e
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(2.3) £ P(w: Xn(w) « ΛΓ)< oβ .
1

Proof. Suppose ΣΓ Xn exists a.e. Consequently, for every compact
neighbourhood N of e, P(w: Xn{w) £ N i.o.1) = 0 or, equivalently,
ΣΓ P{w: Xn(w) £ N} < oo by the Borel-Cantelli lemma. That ΠΓ η(X%)
exists a.e. for each rjeG follows from the continuity of the characters η.

Conversely, let N be any compact neighbourhood of e for which
(2.3) is satisfied. Since N - N a N, we have P{w: Xn(w) <£ N - N} ^
P{w: Xn{w) £ N}. Hence the symmetric neighbourhood N — N of e
also satisfies (2.3). Without loss of generality we may therefore assume
that JV in (2.3) is symmetric.

Denote by G* the closed subgroup generated by N. Necessarily
G* is σ-compact. Further, by Theorem B, G* contains a discrete
subgroup D with a finite number of generators such that Gx — G*/D
is compact and D (Ί (N + N — N) — {e}. Hence by the Borel-Cantelli
lemma, (2.3) implies that P{w: Xn(w) ί N i.o.} = 0; that is, if Aλ —
{w: Xn(w) e N for all n ^ no(w)} then P(A^ = 1. Let σ be the natural
mapping of G* onto G1 and write Yn(w) = σXn(w).

As Gx is a compact, metric group, Gx (and consequently Gx) satisfies
the second axiom of countablity. Also Gx is discrete, since Gλ is com-
pact. Further Gx consists precisely of those elements of G which are
identically one on D (cf: Theorem 34 [5]). In view of (2.3), we have
YLTξ(Yn) exists a.e. for each ξeGλ. As Gt is countable we conclude
that, with probability 1, ΐ[Γ ξ(Yn) exists for all ζeG,. Observe that
Glf being a compact metric space, is a Baire set of the second category.
It is now immediate from Theorem A that XΓ Yn exists a.e.

Let A2 be a set of probability 1 on which ΣΓ Y% exists. If A =•
Ax Π A2 then P(A) = 1. Let we A and n ^ nQ(w). Hence

(2.4) Xn(w) + Xn+1(w)eN+N.

As σ(N) is a neighbourhood of the identity in Gx and since
ΣΓ Yn(w) exists, it is clear that Yn(w) + Fw41(w) e σ(ΛΓ), if ^ is larger
than a certain nλ{w). That is

(2.5) Xn(w) + Xn^(w) eN+ D if n ^ tt^w) .

From (2.4) and (2.5) and the property D C) (N + N — N) = {β}, we
conclude that Xn(w) + -3Γn+1(w) e N if w ^ max (n0, nj. Repeating the
argument a finite number of times it is seen that all finite tails of
the series ΣΓ -3Γ«(W) lie in N. By exactly similar reasoning, all finite
tails lie in any preassigned neighbourhood M of e with M ξΞ= N. As
N is compact, we can show (by arguments similar to the ones

infinitely often
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on p. 193 [1]) that ΣΓ Xn(w) exists. Thus on A, which is a set of
probability 1, ΣΓ Xn exists. Combining these results, we have

THEOREM 1. // {Xn, n — 1, 2, •} is an independent sequence of
generalised random variables then ΣΓ Xn exists a.e. if and only if
the series

( i ) ΣΓ P{W: Xn(w) <g N}, N being any ^reassigned compact neigh-
bourhood of e,

(ii) ΣTElogv(Xn) and
(iii) ΣΓ var log ^(XJ converge for all ηeG. Here log(Xn) is

taken to be iθn where θn is the principal amplitude of η(Xn)-

3* DEFINITION. The measure μ induced in & by a generalised
random variable / will be called the distribution function of /. The
distribution μ will be said to be symmetric if μ(A) = μ(—A) for every
A e &. It will be called regular if for every A e &, μ(A) =
sup{/ί(C): C ^A

THEOREM 2. If {Xn, n = 1, 2, •} is an independent sequence of
generalised random variables with regular distributions, then ΣΓ X*
exists a.e. if and only if ΐ[?η(Xn) exists a.e. for every rjeG.

Proof. If ΣiT Xn exists a.e. then UΓy(Xn) exists a.e. for every
ηeG by the continuity property of η.

Conversely, let ΠΓ y(Xn) exist a.e. for each η e G. The assertion
is established through the following steps.

( i ) Let G be compact. That the assertion is true in this case
is seen by the same reasoning as for Gλ in Lemma 3.

(ii) Let G be discrete. The compact subsets of G are therefore
only those subsets with a finite number of elements. As the distri-
bution of each Xn is regular we can find a countable subgroup Gx

such that P{w: Xn(w) eGlfn = l,2, •••} = !.. Observe that Gλ is the
same as G restricted to Gx. Now let the Xn's have symmetric distri-
butions. Hence, if φjjj) = Eη(Xn) then the <£>/s are real and φn(—V) =
φjjl). Now by Lemma 1, ΐlTVi^n) exists a.e. for each ^eG, implies
that ΠΓ ΨΛV) exists. Therefore g{η) = ΣΓ {1 — ΨniV)) exists for every
ηeG. If gjrj) = ΣΓ ί1 ~ Ψki7))} then the gn's are continuous and gn(η)
converges monotonically up to g{η) as n —• co for each f]. Hence
{η: g(η) ^ a} = f|Γ {V- 9n(V) ^ α} is a closed set. G is a compact metric
space and so is complete. Hence it is a set of the second category.
Further, G = \Jζ=1 {η: g{η) ^ n) i.e. G is the union of a countable
number of closed sets. Therefore by the Baire category theorem, one
of these closed sets in the union, say the set A = {η: g{rf) ̂  k), has
a nonnull interior V. Trivially g is bounded on V. By the positive
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deίiniteness and symmetry of φk,

1 ~ Φl(ξ) - ΦliV) + 2φk(ζ)φk(v)φk(ξ + 7 } ) - φl(ξ + v ) ^ 0 .

Let a\ = 1 - φk(ξ), 61 = 1 - Φk{η) and 4 = 1 - ^(f + η). Then the
above inequality implies that

c\ ^ a\ + b\ - a\b\ + akbkV(2 - αl)(2 - 61) ^ (αfc

Consequently,

(3.1) g(ξ + 7])^ {[g{ξ)Γ +

For any ξeG consider the open set ξ — V. From (3.1) it is immediate
that g is bounded on ξ — V. The family ξ — V, ξeG is an open
covering for the compact G. Therefore there exists a finite subcover
from this. As g is bounded on each member of this subcover it fol-
lows that g is bounded on G.

Let m be the Haar measure of G with m(G) = l . As P{w: Xn(w)φe} =

ί {1 - <Pn(V)}dm(y), we obtain Σ Γ •p('w ; : ^ ( ^ ) ^ e l = \.9(V)dm(η) < oo.
Since G is discrete this means that for the compact neighbourhood
N = M of e, ΣΓ P{w: Xw(w) $ N} < oo. That Σ Γ Xn exists a.e. follows
from Lemma 3.

(iii) Let G be discrete but the distributions of the Xn's need not
be symmetric.

Let Yn, n = 1, 2, be another independent sequence of g.r.v/s
and independent of the Xn's; let Yn have the same distribution as
X%, n = l,2, . . . .

Write Zw = Xn — F w . The Zn's therefore have symmetric distri-
butions. Also the hypothesis yields that ΠΓ V(Zn) exists a.e. for every
yjeG. Hence by (ii) above

(3.2) Σ piw' zn(w) Φ e} < oo .
1

The distribution of each Xn is assumed to be regular. Hence there
exists a countable set A such that P{w: Zn(w) e A for all n] = 1. Now,
if pn(a) — P{w: Xn(w) — a}, we have

P{w: Zn(w) = e} = Z P{w: Xn(w) = a}P{w: Yn(w) = a} .
aβA

= Σ P2»(α) ^ S^P ^^(α)
ogi αe-4

Since there can only be a finite number of 'values' of Xn for which
the associated probability is larger than any preassigned number, the
supremum is attained. Let an be any one of the values taken by Xn

with probability equal to this supremum. Therefore P{w: Xn(w) φ an} ^
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P{w: Zn(w) Φ e). Consequently, using (3.2), we obtain

(3.3) Σ Pi™*- Xn(w) Φan}<™
1

(3.4) or Σ p i w Xn(w) -an$N}<co .
1

Where N is the compact neighbourhood of e consisting only of itself.
From (3.3) we conclude that, with probability 1, Xn — an except for
a finite number of n's. This fact together with the hypothesis implies
that Π Γ ^ ( O ^exists for every ηeG. That ΐ[?y(Xn — O exists a.e
for every ηeG is then immediate. Now using (3.4) we see by lemma
3 that ΣΓ (X» — an) exists a.e. By Theorem A or by applying Lemma
3 to the random variables an we see however that ΣΓ α» exists since
ϊlTV(an) exists, for every rjeG. Hence ΣΓ-X* exists a.e., as was to
be proved.

(iv) Let G be any metric abelian locally compact group. Let N
be a compact symmetric neighbourhood of e and G* the closed sub-
group generated by N. Necessarily G* is σ-compact and open. Let
σλ be the natural mapping of G onto Gx — G/G*. As G* is open, Gx

is discrete. Further Gx consists precisely of those elements of G which
are identically one on G*. Hence HTV(Xn) exists a.e. for each rjeG
implies that Ή.Γξ(Yn) exists a.e. for each ξeGlf where Yn = σλXn.
By part (iii) above, P{w: Yn(w) Φ e1 i.o.} — 0 where eλ is the identity
of Gx. That is

(3.5) P{w: Xn(w) ί G*} - 0 .

In other words, there is probability 1 that all except a finite number
of the Xn's lie in G*.

As G* is generated by a compact symmetric neighbourhood of e
there exists, by Theorem B, a discrete group D with a finite number
exists, by Theorem B, a discrete group D with a finite number of
generators such that G2 = G*/D is compact and D Π (N — N) = {e}.
Let e2 be the identity element of G2 and σ2 the natural mapping of
G* onto G2. Write Zn = σ2Xn if XweG* and =βa if X w ίG*. Hence
Zn, n = 1, 2, is an independent sequence of g.r.v/s in G2. Recall
that G* consists of all the elements of G restricted to G* and that
G2 consists precisely of those elements of G* which are identically 1
on D. Using the hypothesis and the equation (3.5) we get {\T ξ(Zn)
exists a.e. for every ξeG2. Therefore we have

P{w: Zn(w) ί σ2{N) i.o.} = 0 i.e. P{w: Xn(w) $N+ D i.o.} = 0 .

Define sn = Xn if XneN + D and sn = e iΐ Xn$N+ D. Then
for each sn we have the unique decomposition sn = un ± vn where
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un e N and vn e D. The un's form an independent sequence of g.r.v.'s
and so do the vn'&. It is immediate from the hypothesis that ΠΓ^(s«)
exists a.e. for each ηeG. Also, since ΠΓξ{Zn) exists a.e. for each
ζεG2, ΐ[TV(un) exists a.e. for each ηeG. Hence ΠΓfOO exists a.e.
for each ξ e D. As D is discrete we have, by part (iii), P{w: Xn(w) Φ
e i.o.} = 0. This is equivalent to saying P{w: sn(w) Φ un(w) i.o.} = 0.
Or P{w: Xn(w) $ N i.o.} = 0 i.e. ΣΓ P{w- XJLw) ί N} < co. That ΣΓ -3Γ«
exists a.e. follows now by Lemma 3.

I thank the referee for his suggestions leading to a shorter proof
of Lemma 1.
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CEBYSEV SUBSPACES OF FINITE CODIMENSION IN C(X)

R. R. PHELPS

1. Introduction* Suppose that X is a compact Hausdorff space
and that M is an n dimensional linear subspace of C(X), the Banach
space of all real-valued continuous functions / on X, with supremum
norm. If / is in C(X), the local compactness of M guarantees the
existence of at least one function g in M such that \\f — g || = d(f, M) =
inf {\\f — h\\: he M}, i.e., / has a nearest point g in M. A well-known
extension of a classical theorem of Haar (see e.g. [2, Theorem 3.6])
states that M is a Cebysev subspace of C(X) (that is, there is a unique
nearest point in M to / for every / in C(X)) if and only if each
nontrivial function in M has most n — 1 zeros.1 In the present note
we intend to investigate infinite dimensional closed subspaces M of
C(X) in the hope of characterizing those having the Cebysev property.
Except for Proposition 3, our attention will be restricted to closed M
of finite codimension, that is, those M for which the factor space
C(X)/M is finite dimensional. (The dimension of this factor space is
the same as the dimension of the annihilator M1 of M, the subspace
of C{X)* consisting of all those continuous linear functionals on C{X)
which vanish on M.) There is, of course, an additional problem when
dealing with infinite dimensional M. We have no assurance that a
function / in C(X) has even one nearest point in M. A subspace M
with the property that each / in C(X) contains at least one nearest
point in M will be called a Haar subspace (or be said to have the Haar
property). We know of no characterization of the Haar subspaces of
C(X). (A general necessary condition is given in Proposition 2, but
we show by example that it is not sufficient.) Thus, most of our
results are devoted to characterizing the Cebysev subspaces from among
the Haar subspaces of finite codimension.

Mairhuber was the first to show (see the discussion and references
in [2, p. 253]) that if C(X) contains a Cebysev subspace of finite dimension
n, n > 1, then X must be homeomorphic with a subset of the circle
\z\ = 1 in the complex 2~plane. We show that if C(X) contains a
Cebysev subspace of finite codimension n, n > 1, then X is totally
disconnected; we also prove that X can contain at most countably
many isolated points. The examples in §4 show that, for certain
X, C(X) contains Cebysev subspaces of codimension n, for n— 1, 2, 3,
In these examples, X is always extremally disconnected (that is, the
*" Received November 26, 1962.

1 What we call "Cebysev" subspaces were called "Haar" subspaces in [2], but we
»defer here to a more common usage. We now use the term "Haar subspace" (below) to
replace the term "proximinal" used in [2].

647
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closure of every open set in X is open), but we don't know whether
this property is necessary for the existence of Cebysev subspaces in
C(X). To obtain our examples we make use of the well known fact
[1, p. 445] that the space L°° can be realized as C(X) (for a certain
extremally disconnected X).

As usual, we identify the space C{X)* with rca(X), the space of
regular countably additive real-valued finite measures μ on the Borel
subsets of X [1, p. 265]. (Throughout the rest of this paper we will
refer to an element of rca(X) as simply "a measure on X") If μ is
a measure on X, then μ = μ+ — μ~ (where μ+ and μ~~ are nonnegative
measures on X), \μ\ = μ+ + μ~ and \\μ\\ = \μ\(X). For/in C(X), the

r
value of μ at / is given by (/, μ) — fdμ. The support S(μ) of a

Jx
measure μ is the closed set which equals the complement of the union
of all open sets U for which |μ|(ϊ7) — 0. Most of what we say about
Cebysev subspaces M will be in terms of S(μ) for μ in M1; for instance,
if M is a Haar subspace of finite codimension n in C(X), then in order
that M be a Cebysev subspace it is sufficient that S(μ) = X for each
μ in Mx ~ {0}, and it is necessary (for each μ) that X ~ S(μ) contain
at most n — 1 points. (Since X ~ S(μ) is in some sense the "zero set'y

of μ, this latter property is dual to that discovered by Haar.) The
above sufficient condition is necessary if X contains no isolated points,
and the above necessary condition is sufficient if X contains n or more
isolated points. Examples in § 4 show that for n = 2 and X having
one isolated point, these converse statements are false.

2. General results. In Lemma 1 we give a well-known characteri-
zation of the Haar subspaces of codimension one in C(X) (see, e.g. [3,
p. 165] and references cited there; see [5] for the complex case) which
is basic to much of what follows. In general, if E is a normed linear
space and Mis a subspace of codimension one (so that M = L~\0) for
some continuous linear functional L on E and ML — RL, the one
dimensional space of all real multiples of L), an application of the
Hahn-Banach theorem shows that M is a Haar subspace if and only
if there exists / i n i?such that | |/ | | = 1 and L(f) — \\L\\\ equivalently,
L attains its supremum on the unit ball of E. The set of all linear
functional having this latter property is denoted by P. In the case
E — C(X), then, we are interested in measures which represent such
functionals; the set of such measures is also denoted by P.

LEMMA 1. A measure μ is in P if and only if the supports S(μ+)
and S(μ~) are disjoint.

Proof. If S(μ+) and S(μ~) are disjoint, then we choose / in C(X)r
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| | / | | = 1, such that / = 1 on S(μ+), f = - 1 on S(μ~), and hence (/, μ) =
\\μ\\. Conversely, suppose | |/ | | = 1 and (/, μ) = \\μ\\ - μ+(X) + μ~{X)^
\\μ+\\ + \\μ~\\- If /(») < 1 for some x in S(μ+), then / < 1 in some
open set Ucontaining x; since μ+(U) > 0, it follows that (/, μ+) < \\μ\\
(and — (/, μ~) g \\μ~\\) so that (f,μ)< \\μ\\, a contradiction. Thus,
/ = 1 on S(μ+) and (similarly) / = — 1 on S(μ~), so that these sets
must be disjoint.

It is clear that a measure μ is in P if and only if every real
multiple of μ is in P, so that a subspace M of codimension one in C(X)
has the Haar property if and only if M1 c P. The conjecture that
this latter relation characterizes Haar subspaces of any finite codimension
in C(X) is disproved by Example 3 in § 4. One implication remains
valid, however, as we now show.

PROPOSITION 2. Suppose that M is a Haar subspace of finite
codimension in the normed linear space E. Then M1- c P.

Proof. If L G ML we may represent L as a linear functional on
E/M by L(f + M) = L(f). Since EjM is finite dimensional there exists
an element F of E/M such that \\F\\ = 1 and L(F) = | |L | | . Since F
is a translate of M and since M has the Haar property, there exists
an element / in F of least norm, i.e., there exists f in E such that
F^f+ M and | |/ | | - | | F | | = 1. It follows that L(f) - | |L| | , which
completes the proof.

(Note that the above proof is valid under the weaker assumption
that E/M is a reflexive Banach space.)

In the next proposition the Cebysev property of a subspace M of
C(X) is formulated in terms of functions in M and measures in M1.
The central idea is a slight extension of a construction due to V. Ptak [4].

PROPOSITION 3. Suppose that M is a Haar subspace of C{X).
Then M fails to have the Cebysev property if and only if there exist
f in M ~ {0} and μ in M1 f)P ~ {0} such that f(S(β)) = 0.

Proof. If the Haar subspace M does not have the Cebysev property
there exists h in C(X) and / in M~ {0} with d(h, M) = 1 = | |λ| | =
\\h — f\\. By the Hahn-Banach theorem we can choose μ in ML such
that (h, μ) = (h—f,μ) = l = \\μ\\. As in the proof of Lemma 1 we
see that h^h-f^l on S(μ+) and h = h - f - - 1 on S(μr). It
follows that / = 0 on S(μ) = S(μ+) U S(μ~). To prove the converse,
suppose there exist μ and / with the stated properties; we can assume
\\μ\\ = 1 = \\f\\. Choose g in C(X) such that g = 1 on S(μ+), g = - 1
on S(μ~) and | | # | | = 1. Let h = g(l — | / | ) ; since h = g on S(β), we have
(Λ,/*) = ! . Furthermore, | | f c | | = l and |λ | + |/ | - \g\ + (l-\g\)\f\ ^ 1,
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so \\h - / | | = 1 . Finally, ifeeM, then 1 = (h,μ) = (h- e, μ)^ \\h- e\\y

so d{h, M) — 1 and hence M does not have the Cebysev property.

COROLLARY 4. If M is a Haar subspace of C(X) such that S(μ) =
X for each μ in ML Π P ~ {0}, then M has the Cebysev property.

COROLLARY 5. Suppose that M is a closed subspace of C(X) of
codimension one. Then M is a Cebysev subspace if and only if MLaP
and S(μ) = X for each μ in Λfx ~ {0}.

Proof. By Lemma 1, ML c P is equivalent to the fact that M
is a Haar subspace. If S(μ) Φ X for some μ in ML ~ {0}, then there
exists/in C(X)~{0} which vanishes on S(μ), and hence fe {g: (g, μ)=0} =
M, which shows (by Proposition 3) that M is not a Cebysev subspace.
The remainder of the proof is a consequence of Corollary 4.

(A result of the above nature was pointed out to us (without proof)
by 0. Hustad, who noted that it leads to an easy counterexample to
the sufficiency portion of Theorem 3.4 of [2].)

PROPOSITION 6. Suppose that Mis a Cebysev subspace of codimension
n > 0 in C(X). Then the set X ~ S(μ) contains at most n — 1 points
for each μ in M1- ~ {0}

Proof. Suppose that for some μ in ML ~ {0} the set X ~ S(μ)
contains n or more points. Denote by N the subspace of C(X) consisting
of all functions which vanish on S(μ); N must have dimension n or
greater. Choose a basis μ19 μ2y —->μn for ML, with μt —μ. The
subspace M1 = {g: (g, μ^ — 0, i = 2, 3, , n} has codimension n — 1,
hence there exists / i n Mx Π N ~ {0}. Since we also have (/, μj = 0,
it follows that/G M — {0}; by Proposition 3, Mis not a Cebysev subspace.

3 Main results*

THEOREM 7. Suppose that C(X) contains a Cebysev subspace M
of finite codimension n, n ^ 2. Then X is totally disconnected.

Proof. Suppose that X contains a connected subset K such that
K contains more than one point (and hence contains infinitely many
points). Note that we must have KaS(μ) for each μ in M1 — {0}.
[Indeed, if A = K ~ S(μ) were nonempty, it would (by Proposition 6)
be a finite set and therefore K (being infinite) would intersect both
S(μ) and A. But A and S(μ) are disjoint closed sets whose union
contains K, an impossibility.] Since, by Proposition 2, S(β+) and S(μ~)
are disjoint closed sets, we must have Kcz S(μ+) or Ka S(μ~), so that
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μ(K) Φ 0 for each μ in M1 ~ {0}. But if μλ and μ2 are linearly independ-
ent measures in M1, we see that the nontrivial measure μλ(K)μ2 —

vanishes on K, a contradiction which completes the proof.

THEOREM 8. If C(X) contains a Cebysev subspace M of finite
codimension n(n^t 1), then X contains at most countably many isolated
points.

Proof. Choose μ in M1- ~ {0}; by Proposition 6, X ~ S(μ) contains
only finitely many points. Now, |/*!({&}) > 0 for any isolated point x
in X for which x e S(μ). Since \μ\ is a countably additive finite measure,
its support can not contain uncountably many pairwise disjoint sets
of positive measure. This shows that S(μ) (and hence X) contains at
most countably many isolated points of X.

An example of a space C(X) which contains no Cebysev subspace
of finite codimension may be obtained by letting X be a compactification
of an uncountable discrete set.

THEOREM 9. Suppose that X contains n or more isolated points.
A Haar subspace M of codimension n (n ^ 1) in C(X) is a Cebysev
subspace if and only if X ~ S(μ) contains at most n — 1 points for
sach μ in M1 ~ {0}.

Proof. The necessity portion follows from Proposition 6. To prove
the sufficiency, suppose that M is not a Cebysev subspace of C(X); we
will produce a measure v in M1 ~ {0} such that X ~ S(v) contains n or
more points. By Proposition 3 there exists / in M ~ {0} and μ in
J l ί ^ P - {0} such that / = 0 on S(μ). Thus, X ~ S(μ) is nonempty,
and if it contained n or more points, our proof would be complete.
Suppose that X ~ S(μ) contains fewer than n points. We will show
that if VQQM1 ~ {0} is such that S(vo)czS(μ) and X ~ S(v0) contains
fewer than n points, then there exists vx in M-1 ~ {0} such that Sfa)
is a proper subset of S(v0). (Once we have shown this, an obvious
induction will complete the proof.) Let Xo denote the set X ~ S(v0);
by assumption, Xo contains exactly k points, 1 ̂  k ^ n — 1. We first
obtain an element v2 in M1 for which S(v2) c S(v0) and which is linearly
independent of vQ; this is done as follows: Choose a basis v0, μlf , μn-τ

for M1- and let Mo be the subspace of C(X0)* spanned by the restrictions
of the measures μlt , μn-x to Xo. Since S(vQ) c S(μ), we have / = 0
on S(vQ), while (/, ft) = 0 for i = 1, •••,% — 1; furthermore the restric-
tion of / to Xo is not identically zero. This shows that MQ

L is a proper
subspace of the k dimensional space C(X0)*, so that MQ

L has dimension
at most k — 1 g n — 2. Hence there exists a nontrivial linear combination
:v2 of the measures μ{ which vanishes at each point of XQt so that
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S(v2) c S(v0). By hypothesis, X contains at least n isolated points, so
one of them, say x, is in S(v0). Since vQ and v2 are linearly independent,
the measure vx = v2({x})v0 — vo({x})v2 is nontrivial, has support in S(vo)r

and vanishes at x. The latter property shows that S(v^ φ S(v0), which
completes the proof.

Example 2 of § 4 shows that this theorem is invalid if the codimension
of M is greater than the number of isolated points of X

THEOREM 10. Suppose that X contains no isolated points. A Haar
subspace M of finite codimension in C(X) is a Cebysev subspace if
and only if S(μ) — X for each μ in ML ~ {0}.

Proof. The sufficiency portion follows from Corollary 4. To complete
the proof, suppose that M is a Cebysev subspace and there exists μ
in M1- ~ {0} such that X ~ S(μ) is nonempty. By Proposition 6, this
set contains only finitely many points; since their union is open, they
are isolated points, a contradiction.

Example 1 of § 4 shows that this theorem fails to be true if X
contains an isolated point. It is interesting to note that an argument
similar to (but simpler than) the one in Theorem 7 shows that if C(X)
contains a Haar subspace M of finite codimension n (n ^ 2) such that
S(μ) — X for each μ in ML ~ {0}, then X contains no isolated point.

4. Examples^ As mentioned in the introduction, our examples
are obtained by exploiting the fact that the space L°° can be "realized"
as C(X). The connections between X and the measure space on which
L°° is defined are certainly well known, but we know of no explicit
reference to them, so the next few paragraphs are devoted to a sketch
of the material we need.

Suppose that (T, Σ, λ) is a σ-finite measure space; then there exists
a compact Hausdoff space Xτ and an isometry Jfrom L°°(T, Σ, λ) onto
C(XT) which is linear, multiplicative (i.e., if h — fg a.e. in L°°, then
Jh — JfJg in C(XT)) and carries a.e. nonnegative elements of LΓ into
nonnegative functions in C{XT) (see, e.g. [1, p. 445[). Hence, if χE

is the characteristic function of the measurable set E in T, then JχE

is a characteristic function in C{XT) (since JχE = J(χ2

E) = (JχEf).
Writing JχE = χφE, we have defined a map from the σ-algebra Σ (modulo
sets of measure zero) onto the family of all open and closed subsets
of Xτ (the proof is the same as in [1, p. 312]). It is readily seen that
Φ maps the atoms of (T, Σ, λ) (i.e. those A in I of finite positive
measure such that B c A and B in Σ imply \{B) = 0 or λ(J5) = \{A))
in a one-to-one fashion onto the isolated points of Xτ; this is a consequence
of the fact that the elements of L°°(T, Σ, λ) are constant a.e. on each
atom.
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If fe L\T, Σ, λ), then /defines (in the natural way) a continuous
linear functional on L°°. Since (L°°)* and C(XT)* are isometric there
-exists a unique measure v(f) on Xτ corresponding to the functional
defined on L°° by /. (This correspondence may be described by the equation

)xτ

Since J carries nonnegative elements of L°° onto nonnegative functions
in C(XT), it follows that v(\f\) = \v(f)\. If we define the support S(f)
of / in L1 to be the complement in T of the set on which |/ | = 0
a.e., then φ(S(f)) = S(v(f)).

We may now obtain Haar subspaces of C(XT) as follows: If N is
& closed subspace of L1, its annihilator M in L~ is weak*-elosed and
hence is a Haar subspace [2, p. 239]; it follows that J(M) is a Haar
subspace of C(XT). If JV is finite dimensional, then we may identify
N (by means of the natural embedding of L1 into (L°°)*) with ML =
(iV1)1 in (L~)\ It follows that (JM)X in C(XΓ)* consists of those
measures of the form v{f), for / in N. We now apply these remarks
to the construction of two examples.

EXAMPLE 1. There exists a compact Hausdorff space Xfor which
the following is true:

(i) X contains exactly one isolated point
(ii) C(X) contains a Cebysev subspace M of codimension 2, but

S(μ) Φ X for some μ in M2- ~ {0}.

Proof. We will obtain Xas the space Xτ corresponding to (T9 Σ, λ),
where T = [0,1] U {2}, Σ is the family of Borel subsets of T, and λ
is Lebesque measure on the Borel subsets of [0,1], but λ({2}) = 1.
We define/0 and f± in L\Tf Σ, λ) by /0 = 1 on T,fx(x) = x if 0 ^ x ^
1, /i(2) — 0. If N is the two dimensional space spanned by/0 and/x,
then, as noted above, its annihilator M in L°° is a Haar subspace, and
we may consider N and M1 to be the same subspace of C{XT)*. The
atom {2} corresponds to an isolated point of Xτ, and it is not in the
support of the measure corresponding to fx (since it is not in S(/Ί).
The subspace M is a Cebysev subspace, however. If it were not, then
by Proposition 3 there would exist g in M ~ {0} such that g — 0 on the
support of some measure in ML ~ {0}. Equivalently, there would be
g in M ~ {0} c L°° and constants α0 and ax such that g = 0 a.e. on
S(aofQ + dx/i). If α0 — 0, this implies ^ — 0 a.e. on [0, 1]; since 0 ~
{Of /o) = I Ofodx = flf(2), we see that g = 0 a.e. If α0 ^ 0, then
S(aofo + αχ/0 = Γ and therefore flf = 0 a.e. Thus, no such g exists,
which completes the proof.
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EXAMPLE 2. There exists a compact Hausdorff space X for which,
the following is true:

(i) X contains exactly one isolated point.
(ii) For each n ^ 2, C(X) contains a Haar subspace Mof codimension

n which is not a Cebysev subspace, although X ~ S(μ) is one point
for each μ in M1 ~ {0}.

Proof. We let X = XΓ, where (Γ, J , λ) is defined as in Example
1. Let iVbe the linear subspace of L\T, Σ, λ) spanned by the functions
fo,f» - ,Λ-i, where fk(x) = x* for 0 ̂  a? ̂  1, and Λ(2) = 0, fc =
0,1, , n — 1. As before, the annihilator M of N in L°° is a Haar
subspace of codimension n; it is not a Cebysev subspace, however, since
it contains the function g which is zero on [0,1], while g(2) — 1. (This
function is zero on S(f0), say.) Clearly, the isolated point of Xr

corresponding to the atom {2} is in Xτ ~ S(μ) for each μ in M1-.

EXAMPLE 3. There exists a compact Hausdorff space X and a
closed subspace M of codimension 2 in C(X) such that ML c P but M
is not a Haar subspace.

Proof. We take C(X) to be the space c of all convergent sequences
/ — {fn}n=i of real numbers (so that X is the one-point compactification
of the integers). The space C{X)* is isometric with the space I of
absolutely summable sequences, under the following correspondence:
If / € c and if μ = {μn}ΐ=1 e i, then (/, μ) = Σ ϊ U Λ Λ + ft Mm/,. Define
measures μ1 and μ2 by ̂  = 2~w, w = 0,1, and μ\ = 4~w, ̂  =1, 2, 3, ,
μl = o. For any real number a the sequence (μ1 + aμ2)n is eventually
positive (and equals 1 at n — 0), so that the measure μ1 + α/*2 has
disjoint positive and negative supports. It follows that the same is
true for bμ1 + aμ\ a, b real. Let M = {/: (/, μ1) = 0 = (/, μ2)}; M is a
closed subspace of c, and the previous remarks show that Mx c P.
To see that ikf is not a Haar subspace it suffices to show that the
translate M1 of M defined by Mx = {/: (/, μ1) = 1 = (/, μ2)} does not
contain a point of least norm. Let m = inf {||/||:/e Λfi}, and suppose
that there exists / in Mx such that | | / | | = m. We can choose ^ in
ML such that |[/£|| = 1 and (/, μ) = m; letting βr = m™1/, we see that
| | f f | | = 1 = (Sf μ). It follows that g = 1 on S(μ+), fir = - 1 on S(/r->
and |flf| ^ 1 elsewhere. Since μeM1, the sequence {/£w} is eventually
positive (and μ0 > 0) or it is eventually negative (and μ0 < 0). Letting
ε = sgn μ0, we see that there exists an integer N > 0 such that fn =
εm if n ^ iV, while | / n | ̂  m if n < N. Since (μ1 — μ2)w is eventually
positive, we may assume that N is so large that μ\ — μl > 0 for
n^ N. By assumption,
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+ ± μ'Λ + Σ ' / ^ I (* = 1, 2) .
n = N J n~\

Subtracting and dividing by ε, we obtain

+ Σ (tf. - /θl ^ m Σ' IΛ - /4I

^ m Σ (2~Λ - 4-w) < m ,
n = l

a contradiction which completes the proof.
The connection between L°°( T, Σy λ) and C(XT) described above

may be used to obtain new proofs of Theorems 2.2 and 2.3 of [2]; they
are immediate corollaries of Theorems 10 and 9 (respectively). For
instance, Theorem 9 yields the following result, which is stronger
than Theorem 2.3 of [2].

COROLLARY. Suppose that (T, Σ, λ) is a σ-finite measure space
containing at least n atoms, and that N is a subspace of dimension
n in L1 (T, Σy λ). Then N1 is a Cebysev subspace of L°° (T, Σ, λ) if
and only if each f in N ~ {0} vanishes on at most n — 1 atoms.

Finally, the fact that for w = 1, 2, 3, ••• the space L\T, Σ, λ)
(T — [0,1], Σ = Borel sets, λ = Lesbegue measure) contains subspaces
N of dimension n such that each / in N ~ {0} is a.e. nonzero shows
that C(XT) contains Cebysev subspaces of each finite codimension.
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ON SUBGROUPS OF AN ABELIAN GROUP MAXIMAL

DISJOINT FROM A GIVEN SUBGROUP

J. D. REID

1* Introduction* In [3], J. M. Irwin has introduced the concept
of a high subgroup of an abelian group (A is high in G if A is maximal
in G with respect to the property Af\{(\nnG) = 0). Irwin and,
subsequently, Irwin and Walker [4] have also considered iNΓ-high
subgroups A of G (A is maximal in G with respect to Af]N— 0).
Among the properties of high subgroups is their purity in G ([I], [3]
for p-groups, [3] for torsion groups and [4] for arbitrary abelian groups).
In [5], S. Khabbaz has given a short proof of a theorem which implies
the purity of high subgroups of a p-group. Irwin [3] raises the question
of characterizing subgroups H of a group G for which every ϋΓ-high
subgroup is pure in G.

In this paper we consider pairs (H, M) of subgroups of an abelian
group G with M maximal disjoint from H in G and ask what happens
if M is not pure in G. The resulting information allows us to answer
Irwin's question in various special cases. In particular we obtain the
purity of high subgroups of arbitrary abelian groups and a generalization
of the theorem of Khabbaz referred to above. We then consider various
related questions and obtain a generalization of a theorem of Zuravskiϊ
[7] on the splitting of mixed abelian groups.

Throughout the paper, G will denote an abelian group, ί ί a subgroup
of G and M a subgroup of G maximal with respect to Mf]H = 0.
Following Irwin [3] we say that M is H-hίgh in G. For any subgroup
K of G and prime p, Kp denotes the set of all elements of K whose
orders are a power of p, and K[p] is the set of elements of Kp whose
orders are ^p. The torsion subgroup of a group K will oc-
casionally be denoted by Kt. For xeG we denote by hp(x) =
max [n \ x e pnG] the height of the element x at p in G. Curly brackets
denote the subgroup generated by the sets and elements inside. In
particular, if M is a subgroup of G and xeG then {M, x} is the subgroup
of G generated by M and x. The set of rational integers will be
denoted by Z, direct sums by φ and not necessarily direct sums by +.

2. The main theorem* We remark first that if M is iϊ-high in
G then M is neat in G (cf. [2, pp. 91-92]); i.e, Mf]pG = pM for each
prime p. It is also easy to see that G[p] = M[p] 0 H[p] for any p.
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THEOREM 2.1. Let M be an H-high subgroup of G. Then either
M is pure in G or there exists a prime p and elements m e Mr

h e H[p] such that

hp(m) = hp(h) < hp(h — m) .

Proof. Suppose that M is not pure in G. Then there exist
equations nw = v with ne Z, w eG, ve M which have no solution w e M.
Among all such equations, let nx = y(x eG,ye M) be one for which
n is least positive. It is not hard to see that minimality of n implies-
that n is a power of some prime p, say n — pr. By neatness of
M, r > 1 and prx — pmlf m1e M so that p(pr~1x — mλ) = 0. Thus pr~xx —
mγ e G[p] and since G[p] — M[p] 0 H[p], we have

(1) pr~λx — m1 = m + h (me M[p], he H[p\) .

Suppose now t h a t hp(h) ^ r — 1. Then h = pr~τz for some zeG which,

from (1) and minimality of r yields mx + m = pr~ι(x — z) •=• pr~1m2 for

some m2 e M. But this gives pr~xx — pr~1m2 + h or, prx = prm2 — y
contrary to the choice of r. Thus hp(h) < r — 1 and pr~ιx — (m + mλ) —
h. With m = — (m + mλ) we now have

Λp(m) = hp(h) < fep(^ — m)

and the theorem follows.

COROLLARY 2.2. //, /or eαc/t p, either M ̂  pG or Hp is divisible,
then M is pure in G.

Proof. Neatness of M and M s pG give M = pM. Thus, for each
prime p,me M and h e Hp, either hp(m) — co or hp(h) = co.

The author is indebted to the referee for the proof of Theorem
2.1 given above a proof which is shorter and less complicated than
the author's original. The original proof, however, had a corollary
which, at the suggestion of the referee, we include here. The proof
requires that we outline the proof of Theorem 2.1 given originally.
Therefore we state the result as

PROPOSITION 2.3. Let H be a subgroup of G such that Ht = Gt

and let M be H-high in G. If M is not pure in G then there exists
a prime p and elements me M, he H[p] such that

0 = hp(m) — hp(h) < hp(h — m) .

Proof (in outline). Let pr, x and y be as in the proof of Theorem
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2.1. Then {M, x}f]H φ 0 so there exist nonzero elements of H of the
form u + nx with ue M and n a positive integer. Let c be the least
positive integer such that m + ex e H, m + ex Φ 0 for some me M.
Then one can show that c = pk for some k < r, and with h ~ m + pkx
we have feeiί[p] and

(*) hp(m) — hp{h) < A,p(λ, — m) ~ k

At this point we have a proof of Theorem 2.1, since we have not
yet used the hypothesis Ht — Gt. Now, pr~L(px) = y so that by choice
of y there exists ve Msuch that 3/~^ = y = prx. Hence pr~\px — v) =
0 and r — 1 > 0. Using Gt = Jϊt we conclude that px — ve H. It is
clear that p# — v ^ 0 so that k = 1. Thus (*) gives fep(m) = fep(fe) = 0
as required.

3. Centers of purity.

DEFINITION 3.1. A subgroup iϊof an abelian group G will be called
a Center of Purity in G if every iϊ-high subgroup of G is pure in G.

Several classes of centers of purity can be obtained from the
following proposition which is a corollary to Theorem 2.1.

PROPOSITION 3.2. If there exists a homomorphism / defined on G
such that

(i) Htdkernel /
(ii) hp(m) = hp(f(m)) for all me M and primes p then M is pure

in G.

Proof. For any prime p, me M and he Hp we have

hp(m) = hp(f(m)) = hp(f(m — h)) ^ hp(m — h) = /&,(& — m)

so that the condition in Theorem 1 alternative to purity of M cannot
hold. Hence M is pure.

The following corollary generalizes the theorem of Khabbaz [4]
referred to in the introduction.

COROLLARY 3.3. Let G be a p-group and put p°°G — Π^ VnG,
p°°{ΛG = 0. Then any subgroup H of G such that psG 3 H 3 ps'rlG
for some s, 0 g s fS oo, is α center of purity in G.

Proof. Let / be the canonical homomorphism f:G-+ GjH. Then
psil(GlH) = 0 (by definition if s = oo) so hp(f(x)) ^ s for all XGG,
x&H. Suppose puf(y) ~ f(x) for some ue Z and x g if. Then pu^/ +
λ = x for some he H. Since if <Ξ psG, u ^ s and u < «D there exists
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weG such that puw = h. Hence, pu(y + w) = x. Thus Λp(α?) ̂  hp(f(x)).
The other inequality being obvious we have hp(x) = hp(f(x)) for all
xeG, x£ H and the corollary follows.

COROLLARY 3.4. For any abelίan group G and subgroup H of G,
if Ht C Γ\n nG, then H is a center of purity in G. In particular,
high subgroups are pure and torsion free subgroups are centers of
purity. If the maximal torsion subgroup of G is divisible, every
subgroup of G is a center of purity in G.

Proof. As in Corollary 3.3 with / the canonical homomorphism
f:G-+GIHt.

One can ask with Irwin [3] for necessary and sufficient conditions
on a subgroup H of a group G in order that H be a center of purity
in G. We have not been able to find such conditions. In particular,
we know of no centers of purity in a p-group other than those listed
in Corollary 3.3 above but have not been able to show that there are
no others. In one case, however, a decisive answer is readily obtained,.
We denote by T, in what follows, the maximal torsion subgroup of G.

LEMMA 3.5. If T S H then H is a center of purity in G if and
only if for all geG and primes p, the conditions {g}DH — 0 and
hv{g) - 0 imply hp{g + t) = 0 for all t e T.

Proof. If the condition is satisfied, then H is a center of purity
by Proposition 2.3. Conversely, if H is a center of purity in G and
geG such that {g}ΠH = 0 and hp(g) — 0 for some p then there exists
a subgroup M of G maximal disjoint from H and containing g. For
t e T, if hp(t) > 0 it is clear that hp(g + t) = hp(g) — 0. Suppose then
that te T and hp(t) = 0. We can write t = tp + V where tp has order
pι for some I ̂  0 and the order of V is prime to p. Then hp(t') = co
so that hp(t) = hp(tp) == 0. Clearly also hp(g + t) = hp(g + tp) ^ k say.
Let xeG such that pkx = g + tp. Then, with e = k + I, we have
pe# = pιg. By purity of M there exists me M such that p'm — pι£.
Hence pι(pkm — g) = 0. Now since T ̂  H and Mf)H — 0 we have
pfcm = # so that k = 0 by hypothesis on #. Thus, fep(sr + tp) = hp(g + t) =
0 as required.

DEFINITION 3.6. A subgroup H of G containing T will be called
a special center of purity if if is a center of purity and there exists
xeG such that x Φ 0, {x}ΓιH = 0. A mixed group G is said to be
properly mixed if 0 Φ T Φ G.

THEOREM 3.7. For a properly mixed group G the following are
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equivalent:
( i ) T is divisible.
(ii) Every subgroup of G is a center of purity in G.
(iii) G contains a special center of purity.

Proof, (i) implies (ii) by Corollary 3.4. (ii) implies (iii) since if
(ii) holds and G is properly mixed, then T is a special center of purity.
To show that (iii) implies (i), let H be a special center of purity in
G. If T is not divisible then Tp is not divisible for some p so that
there exists teTp such that hp(t) = 0. Let x e G, {x} Π H — 0 and
x Φ 0 and put g — px + t. Clearly {g} Π H = 0 and /&p(#) = 0. However.
/£p(<7 — £) ̂  1. This contradicts Lemma 3.5 and completes the proof.

4 Reduction theorems. If M is maximal disjoint from H in G,
we consider here circumstances under which we can reduce the problem
of the purity of M in G to an analogous problem in a subgroup of G
or in a factor group of G. Again, the location of T with respect to
H plays a role.

THEOREM 4.1. Let M and R be 'subgroups of G such that G =
M + R. Then

(i) M is maximal disjoint in G from a subgroup H £Ξ R if and
only if Mf]R is maximal disjoint from H in R.

(ii) If MΓ\R is pure in R then M is pure in G. Conversely
ifTξΞ=R and M is pure in G then Mf]R is pure in R.

Proof, (i) If M is maximal disjoint in G from H <Ξ R and r e R,
rgMΠR then {ikf, r }nHΦ 0. Hence there exist me M,aeZ such
that m + ar e H, m + ar Φ 0. Since H ξΞ= R, we have m + αr e i? so
that me i l ίn#. Thus { M n ί , r } n ί f ^ 0 .

Conversely, if Mil iϋ is maximal disjoint from H in R and # e Gf

g£ Mwe have </ = m + r for some me M, re R by hypothesis. Now,
g#M implies that rgMΠi2 so that {Mf]R, r}f]HΦθ. Let m1eM,
be Z such that & = mx + br e H, h Φ 0. Then mλ + bg — h + bm so
m2 — 6m + bg = h e H, h Φ 0, mλ — bm e M; i.e. {M, g) Π H Φ 0. Now
since 0 = ilίfl Rf) H = Mfl Jϊ, Λf is maximal disjoint from H as required.

(ii) If ilίΠ R is pure in R and w# = m e M, let # = mλ + r, mx e M,
reR. Then m = ng — nmx + nr so m — nmx — nre ilίn iϋ. By purity
of ikΓn -B in i? there exists m2 e Mf) R such that nm2 — m — nm±. Hence
n(mx + m2) = m with mx + m2 6 ilf as required.

Conversely, if ϊ 7 g i2 and Λf is pure in G, suppose nr = me Mf)R
for some neZ,reR. By purity of M in G there exists mx e M such
that nmx = m. Then w(mx — r) = 0 so that m1 — reT ^ R; i.e.
m x e M n i ? . Thus MΠ-R is pure in i2.



662 J. D. REID

THEOREM 4.2. Suppose T £ H and let M be maximal disjoint
from H in G. Then the following are equivalent:

( i ) M is pure in G
(ii) (M+ T)jT is pure in G\T
(iii) (M + T)IT is maximal disjoint from H/T in G/T.

Proof. It is well known (cf. [2, p. 94]) that if M is pure in G
then {M, T} is pure in G and in our case the converse is true since
{M, T} = M@T. Now, since T is pure in G, M+ T is pure in G if
and only if M + TjT is pure in GjT so that (i) and (ii) are equivalent.
Also, since GjT is torsion free, if M+ T\T is maximal disjoint from
H/T then M + Γ/Γ is pure in GjT so that (iii) implies (ii). Finally
assume that M is pure in G and let g + TeG/T, g+ T&M+ T/T.
Then 0 g Λf so there exist meM,aeZ such that m + ag e H, m + ag Φ
0. If m + αg - £ € T say δί = 0. Then bm = -δαg and by purity of
Λf in G there exists mλeM such that δαm2 = δm. Then b(amλ — m) = 0
so ami = m since ilίn T = 0. Now we have t = m + ag = α(mx + g)eT
whence mt + geT. But this contradicts g+ T&M+ TjT. We conclude
that (m + αp) + Te H/T, m + αp + T ^ T so that, disjointness of
MΛ- T\T from if/T being clear, M+ TjT is maximal disjoint from
HIT in G/Γ.

5 On the splitting of mixed groups. As an immediate consequence
of Theorem 4.2 and Proposition 3.2 we have

PROPOSITION 5.1. Let T be the maximal torsion subgroup of the
mixed group G. Then the following are equivalent:

( i ) G = M@T.
(ii) M is maximal disjoint from T in G and pure in G.
(iii) M is maximal disjoint from T in G and the natural mapping

V:Q^G/T is height preserving on M; i.e. λp(m) = hp{v{m)) for all
me M, and all primes p.

As a result, there exist groups at the opposite end of the spectrum
from centers of purity; i.e. since there exist nonsplitting mixed groups,
we have

COROLLARY 5.2. There exist groups G containing subgroups H
such that, if M is maximal disjoint from H in G then M is not pure.

One is tempted to try to use Proposition 5.1 to obtain splitting
criteria for mixed groups in terms of the structure of the groups.
If, for example, G contains a subgroup M maximal disjoint from T
and ^-divisible for all p for which Tp Φ 0 then M is pure by Theorem
2.1 and hence G splits. A necessary condition for such a situation is
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•of course that G/T be p-di visible for all p for which Tp Φ 0. Just
this condition has recently been considered by V. S. Zuravskiϊ ([6], [7]).

Although we fail to apply Proposition 5.1 we can point out a
generalization of the result of Zuravskiϊ and, since the proof is quite
short, it may be worthwhile to include this here. First, we observe

LEMMA 5.3. Let G be a mixed group and R the subgroup of G
generated by a complete system of representatives of G mod T. If
R splits, R = S φ RΠ T, then G splits, G = S © T.

The proof is immediate. Now, for a mixed group G, we say that
G satisfies the maximal element condition if each coset of T in G
contains an element x such that hp(x) = hp(x + T) for all p. Evidently
(either directly or by Proposition 5.1) this is a necessary condition for
the splitting of G. Let π be the set of primes p for which Tp Φ 0.

THEOREM 5.4. Let G be a mixed group and T its maximal torsion
.subgroup. Suppose that

( i) G satisfies the maximal element condition.
(ii) GIT is p-divisible for all peπ.
(iii) ΓίpeπΓin VnT is bounded.

Then G splits.

Proof. In each coset of T in G select an element x such that
hp(x) = hp(x + T) for all p. Then, by (ii) hp(x) = oo for all peπ. Let
R be the subgroup of G generated by the elements so selected. Then
it is clear that RΓ\ T £ f]peπ f\n pnT and hence, by (iii) RΓ\ Tis bounded.
Thus R splits, so G splits also.

The case treated by Zuravskiϊ is that in which T is p-primary
and G\T is rank one. He also constructs an example [7, p. 380, Theorem
3.4] of a nonsplitting mixed group G satisfying (i) and (ii) (with T a
primary group and G/T of rank one) but not (iii) so in this sense,
condition (iii) is necessary. We remark that, as stated, [7, p, 380,
Theorem 3.4] seems to say that given conditions (i) and (ii), the condition
(iii) is necessary and sufficient for the splitting of G, but this is
obviously false and, equally obviously (from the proof of the theorem)
not what the author intended.
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RICCATI MATRIX DIFFERENTIAL EQUATIONS
AND NON-OSCILLATION CRITERIA

FOR ASSOCIATED LINEAR DIFFERENTIAL SYSTEMS

WILLIAM T. REID

l Introduction. For real scalar linear homogeneous differential
equations of the second order which are non-oscillatory on some inter-
val (α, co) the concept of a ' 'principal solution at co" was introduced
by Leighton and Morse [4; 5], Several years later Hartman and
Wintner [2] studied the same concept, and subsequently Hartman [3]
extended the notion of a principal solution to a self-adjoint matrix
differential equation of the second order, characterizing such solutions
by a distinguishing property in the class of solutions non-singular on
some neighborhood of co and which are "prepared" in his terminology.
For a self-adjoint matrix differential system of more general type
than considered by Hartman, Reid [9] presented a generalized defini-
tion of principal solution that distinguishes such solutions in the class
of all solutions that are non-singular on some neighborhood of co the
determination of principal solutions in [9] is based on variational
methods which are applicable directly to differential systems with
complex coefficients that are of the form of the accessory differential
equations for a calculus of variations problem of Bolza type, (see, for
example, Bliss [1, § 81]).

Recently S. Sandor [11] has considered properties of solutions of
Riccati matrix differential equations, including a generalization of the
classical anharmonic ratio property that in character is quite different
from the generalization studied by Whyburn [12] and Reid [7]. More-
over, for a real self-adjoint matrix system equivalent to the equation
considered by Hartman [3], Sandor has shown the equivalence of the
existence of a principal solution at co in the sense of Hartman and
the existence of a "right-hand frontier solution'' of the associated
Riccati matrix differential equation. Evidently Sandor was unaware
of the paper [9] of Reid, for there are many intimate relationships
between the results of the two papers, although the method of attack
is quite different.

The purpose of the present paper is to study in more detail the
concept of a principal solution of a non-oscillatory linear matrix dif-
ferential system, together with related problems for the associated
Riccati matrix equation. In particular, certain aspects considered

Received August 21, 1962. This research was supported by the Air Force Office of
Scientific Research, under Grant AF-AFOSR-62-78.
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previously in variational context only are here divorced from such
limitations. § 2 is devoted to basic relationships between linear matrix
systems and Riccati equations, together with a representation theorem,
(Lemma 2.1), which is derived under more general conditions than
those employed by Sandor [11] in corresponding results, and which
permits simplification in the ensuing proof of the anharmonic ratio
property, of Sandor [11] and Levin |6], The results in § 3 on the
variation of solutions of a Riccati equation are prefatory to § 4 on
the concepts of a ''principal solution" for a non-oscillatory linear
system, and the corresponding ''distinguished solution" of the associa-
ted Riccati equation; in this discussion these concepts are not limited
to the instance of self-ad joint linear systems, as has been the case in
the above cited papers. § 5 is devoted to the case in which the in-
volved linear system is self-adjoint, but of a more general character
than those treated by Hartman [3], Reid [9], and Sandor [11]. Systems
that are non-oscillatory on intervals of the form (— coya) or (—o°, °o)
are treated briefly in § 6, and § 7 is devoted to certain specific results
for systems with constant coefficients.

For simplicity of treatment, throughout the discussion of non-
oscillatory systems in § 4-7 it is assumed that the involved linear
system is identically normal. For systems that are not identically
normal, however, certain modifications of the basic theorems of § 4,
5 hold, and the author plans to further this study in a subsequent
paper.

Matrix notation is used throughout; in particular, matrices of one
column are termed vectors, and for a vector y = (ya), (a ~ t, ., n),
the norm | y | is given by (| y11

2 + + | yn |2)1/2. The symbol E is used
for the n x n identity matrix, while 0 is used indiscriminately for
the zero matrix of any dimensions; the conjugate transpose of a
matrix M is denoted by M*. If M is an n x n matrix the symbol
\M\ is used for the supremum of \My\ on the unit sphere \y\ — 1.
The notation M ^ N, {M > N}, is used to signify that M and N are
hermitian matrices of the same dimensions and M — N is a nonnega-
tive, {positive}, definite hermitian matrix. If M ^ 0 then M112 signifies
the unique nonnegative definite square root of M; if M > 0 then
M~112 denotes the reciprocal of Ml!\ For an arbitrary square matrix
M we set Mm = i(M + Λf *) and M% - ii(M* - M), so that MM and
Mc$ are the hermitian matrices with the definitive property M =
Mm + iΛfs. If the elements of a matrix M(x) are a.c. (absolutely
continuous) on an interval [c, d], then M'{x) signifies the matrix of
derivatives at values for which these derivatives exist and the zero
matrix elsewhere; correspondingly, if the elements of M{x) are (Lebes-

r a

gue) integrable on [c, d] then 1 M(x)dx denotes the matrix of integrals
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of respective elements of M(x). If matrices M(x) and N(x) are equal
a.e. (almost everywhere) on their domain of definition we write simply
M(x) — N(x). Finally, for brevity a matrix M(x) is termed continuous,
-etc., when each element of the matrix possesses the specified property.

2«. Related linear systems and Riccati equations. The linear vector
differential systems to be considered are of the form

(2.1) u' = A(x)u + B(x)v , vf = C(x)u - D{x)v ,

where u{x) and v(x) are w-dimensional vector functions, and A(x), B(x),
C(x) and D(x) are n x n matrices with complex elements which are
(Lebesgue) integrable on arbitrary compact subintervals of a given
interval X on the real line. A major portion of our discussion involves
the corresponding matrix differential equations

{2.2) U' - A(x)U + B(x) V , V = C(x)U- D(x) V ,

where in general U(x) and V(x) are matrices of n rows and r, (r ^
1), columns. By a solution (u; v) of (2.1), or a solution (U; V) of
(2.2), will be meant vector or matrix functions which are a.c. on
arbitrary compact subintervals of X, and such that (2.1) or (2.2) hold
a.e. on X. For brevity, we introduce the notations

, ( 2 8 ) Lx[Uf V]= U'-A(x)U-B(x)V,

L2[U, V]=V- C(x)U+ D(x)V,

for general w-rowed matrices U, V so that (2.2) becomes La[U, V] =
0, a = 1, 2.

If U(x), V(x) are n x n matrix functions a.c. on compact sub-
intervals of X, and U(x) is non-singular on X, then the corresponding
Riccati matrix differential operator

(2.4) K[W] = W + WA(x) + D(x)W+ WB(x)W - C(x)

satisfies the identity

(2-5) U*(x)K[VU-ι]U{x) = U*(x)(L2[U, V] - V(x)U-\x)L1[U, V]) .

Consequently, if (U(x); V{x)) is a solution of (2.2) on X with U{x)
nonsingular on this interval, then W(x) = V{x)U~\x) is a solution of
the Riccati matrix differential equation

(2.6) K[W] = 0

on this interval; that is, W(x) is an n x n matrix which is a.c. on
-compact subintervals of X and (2.6) holds a.e. on X. Conversely, if

W(x) is a solution of (2.6) on X, and for s e X the matrix U(x) is
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determined as the solution of

Ur = [A(x) + B(x)W(x)] U , U(s) = M , M nonsingular,

then (£/; F) = (J7(a?); W(x)U(x)) is the solution of (2.2) satisfying:
U(s) = ikΓ, V(s) = TΓ(β)Jlf, and TΓ(α?) - F ^ t / " 1 ^ ) on X

If W(x) and TΓ0(̂ ) a r e w x n matrices a.c. on compact subintervals.
of X, then Ψ(x) = TΓ(a?) - W0(a?) satisfies the identity

(2.7) JSΓ[ϊΓ] - K[W0] - ?Γ' + Ψ(A + BW0) + (D + WJB)Ψ + ΨBΨ .

LEMMA 2.1. If W0(x) is a solution of (2.6) on X, and for seX
the matrices G(x) — G(x, s | Wo), H{x) — H(x, s \ Wo) are solutions of the
linear differential systems

(2.8) G' + (D + W0B)G - 0 , G(s) = E ,

(2.9) ΈL> + H(A + BW0) = 0 , H(s) = E ,

(2.10) β(x, 8\W0)= \XH(t)B(t)G(t)dt ,

then W(x) is a solution of (2.6) on X if and only if the constant
matrix Γ = W(s) — W0(s) is such that E + 6 (x, s \ W0)Γ is nonsingular
on X, and

(2.11) W(x) - W0(x) + G(x, s I W0)Γ[E + θ(x9 s \ W0)Γ]-Ή(x, s \ W 0 ) .

If K[W0] = 0 o n l , and for an arbitrary W(x) we set Ψ(x) =
W{x) - Wϋ(x), in view of (2.7), (2.8), (2.9) it follows that W satisfies-
(2.6) on X if and only if the matrix F{x) defined by Ψ(x) = G(x)F(x)H(x)
is a solution on X of the special Riccati matrix differential equation

(2.12) F' + F[H(x)B(x)G(x)]F = 0, F(s) = Γ= W(s) - W0(s) .

If F(x) is a solution of (2.12) on X, and G(x, s | TΓ0) is defined by (2.10),
then Fτ(x) = F(x)[E + β(x,s\ W0)Γ] - Γ satisfies the linear homo-
geneous system

(2.13) Fl = -F(x)H(x)B(x)G(x)F1 , F^s) = 0 ,

and consequently Fx{x) = 0 on X. Moreover, if r e X and η is a vector
such that [E + f(r, s \ W0)Γ]η -= 0, then 0 = Fx(r)η = -Γη, and hence
η = o. Consequently 2? + #(#, s | Tfo)Γ is nonsingular throughout Xp

and

(2.14) ^(αί) - Γ[E

on this interval. Conversely, if Γ is a constant matrix such t h a t
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E + Θ(x, s I W0)Γ is nonsingular throughout X, then F(x) defined by
<2.14) is the solution of (2.12) on X, and W(x) given by (2.11) satisfies
(2.6).

Since for arbitrary n x n matrices Θ, Γ the identity (E + Γθ)Γ =
Γ(E + ΘΓ) implies that E + Γθ is non-singular if and only if E + ΘΓ
is non-singular, and Γ(E + ΘΓ)~X = (E + Γθ)~ΎΓf the non-singularity
of E + 6 (x, s I Wo)̂ 1 on X is equivalent to the non-singularity of E +
Γθ(x, s I Wo) on this interval, and an alternate form of (2.11) is

<2.1Γ) W(x) = Wύ(x) + G(», 81 W0)[E + Γθ(x, s \ W^ΓHix, s | Wo) .

In particular, if W0(x) and W(x) are solutions of (2.6) on X, and
Γ = W(s) — Wo(s) is non-singular, then (2.11) and (2.11') each reduces to

<2.11") W(x) = W0(x) + G(x, s I W0)[Γ-1 + θ(xf s \ T^o)]"1^^, s\W0).

For the special case of Γ = W(s) — W0(s) non-singular Sandor [11]
obtained this latter formula, and in this instance he termed W(x)
representable with the aid of WQ(x) by (2.11'). The above results pre-
senting (2.11) and (2.11') show that this concept of representability may
be given a form independent of the non-singularity of W(s) — WQ(s).
Moreover, it is to be noted that (2.11) implies that throughout X the
rank of W(x) — WQ(x) is equal to that of Γ, thus presenting a new
proof of the known result that the difference of two solutions of (2.6)
is of constant rank throughout a common interval of definition, (see
Eeid [7; Theorem 2.1]). Finally, it is to be remarked that if W0(x) is
a solution of (2.6) on an interval X, and (U0(x); VQ(x)) is a solution of
{2.2) such that U0(x) is nonsingular and W0(x) = VQ(x) U^\x) on this
interval, then the solution H(x, s | Wo) of (2.9) is given by

<2.15) H(x, 8 I Wo) = UQ(8)U?(x) .

LEMMA 2.2. If W0(x)y WΛ(x), (a = 1, ••-,&), are solutions of
<2.6) on X, seX, and Γa = WJβ) - W0(s), then

WΛ(x) - Wβ(x) - G{x, s I W0)[E + Γβ(x, s \

•(Γβ - Γβ)[E + Θ{x, s I W0)ΓΛγΉ(x, s\W0).

In view of Lemma 2.1, G = G(x, s \ WQ), H= H(x,s\ Wo) and Θ =
€{x, s [ Wo) are such that

W« - WQ - GΓ*[# + ΘΓ,]- 1 ^ - G[E + Γβ\^

and (2.16) is an immediate consequence of the relation

Γ* - Γβ = [E

ΓβΘ]{Γ«[E
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If Ml9 M2, ikf3, M4 are n x n matrices with Mz — Af> and MA — Mv

non-singular, we introduce the notations

{M19 M2, M3) - (M,

(2.17) {Ml9 M2, M3, M4} - {Mlf M2> M3}{M2, Ml9 M J ,

- {M, - M.

Clearly, {M19 M2, M:)y M4} is a direct matrix generalization of the scalar
anharmonic ratio.

THEOREM 2.1. If W0(x), Wa(x), (a = 1, 2, 3, 4), are solutions of
(2.6) (m X m£λ- TF3(ίc) — W2(x) and W±{x) — W^a;) non-singular, and
s e X, then

= (P(a?, s I TΓ0, Wi){ ̂ ( s ) , Wa(s), W3(s), Wά8)}Φ"\x, s \ WQ, Wx) ,

ivhere Φ(χ, s \ Wo, Wλ) = G(x, s | W0)[E + /\β(a?, s

If ΓΛ = W«{s) - W0(s), (a = 1, 2, 3, 4), then from (2.16) it follows,
directly that G = G(x, s | Wo) satisfies

{Wι(x)ί W2{x), W3(x)} = G[E+ IWΠΓu Λ, Γ3}[E

{W,(x)9 Wy(x), Wax)} = G[E+ ΓβYV\ Λ, I\}\E

and (2.18) is an immediate consequence of these relations and

The fact that the "anharmonic ratio'' of four solutions of (2.6) is
similar to a constant matrix has been established by Sander [11] and
Levin [6]; it is to be noted that Levin's hypotheses are needlessly
strong as he supposes that Wa(x) — Wβ(x), (a, β = 1, 2, 3, 4; a φ β)9

is non-singular. In view of the generality of the result of our Lemma
2.2, however, the proof of the above Theorem 2.1 is more direct than
that given by Sandor for his Theorem 1, which involved the determi-
nation of a particular solution W0(x) such that each of the constant
matrices Γa, (a = 1, 2, 3, 4), is non-singular. Indeed, in the proof of
Theorem 2.1 one might choose W0(x) = W1(x), in which case Γτ = 0
and (2.18) reduces to

(2 19) {Wl{x)f

= G(xfs I W1){W1(s)9 W2(s), W3(s), W4(s)}G -\x9 s \ Wx) .

It is to be remarked that the above type of anharmonic ratio prop-
erty of four solutions of (2.6) is quite different from the generaliza-
tion of the anharmonic ratio considered by Why burn [12] and Reid [7].
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With the aid of (2.18) and (2.19) one may deduce that if W0(x)
and Wλ{x) are solutions of (2.6) on an interval X then

(2.20) G(x, s\WJ = G(x, s I W0)[E + Γβ{x, s \ Wo)]"1 ,

where Λ = W1(s) - W0(s).

Relation (2.20) is but one of the variational relations for solutions of
(2.6) which will be established in the next section, however, so it will
not be considered further here.

Of special significance is the class of systems for which the co-
efficient matrices satisfy the conditions

(2.21) B(x) = B*(x) , C(x) Ξ C*(x) , D{x) = A*(α?) ,

since particular systems of this type occur as accessory systems for
simple integral variational problems, (see, for example, Bliss [1, § 81],
Reid [7]). In this instance, if (U(x) V(x)) is a solution of (2.2) on
X then there exists a constant matrix K such that U*(x)V(x) —
V*(x)U(x) ΞΞ K; in particular, if U(x) is non-singular on X then
W(x) = V(x)U~\x) is a solution of (2.6) on X such that

(2.22) W(x) - W*(x) - U*-1 (x)KU-\x) ,

and W{x) is hermitian if and only if K = 0. Moreover, if s e X then
the solution H = H(x,s | W) of the corresponding equation (2.9) satis-
fies

ί P ' + (D + [ W - U*-χKU-χ\B)H* = 0 , H* = E for x = s ,

and for the solution G = <?(&, s | TF) of the corresponding equation
(2.8) the relation (2.15) and the method of variation of parameters
yields

(2.23) G(x, s | TΓ) = H*(x, s \ Wr)i7*-1(s)27*-1(^, s; U)U*(s) ,

where T = T(x, s | 17) is the solution of the differential system

(2.24) T" = - U-WBWU^WKT, T(s) = E .

Consequently the function θ(xf s \ W) given by (2.10) has the form

(2.25) θ(x, sI W) - U(8)S*(x, s; U)U*(s) ,

where

(2.26) S(x,8; U)= \'τ^(tf8; U)U~ι{t)B{t)U*-\t)dt

is the function introduced by Reid [9, equation (3.6)] for the general
characterization of principal solutions of non-oscillatory self-adjoint
differential systems.
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Following the terminology used by Reid [8; 9], if the coefficient
matrices satisfy (2.21) then two solutions (u^x); vx{x)) and (u2(x); v2(x))
of (2.1) for which the constant value of uf(x)v2(x) — vΐ(x)u2(x) is zero
are said to be (mutually) conjoined solutions. As in Lemma 2.3 of Reid
[8], one may prove for such systems (2.1) that the maximum dimen-
sion of a conjoined family of solutions is n, and that a given conjoined
family of solutions of dimension less than n is contained in a con-
joined family of dimension n.

3 Variation of solutions*
sum matrix

A(x) =

Let A(x) denote the 2n x 2n direct

A(x)

0

where 0 is the n x n zero matrix, with similar definitions for B(x),
C{x), D(x) in terms of the corresponding B(x), C(x), D(x). It may
be verified directly that a 2n x 2n matrix W(x) is a solution of the
Riccati matrix differential equation

(3.1) W + WA{x) + D(x)W + WB(x)W- C(x) = 0

on an interval X if and only if

W(x) G(x)
(3.2)

H(x) -Θ{x)

where W(x), G(x), H(x) and Θ(x) are n x n matrices which satisfy on
this interval the Riccati system

(3.3)

W + WA(x) + D{%) W + WB(x) W - C(x) = 0 ,

G' + [D(x) + WB(x)]G - 0 ,

H' + H[A(x) + D(x)W] = 0 ,

Θ' - HB(x)G = 0 .

This relation between a Riccati system (3.3) and the associated single
Riccati equation (3.1) has been exploited previously by the author in
the study of a different type of problem, (see Reid [10, §4]).

In particular, if W0(x) is a solution of (2.6) on X, and G(x, s \ Wo),
H(x, s I Wo) and β(x, s \ Wo) are defined by (2.8), (2.9) and (2.10), then
the solution W = W0(x) of (3.1) satisfying the initial condition

(3.4) W

is given by

(3.5) W0(x) -

o\
s) —

W0(s)

E

W0(x)

H(x, s\W0)

E

0

G(x,

-θίx, Wo)
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Moreover, for this solution W0(x) of (3.1) the matrix functions
G(x, s I Wo), H(X, S I Wo)9 Θ(x, s | WQ) determined by the corresponding
equations (2.8), (2.9), (2.10) are computed readily to be

(8.6)

G(X,8\

H(x,s\

Θ(x, s I

G(x, s\W0) 0

-Θ(x, s\W0) E

H(x,s\W0) -Θ(x,s\W0)

0 E

Θ(x, s\W0) 0

0 0

If W0(x) is the solution (3.5) of (3.1) on X, and W{x) is a second
solution of this equation on X satisfying the initial condition

<3.7) W(s) =
W(s) E

E 0

then the associated equation (2.11) in W(x) and W0(x), with

Γ 0
(3.8) Γ =

0 0
Γ = W(s) - W0(s),

yields (2.11) in W(x), Wo(%) and also the following additional equations
of variation:

<8.9)

G(x, s\W) = G(x, s I WQ)[E + Γθ(x, s \

H(x, s I W) - [E + θ(x, s I WύΓY'Hix, s\W0),

θ(x, s\W) = [E+ Θ{x, s I W^ΓY'Θix, s\W0),

= θ(x, s I W0)[E + ΓΘ{x, s I Wo)]"1 .

In particular, if Θ{x, s \ Wo) is non-singular on a subinterval Xo of X
then Θ(x, s\W) is non-singular on this subinterval also, and

(3.10) θ-\x, s\W) = , 8\WQ)

4 Principal solutions for non-oscillatory systems (2.1 ) Two dis-
tinct points s and ί on I are said to be (mutually) conjugate, (with
respect to (2.1)) if there exists a solution (u(x); v(x)) of this system
with u(x) ί 0 on the subinterval with endpoints s and t, while u(s) =
0 = u(t). The system (2.1) is termed non-oscillatory on a given sub-
interval Xo provided no two distinct points of this subinterval are
conjugate; moreover, (2.1) will be called non-oscillatory for large
{small} x if there exists a subinterval [α, oo){(— co, αx]} of X on which
this system is non-oscillatory.

A system (2.1) is termed identically normal on X, or normal on
every subinterval of X, if whenever (u; v) = (0; v(x)) is a solution of
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this system on a non-degenerate subinterval of X then also v(x) = 0
on this subinterval. If (2.1) is identically normal on I , seX, and
(U{x)\ V(x)) is a solution of (2.2) with U(s) = 0 and V(s) non-singular,
then the points t conjugate to s are those values for which U(t) is
singular; in particular, if such a system is non-oscillatory on an in-
terval X, and s e X, then U(x) is non-singular on each of the sub-
intervals X8

+ = {x I x 6 X, x > s} and Xs~ = {# I x £ -X", a; < s} .
A basic result for non-oscillatory systems is the following theorem.

It is to be emphasized that in contrast to the special case considered
previously by the author in [9], the result of this theorem is not
limited to self-adjoint systems of the form of accessory equations for
problems of the calculus of variations, and the proof is independent
of variational principles.

THEOREM 4.1. If (2.1) is identically normal and non-oscillatory
on an interval X, and W0(x) is a solution of (2.6) on this interval,
then for seX the matrix Θ(x, s \ Wo) is non-singular on each of the
subintervals Xs

+ and Xs~; moreover,

(4.1) θ-\t, s\W0)= W0(s) - Wt(s), t e X+ or t e Xs~ ,

where Wt(x) = Vt{x)Ui\x) and (Ut(x); Vt(x)) is the solution of (2.2)
determined by the initial conditions

(4.2) Ut(t) = Q, Vt(t) = E.

Suppose that teX8

+, and (Ut(x); Vt{x)) is the solution of (2.2)
satisfying (4.2). In view of the condition that (2.1) is identically
normal and non-oscillatory on Xf the matrix Ut{x) is non-singular on
Xt~ and Xt

+. In particular, on Xt~ each of the matrices W0(x) and
Wt(x) = Vt{x)Ur\x) is a solution of (2.6), H(x,s\ Wt) = U%(s)Ur\x),
and from (3.9) we have

Ut(8)Ur\x) = [E + θ(x, s I W0){Wt(s) - WoWH-Ήίs, s \ Wo) , x e Xr .

Consequently,

(4.3) [E + θ(x, s I Wo){ Wt(s) - W0(s)}] Ut(s) = H(x, s | Wo) Ut(x), x e Xt ,

and by continuity (4.3) also holds for x = t. As se Xt~ and Ut{s) is
non-singular, while Ut{t) — 0, it follows that Θ(t, s \ Wo) is non-singular
with inverse W0(s) — Wt(s), so that Θ{x, s \ Wo) is non-singular for
x e Xs

+. A similar argument shows that Θ(t, s \ Wo) is non-singular
and (4.1) holds for teX.~.

It is to be emphasized that the non-oscillation of (2.1) on X is
not a consequence of the existence of a solution W0(x) of (2.6), or
the equivalent condition that there is a solution (U0(x); V0(x)) of (2.2)
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with U0(x) non-singular throughout X. Indeed, for any self-adjoint
system (2.1) with coefficient matrices satisfying (2.21) the existence
of a solution (U0(x); V0(x)) with U0(x) non-singular throughout X is
illustrated by any solution (U0(x); V0(x)) satisfying at an initial point
s the condition U*(s)V0(s) — V0*(s)U0(s) = iK0, where Ko is a definite
hermitian matrix. On the other hand, for the general system (2.1)
that is identically normal and non-oscillatory on X the author has
not settled the question as to the existence of a solution W0(x) of (2.6)
throughout X,

It W0(x) is a solution of (2.6) on X, the semi-group properties

G ( x , s \ Wo) = G ( x , t \ W 0 ) G ( t , s \ W o ) , s t χ e χ

1 ' } H{xys\ Wo) = H(t,8\ W0)H(x,t\ Wo) ,

of the solutions of (2.8), (2.9) imply for θ(x, s | WQ) of (2.10) the
relation

(4.5) θ(x, s I Wo) = θ(t, s\W0) + H(t, s I W0)Θ(x, t \ W0)G(t, s\W0) .

Since for an identically normal system that is non-oscillatory on X
we have Θ(x, s | Wo) non-singular for x ψ s, from (4.5) it follows that
for xe X and distinct from both t and s the matrix

(4.6) X(x, t,8\W0) = E+ H~\t, s I WQ)Θ(t, s | W0)G~1(tf s | W0)9'\xf t1 Wo)

is non-singular, and

(4.7) θ-\x, s\W0) = G~\t, s I W0)Θ-\x, t \ W0)X-\x, t, s | W0)H'\tt s\W0).

From (4.6), (4.7) it follows that if Θ~\x,t\ W0)~^0 as #->oo, then
also Θ-\x, sI Wo) —+Q as x —• oo moreover, for Xo an arbitrary com-
pact subinterval of X it follows from (4.7) that the convergence of
Θ~~\x, s I Wo) to 0 as x —> co is uniform for s on Xo.

For an identically normal system that is non-oscillatory for large
x a solution (UoXx)) VJ^x)) will be termed a principal solution at
co for (2.2) if Uoo{x) is non-singular on some subinterval (α, OD) and
for W^(x) = Foo^)^"1^) we have Θ~\xf s\ W^-^0 as # — co for at
least one, (and consequently all), s on (a, oo); the corresponding
solution W^x) of (2.6) will be called a distinguished solution at oo
of this Riccati equation.

THEOREM 4.2. If for an identically normal system (2.1) that is
non-oscillatory for large x there exists a principal solution (U^x);
V^ix)) with Unix) non-singular on [α, co), then: (a)Uoo(x)f V^x) and
W^ix) — VoSx) ZJ~\x) are such that as t —> co,

Wt(s) -+ WJβ)9 Ut(s) Uf\a) UJβ) - UJ?),

Vt{s)Uc\a)UJμ)-+Vt(8)
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uniformly for s on an arbitrary compact subinterval of [α, oo),
where, as in Theorem 4.1, (Ut(x); Vt(x)) is the solution of (2.2)
satisfying (4.2) and Wt{x) = Vt{x)Ur\x)\ (b) the associated distin-
guished solution of (2.6) at oo is determined uniquely and the most
general principal solution of (2.2) at oo is (Ucc(x)M; Voo(%)M), ivhere
M is a non-singular constant matrix.

Equation (4.1) and the remark following (4.7) imply that for a
principal solution (U^x)) V^x)) of (2.2) the associated distinguished
solution WJp) = VJp)U~\x) of (2.6) is such that Wt(s) — WJs) uni-
formly in s on an arbitrary compact subinterval of [a, oo). The second
limit relation of (4.8), and the uniformity of this limit on arbitrary
compact subsets, follow from the preceding limit relation and the
fact that U?(x) = Ut(x) Ut~\a) UJfl) and U^x) are solutions of the
differential systems

Ur = [A(x) + B(x)Wt(x)]Ut\

and Ut°(a) = ΊJJiμ). In turn, the last limit relation of (4.8) and the
stated property of uniformity are immediate consequences of the first
two limits of (4.8) and the respective uniformity properties. Finally,
the uniqueness of a distinguished solution of (2.6) at oo, and the most
general form of a principal solution for (2.2), are direct consequences
of relations (4.8).

As will be shown in the next section, for a class of identically
normal self-adjoint systems more inclusive than those previously
studied by Hartman [3], Reid [9] and Sandor [11] the condition of
non-oscillation for large x implies the existence of a principal solution
of (2.2) at oo. Such is not true for systems in general, however,
as is illustrated by the simple scalar system

(4.9) u' = v , v' = [ * " ( # ' ( # . 0 ^ x< °° >

where h(x) is a function of class C" on [0, co) with

(4.10) h \ x ) Φ 0 , h(xλ) Φ h(x2) for x x Φ x 2 , 0 ^ x < oo .

The general solution of (4.9) is u = cx + c2h(x), v = c2h
r(x), and the

associated Riccati differential equation

(4.11) w' - [h"(x)/h'(x)]w + w2 = 0

has as solution w(x) — [cjτ'ix)]/^ + c2h(x)] throughout any interval
where cx + c2h(x) Φ 0. In particular, if w — wQ(x) is a solution of
(4.11) on an interval [α, oo), then either wo(x) Ξ O or wo(x) —
h'(x)/[h(x) — c], where c is a constant such that h(x) Φ c on this
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interval. If wo(x) = 0 then wo(x) = vQ(x)u^\x), where uo(x) = k φ 0,
vo(x) = 0 is a corresponding solution of (4.9), and G(x, s \ w0) = h'(x)lh'(s),
H{x, s\w0) = 1, and Θ~\xf s | w0) = h'{s)l[h(x) — h(s)], so that θ"\x9 s\w0)
—> 0 as a? —> oo only if | /&(#) | —> oo as x —* oo. In case wo(a$) =

h'(x)j[h{x) — c], then wo(a?) = &[/&(#) — c] and vo(x) — kh'(x) with Jk Φ 0,

G ( » , β I w 0 ) = (&'(«)[&(«) - c])l(h'(8)[h(x) - c]), H(x., s\w0) = [h(s) - c ] /
[Λ(α) ~ c], and © (̂α?, s | w0) = (h'(s)[h(x) - c])/([h(s) - c][Λ(») ~ Hs)]),
so that ©""̂ a;, s \ wQ) —> 0 as x —> co if and only is h(x) —* c as a? —> oo.

Now if h(x) is real-valued and Λ'(aj) ^ 0 an [0, oo), then h(x^) Φ
h(x2) for xλ Φ x2 on this interval, and the limit of h(x) as x —> oo exists,
finite or infinite, so that in this case (4.9) always has a principal
solution, On the other hand, there exist complex-valued h(x) satisfy-
ing (4.10), and for which h(x) does not tend to a limit as x-~>co.
Such an example is provided by h(x) — 4(2 + sin x)~x — 2e~x + i sin3 x,
0 g x < co. If in the corresponding equation we set u — uγ + ΐw2,
t; == v1 + ί̂ 2 the equivalent system in ulf u2, vlf v2 is a system with
real coefficients for which the corresponding 2 x 2 matrix Θ~\xy s \ Wo)
does not tend to a limit as x —> co.

5 Self-adjoint systems* Attention will now be restricted to iden-
tically normal systems (2.1) which satisfy the self-adjointness conditions
(2.21), and also the following hypothesis:
$V The matrix B(x) is non-negative definite a.e. on X.
The condition ξ>0, with x restricted to a subinterval [c,d], will be
denoted by £>0[c, d].

THEOREM 5.1. If an identically normal system (2.1) satisfying
(2.21) and £>0 is non-oscillatory on XQ: (α0, oo), then this system posses-
ses a principal solution at oo. Indeed, ifao<r<s<t< co, (Usr(x);
Vsr(x)) is the solution of (2.2) satisfying Usr(r) = 0, Z7sr(s) = E, and
(Ust(s); Vst{x)) is the solution of (2.2) satisfying Ust(s) = E, Ust(t) = 0,
then Vsr(s) > V8d(s) > Vst(s) for ao<r<s<t<d< oo, and con-
sequently F s o o = lim^β.Vst(s) exists, and the solution (U8OO(x)m, Vsoo(x))
of (2.2) satisfying Usoΰ(s) = E, Vsoo(s) = F s o o is a principal solution
at oo with Usoo{%) non-singular on Xo.

For the case of a system (2.1) arising as the accessory system
for a variational problem of Bolza type the result of Theorem 5.1 is
given in Reid [9]. For such accessory systems the matrix B(x) is of
constant rank a.e. on X, whereas for the more general system the
rank of B(x) may not be constant a.e. on X. In particular, the more
general problem includes as a very special instance systems that may
be described roughly as arising through the adjunction at interfaces
of a sequence of different problems, each of the accessory problem
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type on a corresponding interval.
The above Theorem 5.1 may be established by direct generaliza-

tions of the methods used in proving Theorem 5.1 in Reid [9], and
this extension is immediate once one has established the results cor-
responding to Theorems 4.1, 4.2, and 4.3 of [9]. If \c, d] is a compact
subinterval of X let &[c, d] denote the class of pairs of π-dimensional
vector functions 7]{x), ζ(x) with η{x) a.c. on [c, d], ζ(x) e S^c, d], the
class of vector functions Lebesgue measurable and essentially bounded
on [c, d], and such that Lj[η, ζ] Ξ= rf — A(x)η — B(x)ζ = 0 a.e. on this
interval. The subclass of £&[c, d] on which η(c) = 0 = Ύ)(d) will be
designated by £$0\c, d]. Moreover, let & [c, d] denote the condition
that the functional

(5.1) I\η, ζ; e, d\ ^ \\ζ*(x)B(x)ζ(x) + η*(x)C(x)r/(x)]dx

is positive definite on .^0[c, d\, that is, I[y, ζ; c, d\ Ξ> 0 for (η, ζ) e
&o[c, d], and the equality sign holds only if B(x)ζ(x) = 0 a.e. and
Ύ](χ) = 0 on [c, d]. The following theorem presents a basic result
concerning non-oscillation on a compact interval, and is the result for
(2.1) corresponding to Theorem 4.1 of Reid [9].

THEOREM 5.2. If (2.1) is an identically normal system satisfying
(2.21) on a compact interval [c,d], then !Q.\c,d] holds if and only
if ξ)0[c, d] holds, together with one of the following:

( i ) (2.1) is non-oscillatory on [c, d];
(ii) there exists a solution (U(x); V(x)) of (2.2) with U(x) non-

singular on \c,d] and U*(x)V(x) — V*(x)U(x) ~ 0.

For systems (2.1) that arise as accessory systems for variational
problems the result of Theorem 5.2 consists of the Legendre or Clebsch
condition and a special oscillation theorem in the extension of the
classical Sturmian theory to self-ad joint systems as initiated by M.
Morse; for brief historical statements and references the reader is
referred to the author's papers [8; 9] and their bibliographies. If
B(x) is positive definite a.e. on [c, d] a proof is contained in Theorem
2.1 of Reid [8], and in the following discussion will be limited to
certain aspects that differ from the special cases treated previously.

Theorem 5.2 will be established by proving the following sequence
of statements: (a) *§0[c, d], (ii) —> £>+[c, d]; (b) £>.,[c, d] —»(i), ξ>0[c, d]; (c)
Uc,d], ( i)-(ii).

Statement (a) is an immediate consequence of the relation

(5.2) I\rj, ζ; c, d] = j*(ζ* - ψ W)B(ζ - Wη)dx ^ 0

for {η, ζ) e <2<\c, d] ,
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where W(x) = V(x) U~\x), since in view of ξ>0[c, d] equality in (5.2)
holds only if a.e. on [c, d] we have 0 = B(ζ — Wη) = U[U~^]\ so
that U"\x)7){x) Ξ U-\c)r)(c) = 0, and hence (̂a?) = 0, JS(aOζ(αO = 0 a.e.
on [c, d]. In turn, (5.2) follows from the more general fact that if
U(x) and V(x) are n x r a.e. matrices on [c, d], and for α: = 1, 2 the
vector functions 7)a{x) are a.e. and ζΛ(x) e 8oo[c, d], while there exist
a.e. r-dimensional vector functions hjx) such that y]a(x) = U{x)h«{x)
on [c, d], then we have the identity

( C l k ΐ V)B{ζ* VK) Λ l F L l [ % ' ζ a ] ( L l [ ? l ί ζ l ] ) * F / " 2

( ' } - h*{U*L2[U, V] - V*LX[U, V]}h2 - h*[U*V- V*U]h[

For the proof of statement (b), it is to be noted that if {u, v) is
a solution of (2.1) with u(a) = 0 = u(b), where c g a < b ^ d, then
for τ](x) — u(x), ζ(x) — v(x) on [α, b] and (̂a?) = 0, ζ(x) = 0 elsewhere,
we have

i[v> C; c^ r f] = J K v; α^fe] = u*v lα = o ,

so that for general self-adjoint problems (2.1) condition ξ>+[c, d] implies

(i).
The fact that ξ>+[c, d] implies φo[c, d] under the general conditions

of the theorem may be proved by indirect argument. If it is not
true that B(x) ^ 0 a.e. on [c, d], in view of the integrability of B(x)
on [c, d], and the separability of finite dimensional Euclidean space,
it follows that there exists a constant vector ζ0 with | ζ01 = 1 and
positive constants kl9 k2 such that Xo = {x \c g x S d, | B(x) \ g klf

ζ*B(x)ζ0 < — fe2} is of positive measure. If Y(x) is a fundamental
matrix of Yf = -4(a?) F, and Λ3 a constant such that | Y(x) Y~\t) \ S h
for x and t on [c, d], let s be a point of outer density of Xo belonging
to (c, d), and choose α, δ such that c < α < s < 6 ^ d , and

(5.4) (b - a)-1 > (klkl/k2) Γ | C(») | dx .

If e(x) denotes the characteristic function of Xo, then there exists a
continuous scalar function g(x) ^ 0 on [α, 6], and such that the solution
y(x) of L^y, ζoeg] = 0, j/(α) = 0, satisfies y(b) — 0 and y(x) ί θ on
[α, 6], indeed, g(x) may be chosen of the form g(x) = c0 + cxx + +
cnx

n with I c01
2 + + I cΛ |a = 1. For ζλ{x) = ζoe(x)g(x) we have #(&) =

F(a ) Y-^BifyζJfydt, and in view of the definitive properties of &x

α Cb

and &3 we have | y(x) \ ̂  k±k3 \ | β(α?)̂ (̂ ) | d# for α ^ α; ̂  δ. If (̂a?) —

.I/W, ζ(a?) = ζx(x) on [α, δ], and η(x) = 0, ζ(a?) = 0 on [c, α] and [δ, d],
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then 07(#), ζ(x)) e S&c, d] and

Γb

^ —k2\ \ e(x)g(x) \2 dx

\e(x)g(x)\dxJ^\C(x)\dx} .

/Γb \ 2 Γ6

As ( 1 I e(x)g(x) \dx) ^ (b — a) \ \ e(x)g(x) \2dx by the Schwarz inequ-

!

b

\e(x)g(x) \2dx > 0, with the aid of (5.4) it then follows that
a

^ - (k2 - (b -a)k]k] Γ| C(x) \ dx) Γ| e(x)g(x) |2 dx < 0 ,

3ontiέαy to the condition §>+[c, d].
The above statement (c) may be proved by exactly the same type

of argument as that used to establish the statement (f) for the proof
of Theorem 2.1 in Reid [8], with the functional (5.2) replacing the
I[η] of [8], and details will be omitted here.

It is to be remarked that the result of Theorem 5.2 is true without
the assumption of identical normality; indeed, the above proofs of
statements (a) and (b) do not use this condition, and (c) may be
established without this hypothesis by using methods that have been
employed for the special systems arising as accessory systems for
Bolza problems, (see Bliss [1, §89]).

With Theorem 5.2 thus established, for the general system under
consideration one may prove the results corresponding to Theorems
4.2 and 4.3 of Reid [9], and then proceed as in [9] to obtain the
result of Theorem 5.1. The proofs of this section are distinctly vari-
ational in character, and are in essence ' 'classical variational proofs
phrased in terms of canonical variables." For example, for accessory
systems of Bolza type variational problems the identity (5.3) is in
essence the well-known Clebsch transformation of the second variation,
(see Bliss [1, §23, 39], and for such systems the fact that &+[c, d]
implies ξ"0[c, d] is the "Legendre" or "Clebsch" condition.

In passing, it is to be commented that for a system (2.1) satisfy-
ing (2.21) and identically normal on a compact interval [c, d] one may
obtain the full extension of Theorem 2.1 of Reid [8], as well as the
corresponding criteria ivR and vh, (see [S, p. 741]), of that paper. In
particular, if U(x) and V(x) are n x n matrices a.c. on [c, d], and
we set

A [U, V] - U*(x)L2[U, V] - V^LάU, V] ,

then A[U,V]~(A[U, V])* Ξ (C7*F- V*U)'; moreover, whenever
U(x) is non-singular on [c, d] the matrix W(x) — V(x) U~ι(x) is such
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that

A[U, V]=.U*K[W]U+ U*(W- W*)LX[U9 V],

U*V- V*U= U*(W- W*)U.

Consequently, corresponding to the statement of [8, p. 741] on the
condition vR we have: for an identically normal system (2.1) satisfy-
ing (2.21) on [c, d] condition φ+[c, d] holds if and only if ξ>0[c, d]
holds and there is an nxn hermitian ax. matrix W(x) such that a.e.
on [c, d] the hermitian matrix K[ W] is non-positive definite.

THEOREM 5.3. If (2.1) is an identically normal system satisfy-
ing (2.21) and ξ>0> β>nd which is non-oscillatory on an interval X:(a, co),
then:

(a) // W0(x) is an hermitian solution of (2.6) on a subinterval
[s, oo) of X, and W(x) is the solution of (2.6) satisfying W(s) =
W0(s) + Γ, then W(x) exists on [s, oo) if either Γ^ is definite, or if
there are real constants λ0 > 0, \ such that \Γm + \Γ^ ^ 0; in
particular, if Γ is an hermitian matrix satisfying Γ ^ 0 then
W(x)~ W0(x)^0 on [s, oo).

(b) // Woo(x) is the distinguished solution of (2.6) at oo, then
Woo{x) exists and is hermitian on X; moreover if seX and W(x) is
a solution of (2.6) satisfying W(s) = W^(s) + Γ, where Γ is an her-
mitian matrix that fails to be non-negative, then W(x) does not exist
throughout [s, oo).

For a system (2.1) satisfying (2.21) it follows that G(x,s\ WQ) =
H*(x, s I Wo) for an hermitian solution W0(x) of (2.6), and for such a
system which is non-oscillatory and satisfies ξ>0 on X we have that
Θ(x, s I Wo) > 0 for xeXt. If W(x) is a solution of (2.6) satisfying
W(s) — W0(s) + Γ, then Lemma 2.1 implies that W(x) exists on [s, oo)
if and only if E + θ(x, s | W0)Γ is non-singular on [s, oo), and this latter
condition is equivalent to the non-singularity of Θ~\x, s \ Wo) + Γ on
(s, oo). If x e [s, oo) and [Θ'^x, s \ Wo) + Γ\η = 0, then

η*[Θ~\x, s\W,) + Γm]η = -iV*Γtf ,

and hence

(5.5) V*[Θ-\x, s\W0) + Γ^η = 0, η*Γc$ - 0 .

Now if Γc$ is definite the second condition of (5.5) implies rj = 0 on
the other hand, if λ0 > 0, \ are real constants such that λoΓ^ + λ^^ ^
0, then from (5.5) it follows that ψΘ~\x, s \ WQ)η = 0 and hence η = 0.
Thus θ~\%, s I Wo) + Γ is non-singular on (s, oo) and W(x) exists on
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[s, oo). In particular, if Γ is an hermitian matrix satisfying Γ ^ 0
then this latter criterion implies that W(x) exists on [s, oo), and the
conclusion W(x) — W0(x) ̂ 0 follows from the representation formula
(2.11), and the fact that if matrices Θ, Γ are such that Γ ^ 0, θ > 0,
and E + ΘΓ is non-singular, then

Γ[E + ΘΓ]-1 = [E +ΘΓγ-\Γ + ΓΘΓ][E + ΘΓ]-1 ^ 0 .

In view of Theorems 4.2 and 5.1, if (U^x); V^x)) is a principal
solution of (2.2) at oo then U* Ko — V* LL = 0 and U^x) is non-singular
on X: (a, oo), so that the corresponding distinguished solution W^ix) =
Voo(x)U^Ί(x) of (2.6) is hermitian and exists on X. Consequently, if
s e X then Θ(x, s \ WJ) > 0 f or x e (s, co), and hence Θ~\x, s | WJ) -f Γ
is hermitian on (s, oo) for Γ an hermitian matrix. Moreover, since
WJ{x) is the distinguished solution of (2.6) at oo, Θ~\xy s \ WJ + Γ-+
Γ as x —> oo, while Θ~J(x, s | W^) + .Γ is positive definite for x > s and
sufficiently close to s. Consequently, if Γ fails to be non-negative
definite there exists a value te(s, oo) such that θ~\t9 s\ W^) + Γ is
singular, so that Woo(#) is not extensible to an interval containing t,
in contradiction to the existence of W^x) on X.

Combining the conclusions (a) and (b) we have that if the distin-
guished solution Woo(x) of (2.6) exists on an interval (α, co) then an
hermitian solution W(x) of (2. 6) exists on a subinterval [s, co) of
(α, oo) if and only if W(x) — W^(x) ̂  0 for at least one value, {and
consequently all values}, on [s, oo). For the case of systems (2.1) with
real coefficients satisfying (2.21), and for which B(x) > 0 on X, this
result has been proved by Sandor [11]; due to this property he has
designated as ''the right-hand frontier solution7' the solution of (2.6)
that we have called the distinguished solution at oo.

6. Systems non-oscillatory on intervals (—oo,α) and (-co, co).
The behavior of (2.2) and (2.6) on an interval (—co,α) is obviously
equivalent under the reflective transformations U°(x) = U(—x), V°(x) =
V( — x), W°(x) = W( — x) to the behavior of the respective equations

(2.2°) U°f = -A(~x)U° - B(-x)V° , V0' - -C(-x)U° + D(-x)V° ,

(2.6°) W0' ~ W°A(-x) ~ D{-x)W° - W°B(-x)W° + C(-x) - 0 ,

on (—α, oo). A principal solution of (2.2) at — oo, and the associated
distinguished solution W-^(x) of (2.6) at — oo, are defined as the
images under the above transformations of a principal solution of
(2.2°) at oo and the associated distinguished solution Wi{x) of (2.6°)
at oo. The analogues of Theorems 4.2, 5.1 and 5.3 for intervals
X: (— co,α) are immediate, and will not be presented in any further
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detail, with the exception of the following results, which are con-
sequences of combined results of these theorems for (2.2), (2.6) and
(2.2°), (2.6°). For the systems considered by Sandor, results equivalent
to those of Theorem 6.1 are given in [11, § 7].

THEOREM 6.1. // on the real line (—00, co) the system (2.1) is
identically normal, satisfies (2.21) and !Q0, and is non-oscillatory,
then the distinguished solutions W^x) and W-^x) of (2.6) are
individually hermitian on (— co, co) and such that:

(a) // (Ut(x); Vt{x)) is the solution of (2.2) determined by (4.2)
for — 00 < t < co, and Wt(x) = Vt{x)Ur\x), then Wt(x)-+ WJp) as
t —> 00, and Wt(x) —> W-^ix) as t —> — 00.

(b) // W(x) is an hermitian solution of (2.6) which exists on
(-00, 00) then W(x) - WJp) ^ 0 and W^(x) - W(x) ̂  0 throughout
(—00, 00), while if W(x) is an hermitian solution of (2.6) for which
at some value s the matrix W(s) — W^s), {W-^s) — W{s)}, fails to
be nonnegative definite then W(x) does not exist throughout the interval
[S, 00), {(_oo,s]} .

For example, the scalar system

(6.1) u' = v , v' = u

is non-oscillatory on (—00, co), and ut(x) = sinh (x — t), vt(x) =
cosh (x — t). The corresponding Riccati equation (2.6) is

(6.2) w' + w2 - 1 = 0 ,

with respective solutions wt(x) — coth (x — t), w^x) = — 1, and w^x) = 1.

7 Systems with constant coefficients* If the coefficient matrices
A, B, C, D are constant, and (U(x); V(x)) is a solution of (2.2), then
(U(x — c); V(x — c)) is also a solution for arbitrary real values c.
Consequently, (2.1) is non-oscillatory on an interval (a, co) or(-~co,α)
if and only if it is non-oscillatory on the whole infinite line (-co, 00).
Moreover, if (Ut(x); Vt(x)) is the solution of (2.2) satisfying (4.2) then
Us(x) = Ut(x — 8 + t), Vs(x) Ξ= Vt(x — s + t), and the corresponding
solution 1^(05)= Vt{x)Ur\x) of (2.6) exists on an interval [c, d] if
and only if Ws(s) — Vs{x)Ur\x) exists on [c + s — t, d + s — ί]. For
systems with constant coefficients the following result is a consequence
of Theorem 4.2.

THEOREM 7.1. A system (2.2) with constant coefficients, and which
is identically normal and non-oscillatory on ( — 00, co), has a principal
solution at co {at -co} if and only if the solution (U0(x); V0(x)) of
(2.2) for which U0(0) = 0, F0(0) = E is such that W0(x) = V0(x) UQ~\x)
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converges to a limit W^iW-^} as x —> — co {x —» 05}; ί/̂ β corresponding

distinguished solution of (2.6) αί 00 {α£ —00} is PΓoo(̂ ) = W^

In turn, Theorems 5.1 and 6.1 imply the following results for

systems with constant coefficients.

THEOREM 7.2. A system (2.2) with constant coefficient matrices

satisfying A* = D, C* — C, B* = B ^ 0, and which is identically

normal, is non-oscillatory on (— 00, 00) if and only if there exists an

hermitian constant matrix W satisfying the algebraic matrix equation

(7.1) WA + A*W+ WBW- C = 0;

moreover, if such a system is non-oscillatory on (—00, 00) then there

exist hermitian matrices W^ and W-a* which are individually solutions

of (7.1), and are extreme solutions for (2.6) in the sense that if

W(x) is any hermitian solution of (2.6) on (— 00, co) then W^ ^

W(x) ^ TF-oo) in particular, if W is any hermitian solution of (7.1)

then W^SWS W^.

In particular, if B and C are constant matrices the system

(7.2) uf = Bv , vr = Cu ,

is identically normal on (—co, co) if and only if B is non-singular,

and the following result is an immediate consequence of the above

theorem.

COROLLARY. / / B and C are constant hermitian matrices with

B > 0, then (7.2) is non-oscillatory on (-co, co) if and only if C Ξ> 0,

and whenever this latter condition holds then

TFoo = -B~1I2[B1I2CB1I2]1I2B-112

and W^ = - Woo.

It is to be remarked that this corollary provides a differential

equation algorism for the nonnegative definite square root of a given

nonnegative definite matrix C:

C1/2 = lim VQ{x)U0-\x) = - l i m V0(x)UQ~\x) ,

where (U0(x); V0(x)) is the solution of U' = V, V = CU satisfying

U(0) = 0, F(0) = E.
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SOME THEOREMS ON PRIME IDEALS

IN ALGEBRAIC NUMBER FIELDS

G. J. RlEGEB

Let K be an arbitrary algebraic number field. We denote by n
the degree of K, by / an arbitrary ideal of K, by p, q, r prime ideals
of K, by μia) the Moebius function of the ideal a of Kf by Na the
norm of α, by (α, /) the greatest common divisor of a and /, and by
hif) the number of ideal classes H mod /. It is known that

Airy* ~{'\* — \ ^ 1 rv("f\fVt I 7?//V ~f\ ~π(/Yt T\ ι ) l / ¥* ̂ •ln\
ĵLleΛ/ / 1. / j JL / \ l ItΛ/ \~ J-l/\tΛ/f I I. J.K/\t\s j I t \Sytlu J j

j(f) = a Π f 1 - 4r) (a = aW > °)
p\f \ JNp '

According to [l], the proof of the generalized Selberg formula
for ideal classes H mod f in K:

(2) Σ log2 Np + Σ log Np log Nq - -A- x log x + O(x)

can be reduced to

(3) Σ ^ l o g ^ | ^
Na Na j(f)(α,r) = l

and (3) is established directly in [1], First, we generalize (3):

THEOREM 1. Let r > 1 be a rational integer; then

-^~ = ^— log'-'x + Σ ct(r, f) log'a? + 0(1)
^ Na y(f) «=i

the constants ct(r, f) resp. the constant in 0(1) depends on K, r, t, f
resp. K, r, f only.

The formula
fl for / = 1 ,

yields

LEMMA 1. Let fix) be a complex valued function (x Ξ> 1); then

Received July. 20, 1962. This work was supported by the National Science Foundation
grant G-16305 to Purdue University.
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0(aO:= Σ / ( - # - ) implies f(x)= Σ μ(a) g(-£-) .

Using the Euler summation formula, we find

(4) Σ — logr~2 m = — logr a; + ar + θf— log7-1 αA (r integer,
mgίc m r \χ I

Because of

Σ - 4 - log^1 ΛΓα - Σ (A(m, /) - A(m - 1, /)) - 1 - log-1 m ,
(α,f)=l

(1) and (4) imply

(5) Σ - ^ - logr~x iVα - ^ log r a? + 6 r(/) + 0{%~1]n log- 1 a?)
(Γ/fi Na r

(r >

the constants 6r(/) depend on iί, r, f only. Because of

l 1 ^

= Σ (A(m, f) - ( , ))( ^

(1) implies

(6) Σ (4-Γ'n

By the binomial theorem and

(5) yields
Na^x Na Na

(α.f)=l
r-1

s=0
.(n f) log8 * + Oίa;-1"1 log1"-1 x)

the constants ds(r, f) depend on K, s, r, / only.

As shown in [1],

(8) Σ - ^ = 0(1), Σ - ^ log - £ - =
^ ^ iVα JV«̂ ^ Na Na
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Proof of Theorem 1. By (3), Theorem 1 is correct for r — 2.
Suppose r > 2 and

(9) Σ 4 ^ l o 2 s "57" = Σ c<(s> f ) l o ^ x + °( χ ) (Ks<r).
(ζaff~ι ^ a ^ a ί = : 1

In Lemma 1, let f(x): — x\ogr~1x; then

(10)

 7 λ
= 2112 x \ogr x + x 2 dβ(r, /) log8 x + O(^- 1 M log7""1 a?),

r β=i

by (7). Lemma 1, (10), (9), (6), and (8) imply

x log-1 x = Σ M«) ( ^ ^ logr - ^ - + -§- Σ d.(r, O log" *# + J Σ d.(r, O log Λrj ŝ  rivα Na Na =i ivα

JVα / iVα

let

Cίr, O: = - φj s Σ χ <*.(»", O c,(β, O (ί = 1, 2, , r - 2) .

This proves Theorem 1.
The fact that

was not used in the preceding proof.
Now we derive two consequences of (2). The well-known relation

(Landau (1903))

T(x):= Σ
Np&x

implies

(11) T(x, Hmoά f): =

By

p € Hmodf

Npigx
p € Hmodf

Σ log2 Np = Σ (^(m, Hmod /) - Γ(m - 1, Hmod /)) log m ,
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(11) gives

(12) Σ log2 Np = T(x, Hmoά f) log x + O(x).
Np^x

pθHmoύf

According to Landau (1903), we have

(13) 8(α?): - Σ ° τ

P = log x + 0(1) .

Using

Np

(13) implies

(14) V

Σ l°ξP* = Σ (S(m) - S(m - l))logm ,

LEMMA 2. We have

Σ log2 Np log Nq = - ^ § ^ Σ log Np log Nq + 0(x log x) .
Npq<kx 2 Npq^x

pqS Hmodf pq e ffmodf

Proof. Denote by iϊ(g)mod/ the class of all ideals a of if with
aqeHmodf; then (12), (13) and the definition of T(x, Hmodf) in
(11) give

Σ lo&Np log Nq= Σ logNq(τ(J!L,H{q)moAf)log. "

= Σ 1°̂  Nq log Np (log x —

+ O(x log x) .

This proves Lemma 2.

THEOREM 2. We ftcwe

log x Σ log iVp log Nq + 2 Σ log iVp log Nq log.
Npqr<.χ

f pqEr Hmodf

h(f)

where the constant in the remainder term depends on K and f only.

Proof. We write (2) for x/Nr and H(r) mod / instead of x and
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H mod /, multiply by log Nr, and take summation over all prime ideals
r with (r, /) = 1 and Nr ̂  x. By (13) and (14), we find

Σ log2 Np log Nr + Σ log JVp log iNfa log Nr
Npr^x Npqr^x
effdf &Hdf

The application of Lemma 2 completes the proof.

THEOREM 3. If

Σ

/or the principal class HQ mod f, then

— Σ log2 Np — oo (a; -> oo)

/or all h(f) classes Hmodf.

Proof. Suppose

for a certain ideal class Hτ mod f. Then (2) implies

(15) Σ log JVp log Nq - - | - a; log x + O(α) ,
NpQSx h(f)

PQE Hi^aodf v '

and Theorem 2 gives

(16) Σ log Np log Nq log AΓr = O(a? log x) .
pgre fl^raodf

By (15) and (13), we get

Σ log iVp log Nq log ΛΓr ̂  Σ log Np Σ \ogNq\ogNr
Npqr^x Np^x Nqr^x/Np

pqrBHioiodf pEHQτnodf eHdf

= Σ ( ^ ^
(17) , e^4

2x logJV j
^ ΛΓn Np

= xlogx Σ

(17) and (16) imply the contradiction
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p€ J5r0modf ^

and Theorem 3 is proved.
The special case of Theorem 3 for the rational number field was

treated in [2].
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APPROXIMATION OF FUNCTIONS ON THE INTEGERS

GENE F. ROSE AND JOSEPH S. ULLIAN

How can algorithms be used to analyze nonrecursive functions?
This question motivates the present work.

Let us suppose that a particular function, with natural numbers
as arguments and values, is known to be completely defined but not
recursive. Then by Church's thesis,1 no algorithm gives the functional
value for every argument. In some practical situation, however,
where a particular sequence of arguments is of interest, it might
suffice to have an "approximating algorithm" that performs as follows
when applied to the successive arguments in the sequence: for each
argument, the algorithm computes a number; for some arguments, this
number may differ from the actual functional value, but after sufficiently
many arguments have been processed, the proportion of such cases
never exceeds a prescribed real number less than unity. If such an
approximating algorithm exists whenever the given sequence of argu-
ments is infinite, nonrepeating and effectively generable, then the given
function is in some (conceivably useful) sense susceptible to analysis
by mechanical means. Functions of this last kind are the object of
our investigation; when the above notions are made precise in § 1, they
are called "recursively approximate" functions.

In § 2 it is shown that uncountably many nonrecursive functions
are recursively approximable; in § 3, that uncountably many functions
are not recursively approximable.2

l A number-theoretic notion of approximation. Given any
function /, any partial function φ? and any sequence x0, xlf of
natural numbers, let "err (n)" denote the number of natural numbers
i < n such that f(xt) Φ φ(xt). If E is a real number and, for all
sufficiently large n, err (n)/n ^ E, then we say that φ approximates

Received December 5, 1962.
1 Cf [3].

2 An analogous notion of approximable function, involving finite sets of arguments
rather than sequences, is considered in [5], where a function is called "m-in-w-computable"
if there is an algorithm that produces at least m correct functional values for every
set of n arguments. It was shown that uncountably many functions are not m-in-n
computable for any m > 0. The existence of nonrecursive m-in-w-computable functions
with m > 0 was left an open question; an affirmative answer, however, was soon provided
by Dana Scott in an unpublished communication.

3 By "function" we mean, unless otherwise specified, "total singulary function" (in
the sense of [1] p. xxi). A "partial function" is any singulary function whose domain
is a subset of the natural numbers.
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/ with error E on the given sequence.
It may happen that, for every infinite nonrepeating recursive

enumeration x0, xlf ,δ there is a partial recursive function φ that
approximates / with error E on xo,-χl9 -.6 In this case we say that
/ is recursively approximable with error E. A function recursively
approximable with some error < 1 is called recursively approximable.

2. Recursively approximable functions. Are there recursively
approximable functions other than the recursive functions? The Myhill-
Friedberg notion of maximal set provides an affirmative answer through
Theorem 2.1.7 By Corollary 2.2 below, every recursion function /
recursively approximates the uncountably many functions which agree
with / on a maximal set.8 In fact, we establish a stronger result as
follows.

We consider an extension of the notion of maximal set. For
convenience, a set C is called cohesive if it is infinite and, for every
recursively enumerable set R, either RΠC or RΠC is finite. A set
is quasi-maximal if for some positive natural number m, its complement
is the union of m cohesive sets. Thus the maximal sets are those
quasi-maximal sets for which the number m can be taken as 1. Through
Theorem 2.1, the notion of quasi-maximal set provides a sufficient
condition that a function/ be recursively approximable. This condition
is that there exist a recursive function r that agrees on some quasi-
maximal set with /.

THEOREM 2.1. Let f be any function, r any recursive function,
Q any quasi-maximal set such that f and r agree on Q. Then r
recursively approximates f with arbitrary positive error on every
infinite nonrepeating recursive enumeration.

Proof. Assume that Q = Cx U U Cm where the C's are cohesive
sets. Let E be any positive real number and xQ, xlf any infinite
nonrepeating recursive enumeration. Choose a natural number p ^
(m + 1)1 E and, for each natural number j < p, let Xj = {x{ \ i = j mod p}.

4 In order to realize an approximating algorithm in the sense of the Introduction, it
would be necessary to require that <p be defined for all xι. It will be obvious, however,
that the current results would be unaffected by this additional requirement.

5 A "recursive enumeration" is any sequence x(0), x(l), ••• where x is a recursive
function.

6 Terminology regarding recursive functions and recursively enumerable sets is
essentially that of [3], However, "recursive" is used throughout for "general recursive,"
and the empty set is regarded as recursively enumerable.

7 A set M is maximal if (i) M is infinite and (ii) for every recursively enumerable
set Ry either Rf]M or RπM is finite. The existence of recursively enumerable maximal
sets is established in [2],

8 Functions r and / are said to agree on a set X if, for all xeX, r{x) = f{x).
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For each k (1 ^ k ^ m) we consider two cases.

Case 1. {xo,xlf

 m m}ΓiCk is finite. Lat qk be the number of its
members. Then the number of numbers i < n such that /(#») =£ ?*(#;)
and α?i e Cfc is ^qk.

Case 2. {#0, a?!, •} n Ck is infinite. Then for some j < pf Xά Π Ck

is infinite. Because Ck is cohesive and Xs is recursively enumerable,
XjΠCk is finite; let qk be the number of its members. Now {Xi\f(Xi) Φ
φi) and xt e CJcC f c = (X,-Π Ck) U (Jζ Π C*)cX,U (X, Π Ck). Therefore
the number of numbers i < n such that /(#{) =£ r ^ ) and x{ e Ck is
^ ((n - l)/p) + 1 + qk.

By hypothesis, if f(Xi) Φ r(Xi) then ̂  e Cx U U Cm. Hence err(t^) g
+ m + gx + + qm. Therefore

err(n)/n ^ m/p + (p(gΊ + + qm) + mp — m)/(np)

and, for all w ̂  P(QΊ + + qm) + mp]— m, eγr(n)ln ^ E.

COROLLARY 2.2. For every recursive function r, there are
uncountably many functions f such that r recursively approximates
f with arbitrary positive error on every infinite nonrepeating
recursive enumeration.

Proof. Given any recursive function r, choose any quasi-maximal
set Q. For each subset S of Q, let fs be the function such that
fs(x) = 1 — r(x) if x 6 S, fs(x) — r(x) otherwise. The functions fs, being
in one-to-one correspondence with the subsets of Q, are uncountable.

For brevity, we will call a function "maximal" if it is not recursive
and it agrees on some maximal set with some recursive function,
"quasi-maximal" if it is not recursive and it agrees on some quasi-
maximal set with some recursive function. In Theorem 2.1, the quasi-
maximal functions were shown to be recursively approximable.
By means of Theorems 2.5 and 2.6, we will show that there are
uncountably many quasi-maximal functions, and consequently uncoun-
tably many recursively approximable functions, that are not maximal.
For this purpose, let us define the rank of a quasi-maximal set Q to
be the minimum number m such that Q is the union of m cohesive
sets. Then define the rank of a quasi-maximal function f to be the
minimum number m such that / agrees on some quasi-maximal set of
rank m with some recursive function. Thus the maximal sets (functions)
are the quasi-maximal sets (functions) of rank 1.

LEMMA 2.3. If Clf Cm are cohesive sets, then every recursively
enumerable subset of Cx U U Cm is finite.



696 GENE F. ROSE AND JOSEPH S. ULLIAN

Proof. Assume that R is an infinite recursively enumerable subset
of CiU UCm. Then there is a recursive function r such that
r(0), r(l), enumerates R without repetition. Let Rj = {r(i)\i ~
j mod m + 1} (j — 0, , m). Then J?o, , Rm are m + 1 disjoint
infinite recursively enumerable subsets of d U U Cm. Hence at least
two distinct iϋ's, say R3 and Rk, have an infinite intersection with the
same C». Since RkaRjy it follows that CiΠRj and C» — JZy are infinite,
contrary to the fact that C{ is cohesive.

LEMMA 2.4. If Q and R are quasi-maximal sets and R — Q is
finite, then the rank of QS rank of R.

Proof. Let m be the rank of Q, n the rank of R. There are
cohesive sets A» * » Dn such that

(2.1) 5 = A U UA> .

Then

(2.2) Q = (A - 0) U U (A, "

Since Q is infinite and ϋ? — Q is finite, at least one D{ — Q is infinite.
We may assume without loss of generality that the infinite sets A — Q
are D1 - Q, , Dh - Q where 1 ̂  h ^ n. Hence from (2.2)

(2.3) Q - ((A - Q)ΌF)U ... u((A - Q)Uf)

where F is finite. For each i (1 ^ ΐ ^ fe), A — Q» being an infinite
subset of the cohesive set Dif is obviously cohesive, hence (A — Q)UF
is cohesive. Since Q has rank m, it follows from (2.3) that m ^ h ^ n.

THEOREM 2.5. For every natural number m > 1, there is a re-
cursively enumerable quasi-maximal set of rank m. Hence there are
infinitely many quasi-maximal sets that are not maximal.

Proof. Choose a recursively enumerable maximal set Qλ and let
e be a recursive function such that e(0), β(l), enumerates Qx without
repetition. Define by induction on m the sets Qm and Cm(m = 1,2, •)
thus.

(2.4) Cx - Qύ for all m > 1, Qm = β(Qm_2) and Cm - Qw_, - Qm .9

Clearly, each Qm is recursively enumerable. By induction on m we
establish the following properties of the Q's and C's. For all m grl,

(2.5) Qw

9 For any function / and set X, we denote the image of X under the mapping / by
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(2.6) Cw + 1 - e(Cm)

(2.7) Cm is cohesive;

(2.8) Q. = C1U U C W .

Basis. Let m = 1. Now Q2 = β(Q0 and Qx = e(JV) where JV is
the set of all natural numbers. QiC:N; therefore (2.5) holds. Next,
note that e is a one-to-one mapping. Hence C2 — e(N) — e(Qi) =
e(N — Qx) = β(d); i.e. (2.6) holds. Because Qλ is maximal,d is cohesive;
i.e. (2.7) holds. By (2.4), (2.8) holds.

Induction step. Let m > 1. By (2.4), Qm+1 = e(Qm) and Qm = e(Qm^1).
By induction hypothesis, Q w cQ w _ l e Therefore (2.5) holds. By (2.4),
Cm+1 = e(Qm^)-e(Qm) = e(Qm^^Qm) = e(Cmyf i.e. (2.6) holds. By
induction hypothesis Cm-λ is cohesive, hence infinite. Then by (2.6)
Cm is infinite. Let R be any recursively enumerable set. The set
{x\e(x)eR} (call it Rf) is recursively enumerable. In view of (2.6)
and the fact that e is one-to-one, CmΓ\R = e(Cm-Ύ Π i?') and Cm — R =
β(CTO_i — -β') Suppose that CmΓΊi? is infinite. Then C ^ Γ l i ? ' must be
infinite. Then, because Cm-X is cohesive, Cm^ •— R! is finite, and
consequently Cm — R is finite. Thus (2.7) holds. Finally, in view of
(2.5), Qm - ζ L - i U ( ζ L _ i - Qm) = Qm-iUCw. Hence by induction hy-
pothesis (2.8) holds.

Having established (2.5)-(2.8) we now show that, for all m > 1,
Qw has rank m. By (2.8) and (2.7), Qm ash rank ^ m . Let Dlf --,Dn

be any cohesive sets such that Qm = A U Uί>w. By (2.8) each C4

has an infinite intersection with at least one Dk. Moreover, if 1 g
i < j g m, Ci and Cj cannot both have an infinite intersection with
the same Dk. If they did, then by (2.8) C,ΠDk(zQiΠ A_and, by (2.4)
and (2.5), C. Π A c Q H Π A c Q . Π A ; then Q^ΠA and Qif]Dk would
both be infinite, contrary to the fact that Qt is recursively enumerable
and Dk is cohesive. Thus for each i between 1 and m there must be
a distinct k between 1 and n. Therefore n ^ m. We conclude that
Qm has rank m.

THEOREM 2.6. For every natural number m > 1, there are
uncountably many quasi-maximal functions of rank m. Hence there
are uncountably many quasi-maximal functions that are not maximal.

Proof. By Theorem 2.5 there is a recursively enumerable quasi-
maximal set Q of rank m. For each of the uncountably many subsets
S of Q let fs be the function such that
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|Ό if x e Q,

fs(x)= 1 itxeS,

[2 otherwise.

There are uncountably many functions f8 since they are in one-to-one
correspondence with the sets S. If f8 were recursive, then Q would
be the infinite recursively enumerable set {x\fs(x) Φ 0}, contrary to
Lemma 2.3. Hence each/δ is nonrecursive. Therefore, since fs agrees
on Q with the constant function 0, fs is a quasi-maximal function of
rank ^ m .

Moreover, consider any quasi-maximal set R and any recursive
function r such that f8 agrees on R with r. Now Q and {x\r(x) Φ 0}
are recursively enumerable and {x\r(x)Φθ}Γ\Qc:R. Hence {x|r(x)Φ0}(Ί
Q, being a recursively enumerable subset of R, is finite by Lemma 2.3.
Hence {x\r(x) Φ 0} - Q, which = {a?|r(a?) ^ 0} — ({x\r(x) Φ 0}ΠQ), is a
recursively enumerable subset of Q. Hence by Lemma 2.3 {x \ r(x) Φ 0} — Q,
is finite. Hence R — Q, which cz{x\r(x) Φ 0} — Q, is finite. Hence
by Lemma 2.4 iϋ has rank ^ m . Therefore /^ has rank m.

3 Functions that are not recursively approximable It will now
be shown that not every function is recursively approximable. That
is to say, there are functions / with the following property: there is
an infinite nonrepeating recursive enumeration x09 xlf such that,
for every real number E < 1 and every partial recursive function φ,
φ does not approximate / with error E on x0, xlt .

Let us call a function / constructively nonrecursive if there is a
recursive function g such that, for all natural numbers e, f(g(e)) Φ
{e}(g(e)).w In view of Theorems 3.1 and 3.2, the constructively
nonrecursive functions form an uncountably infinite subclass of the
functions that are not recursively approximable.

THEOREM 3.1. / / a function is constructively nonrecursive, then
it is not recursively approximable.

Proof. Let / be any constructively nonrecursive function and
g a recursive function such that, for all β,

(3.1) f(g(e)) Φ {e} (g(e)) .

First we will exhibit a recursive binary function c such that, for
all i and e,

10 For any n ^ 1 and any e, xι, , xn, "{e} (xίf , xn)" denotes the ambiguous value
φ(xi, -",Xn) of the partial recursive n-ary function φ whose Godel number is e. (Cf.
[3], p. 340.)
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(3.2) c(i, e) > i ,

(3.3) f(c(i, e)) Φ {e} ( φ , e)) .

For this purpose, let ψ be the partial recursive quaternary function
defined by

\(z)x if x ^ i , n

(3.4) ^(z, v _ , _ .
({β} (a?) otherwise.

Then there is a primitive recursive ternary function a such that

(3.5) {a(z, i, e)} (x) ~ ψ{z, i, e, x) ,12

Now for any natural numbers i and e, let z be the number IL^p/^. 1 3

Because a and g are completely defined, g{a{z, i, e)) is defined. Hence
either g(a(z, i, e)) g ΐ or g(a(z, i, e)) > i. But #(α(2, i, β)) cannot be
Si, for in that case

{a(z, i, e)} (g(a(z, i, e))) ~ [by (3.5)] ψ (z, i, e, g(a(z, i, β,)))

- [by (3.4)] (z)gia{Zιi>e)) ~f(g(a(z, i, e))) ,

contrary to (3.1). Hence g(a{z, i, ej) > i. Therefore μz(g(a{z, i, e)) > i)
is a recursive function of i and β. It now follows that (3.6) and (3.7)
define b and c as recursive binary functions.

(3.6) φ , e) = μz(g(a(z, i, e)) > i) ,

(3.7) φ , e) = g(a(b(i, e), i, e)) .

By (3.6) and (3,7), (3.2) holds. Now for any natural numbers i and
β, assume that / ( φ , e)) = {β} ( φ , e)). Then {e}(φ, e)) is defined and
f(g(a(b(i, e), i, β))) = [by (3.7)]/(φ, β)) = {β} ( φ , β)) = [by (3.2) and (3.4)]
f (b(i, e), i, e, c(i, e)) = [by (3.5)] {α(φ, e), i, e)}(φ, e)) = [by (3.7)]{α(6(i,β),
ί»β)}(flr(α(δ(i, e), i, e))), contrary to (3.1). Therefore (3.3) follows by
contradiction.

Next, define the primitive recursive functions d and e and the
recursive function x thus.

(3.8) d(i) = μj((j + 1)! > i)

(3.9) φ ) = cί(i) — (d(d(i)))l

(3.10) *«) = ° ί f * = ° '
c(x(i — 1), e{i)) otherwise.

By (3.2), α (O) < x{l) < •••, so t h a t x(0), x(l), ••• is an infinite non-
repeat ing recursive enumeration. We now show t h a t , for any real

11 For the notation (z)z, cf. [3], p. 230.
12 Cf. [3], §65, Theorem XXIII.
13 For the notation pj} cf. [3], p. 230.
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number E < 1 and any partial recursive function φ, φ does not ap-
proximate / with error E on x(Q), x(l), , thereby proving that /
is not recursively approximable. The proof is by contradiction. Thus,
assume that φ approximates / with error E on x(0), x(l), . Then
there is a natural number N such that

(3.11) for all n > N, err (n)/n g E.

Choose any Godel number t of φ and let & be a natural number >
max (N, t, 1/(1 - E)). Then for the (fc! + t + 1)! - (fc! + t)l natural
numbers i such that (fc! + t)l g i < (fc! + t + 1)!, e(i) = t; hence by
(3.10) and (3.3) f(x(i)) Φ {t}(x(i))m Therefore (fc! + t + 1)! > N and
err((fc! + ί+l)!)/(fc! + ί + l ) ! ^ l
contrary to (3.11).

For Theorem 3.2, we use the following notation from [4]. For
any natural number e, UW" denotes the set of all numbers y such
that, for some x, {e} (x) — y. A set P is productive if and only if
there is a partial recursive function ψ such that, for all β, if WeaP
then ψ(e)eP- We.

THEOREM 3.2. The representing function of any productive set
is constructively nonrecursive. Hence uncountably many functions
are not recursively approximable.

Proof. Given any productive set P, let / be the function such that

0 if x e P ,
(3.12) f ( x ) n Λ .

(1 otherwise.

Myhill has shown that there is a recursive function g such that, for
all natural numbers e,

(3.13) g(e) e (P - We) U (We - P) ."

Moreover there is a recursive function h such that, for all natural
numbers e,

(3Λ4) Wh(e) = {y\{e}(y) = 0 } .

(For example, we can take for h the primitive recursive function
Axμy(y ^ x&{e}(y) = 0). For the ^-notation, cf. [3], §65.) Now let
e be any natural number. By (3.12) f(g(h(e))) = 0 if and only if
g(h(β)) eP; hence by (3.13) if and only if g(h(e)) ί Wh{e); hence by (3.14)
if and only if {e} (g(h(e))) Φ 0. Thus g(h) is a recursive function such
that, for all e, f(g(h(e))) Φ {e} (g(h(e))). Therefore / is constructively

i4 Cf. [4], §3.153.
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nonrecursive.
It now follows from Theorem 3.1 that the representing functions

of productive sets are not recursively approximable. Moreover, by
[4], p. 47, there are uncountably many productive sets. Hence un-
countably many functions are not recursively approximable.

REMARK. The proof of Theorem 3.2 can readily be generalized to
show that a function / is constructively nonrecursive if there is a
recursively enumerable set A and a productive set P such that f(x) e A
if and only if xe P.
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COMBINATORIAL FUNCTIONS AND REGRESSIVE ISOLS

F. J. SANSONB

1. Introduction. It is assumed that the reader is familiar with
the notions: regressive function, regressive set, regressive isol, co-
simple isol, combinatorial function and its canonical extension. The
first four are defined in [2], the last two in [3]. Denote the set of
all numbers (nonnegative integers) by ε, the collection of all isols by
A, the collection of all regressive isols by AR and the collection of all
cosimple isols by Aλ. The following four propositions will be used.

, + x ίLet τ — pt and τ* = pt*, where tn and tt are regressive
Ifunctions. Then τ = τ* <==> tn ~ t* .

(2) B ^ A & AeAR => BeAR .

, o \ ίLet F(T) be the canonical extension to A of the recursive,
(.combinatorial function f(n). Then Te AR = > F(T) e AR .

(4) B ^ A & AeAx => BeAt.

The first three are Propositions 3, 9(b) and Theorem 3(a) of [2] re-
spectively. The fourth is Theorem 56(b) of [1].

DEFINITION. Let f(n) be a one-to-one function from ε into ε and
let TeAR- ε. Then

where tn is any regressive function ranging over any set in T.
Using (1) it is readily seen that φf is a well defined function from

AR — ε into A — ε. The main result of this paper is as follows: Let
f(n) be a strictly increasing, recursive, combinatorial function) let
F{X) be its canonical extension to A, and let TeAR — e; then
φf(F(T)) = T.

2 The operation φf.

PROPOSITION 1. Let f(ri) be a strictly increasing, recursive func-
tion and let Te AR — e. Then

Φf(T) g T and φf(T)eAR .

February 15, 1963. This paper was written while the author was a National Defense
Graduate Fellow at Rutgers University and is a portion of a thesis directed by Professor
J. C. E. Dekker to submitted as partial fulfillment of the requirements for the degree of
Doctor of Philosophy.
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// in addition TeAu then φf(T)e AR AX.

Proof. In view of (2) and (4), it suffices to show only that Φf(T) S
T. Let tn be a regressive function such that pt = r e T. Put a — pf
and suppose p(x) is a regressing function of tn. Define

p*(x) = (μy)[py+1(x) = py(x)] for xeδp .

Then p*(tn) = n and

ρtf a{xe δp* I p*(x) e a} ,

T — ρtf c: {xe Sp* | p*(x) ί }̂ .

Since α is recursive it follows that ptf is separable from τ — ptf.
Hence ^ ( T ) ^ Γ.

It is known (by an unpublished result of Dekker) that AR is
neither closed under addition nor under multiplication. We do, how-
ever, have some closure properties for isols of the type Φf{T), where
TeAR — ε and f(n) is a strictly increasing, recursive function.

PROPOSITION 2. Let f(n) and g(n) be strictly increasing, recursive
function and let Te AR — ε. Then

(a) φf(φg(T))eAΛ-ε,
(b) φf(T) φg(T)eAB-ε,
(c) φf(T) + φβ(T)eAB-ε.

Proof. In view of Proposition 1,

φf(φg(T)) ^ φg{T) =g T .

This implies (a). To verify (a) one could also observe that φf(φg{T)) =
ΦgfiT). Combining φf(T) ̂  T and φg(T) g T, we obtain by [1, Cor.
of Thm. 77]

However, T2eAR-s by (3). Hence (b) follows by (2). Finally, it is
readily seen that

ΦAT) + φg(T)^φf(T)-φg(T),

since φf(T) and φg(T) are ^ 2 (in fact, infinite). Thus (c) follows
from (2) and (b).

3 The main result* We first state and prove two lemmas which
might be of interest for their own sake. Let ft, pu - be the canoni-
cal enumeration of the class Q of all finite sets defined by
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„ ί(Vi, — ,Vk) where yl9 ,yk are the distinct numbers
~ tsuch that a? + 1 = 2^ + + 2V* .

We denote the cardinality of ρx by rx.

LEMMA 1. Let f(n) be any combinatorial function and let Cι be

the function from ε into ε such that f(n) == ΣΓ=oc;U )• Then

2 W - 1

f(n) = Σ Cr(x)
x=0

Proof. Since every n-element set has (v ) subsets of cardinality

i, we have

( 5 ) f(n) - card {i(&, y) | px c (0, 1, -, n - 1) & y < cr{x)} .

It follows from the definition of px that

ρx c (0, 1, , n - 1) —> x S 2° + 21 + + 2n~λ

•̂  tΛ/ ^ ^ 1 A. .

Combining this with (5) we obtain

f{n) = card {j(x, y)\x^2» - 1 & y< cr{x)} = Σ V ( * >

DEFINITION. Let a(n) be a one-to-one function from ε into ε.
Then

where ln0, 'Λ ,lnn is the sequence of zeros and ones such that

LEMMA 2. (Dekker) Lβί a(n) be a one-to-one function from ε into
ε with range a and let A — Req (a). Then a\n) is also a one-to-one
function from ε into ε. Moreover,

a\2n) = 2a^ , Paf(n) - a(pn) and pa' e 2A .

Finally, if a(n) is regressive, so is a'{ri).

Proof. It is clear that a\n) is a one-to-one function such that
a\2n) = 2α(w). We have ρa,{0) = p0 = o while a(ρ0) = α(o) = o; for w ^ 1

/>. - {i I 0 ^ i ^ n & lni - 1} .

Hence for every number n
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Pann) = M i ) 10 ̂  i ^ n & lni = 1}

= a{i 10 g i g n & lni = 1} = α(^) .

Thus, if w ranges over ε, pn ranges over the class Q of all finite sets,
Pa'i%) — a(Pn) over the class of all finite subsets of α. We conclude
that pa'e2A. Finally, assume that a(n) is a regressive function.
Using the three facts that

a\n + 1) = ln+1,0-2a™ + + l.+li.+1.2-< +» ,

a'(n) = ln0 2aW + . . . + lnn 2a^ ,

max {i I Zwi = 1} ̂  max {i | ln+1Λ = 1} ,

we infer that α'(w) is a regressive function.

THEOREM. Let f(n) be a strictly increasing, recursive combina-
torial function, let F(X) be its canonical extension to A and let
Te AR - ε. Then Φ,(F(T)) = T.

Proof. Let f(n) = Σ?= o Cdf) t>e ̂ e strictly increasing, recursive,
combinatorial function. Then cx > 0 since f(n) is strictly increasing,
and Ci is a recursive function of i, since /(w) is recursive. Let
r e TeΛR — ε and assume that tn is a regressive function ranging over
τ. Put g(n) = t'(w). By Lemma 2 we have pp(n) = t(ρn); thus, if n
assumes successively the values 0,1, 2, 3, 4, 5, 6, 7, , ρg{n) assumes
successively the "values"

Of (t0), (ίi), (ί 0, *l), &), (ίθ, ^ ) , (ίl, «,), (ί0, tl, *l),

We have by definition

F(Γ) = Eeq {j(χ, y)\pxατ & y< cr{x)} .

Since g(n) ranges without repetitions over {n\pnατ}, it follows that

(6) F ( T ) = R e q {j(g(x), y ) \ y < cr{x)) .

We shall use wn to denote the function which for 0,1, takes on
the values of the array

reading from the left to the right in each row and from the top row
down; it is understood that every row which starts with j(g(k)9 0) for
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some k with cr(k) = 0 is to be deleted. From the definitions of pk

and r(k) we see that

k e (2°, 2\ 2\ . . . ) _ φ) = 1 = > cr(Jfc) = d > 0 .

The function gr(w) = £'(τ&) is regressive by Lemma 2. Taking into
account that c{ is a recursive function, it readily follows that wn is
a regressive function. In view of (6) we have pwne F(T) it there-
fore suffices to prove that ρwfin) e T. By Lemma 1

hence

/(0) = c r ( 0 ) , / ( I ) = c r ( 0 ) + c r ( 1 ) , /(2) = c r ( 0 ) + c r { 1 ) + c r ( 2 ) + c r ( 8 ),

and

w/(θ, = ίto(l)» °) » w / ( 1 ) - i(flr(2), 0), , wAn) = j(g(2n), 0), - .

We conclude t h a t wf{n) = g{2n). However, by Lemma 2

g(2n) = ί'(2») ^ ί(w) .

Thus wf{n) ^ ίn and jOW/(n) e T. This completes the proof.
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ON LOCALLY MEROMORPHIC FUNCTIONS
WITH SINGLE-VALUED MODULI

LEO SARIO

1. A meromorphic function of bounded characteristic in a disk
is the quotient of two bounded analytic functions. This classical
theorem can be extended to open Riemann surfaces W as follows.
Consider the class MB of meromorphic functions w of bounded
characteristic on W, defined in terms of capacity functions on sub-
regions. Let L be the class of harmonic functions on W, regular except
for logarithmic singularities with integral coefficients. Then w e MB
if and only if log \w\ is the difference of two positive functions in L.
We shall construct these functions directly on W, without making use
of uniformization.

The proof offers no essential difficulties. If log \w\ is regular
at the singularity of the capacity functions, then the classical reasoning
carries over almost verbatim. In the general case we introduce the
extended class Me of locally meromorphic functions eu+iu*, ueL, with
single-valued moduli. This class seems to offer some interest in its
own right.

2. The class OMeB of Riemann surfaces not admitting noneonstant
MeB-ΐunctions coincides with the class Oσ of parabolic surfaces.
Regarding the subclass MB c MeB and the strict inclusion relations
OHB < OMB < OAB, we refer to the pioneering work on Lίndelofian
maps by M. Heins [2, 3] and M. Parreau [4], and the doctoral dis-
sertation of K. V. R. Rao [5].

§ 1. Definitions •

3. Let W be an arbitrary open Riemann surface. Given ζ e W
let Ω, ζ G Ω, be a relatively compact subregion of W whose boundary
βΩ consists of a finite number of analytic Jordan curves. The Green's
function on Ω with pole at ζ is denoted by gΩ{z, ζ). For ΩoczΩ we
have gΩo g gΩ in Ωo and l im^^ gΩ(z, ζ) either = co or else = the Green's
function g{z, ζ) of W. By definition, the class OG of parabolic Riemann
surfaces consists of those W on which no g(z, ζ) exists. An equivalent
definition of 0^ is that there are no noneonstant nonnegative super-
harmonic functions on W.

Received December 6, 1962. Sponsored by the U. S. Army Research Office (Durham),
Grant DA-ARO(D)-31-124~G40, University of California, Los Angeles.
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4. The capacity function pQ(zf ζ) on Ω with pole at ζ is defined
as the harmonic function with singularity

po(z, ζ) - log I z - ζ I -> 0

as z —> ζ and such that

Pχ?(z, 0 = &fl = const, on βΩ .

It is known [1] that kUQ ^ kΩ and the limit kβ = lim jfcβ is thus well-
defined. A necessary and sufficient condition for WeOG is kβ — oo.

5 Let M be the class of meromorphic functions w on W. The
proximity function of w is defined [7] as

1 Γ f

(1) m(Ω, w) = m(β, oo) = I log | w \ dpi .
2π ho

If /Sλ is the level line pΩ = h, —<*> <L h ^ kΩ, and w(ft, oo) signifies the
number of poles of w in Ωh: pΩ ^ h, counted with multiplicities, then
the counting function is defined as

(2) N(Ω, w) - N(Ω, oo)

S ka
(n(h, oo) — ^ ( - o o , co))dh + n{ — oo, oo)fcβ .

— oo

The characteristic function is, by definition,

T(Ω) = T(Ω, w) = m(Ω, w) + N(Ωy w) .

The function w has at ζ the Laurent expansion

(3) w(z) - cλ(z - Qλ + cλ+1(z - ζ ) λ + 1 + • ,

cλ ^ 0, and the Jensen formula reads [7, 8]

(4) T(Ω,w)=

6» We shall need a class Me more comprehensive than M. We
introduce:

DEFINITIONS. The class L consists of functions u on W, harmonic
except for logarithmic singularities λ* log \z — z{\ at zi} i = 1, 2, ,
tϋiίλ integral coefficients \. The subclass of nonnegative functions
in L will be denoted by LP.

The class Me is defined to consist of (multiple-valued) functions
of the form

(5) w = eu+iu* , ueL .
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The conjugate function u* has periods around Zι and along some
cycles in W. Every branch of w is locally meromorphic, the branches
differing by multiplicative constants c with | c | = 1. The modulus
I w I is single-valued throughout W.

The quantities m(Ω, w), N(Ω, w), T(Ω, w), and the Jensen formula
carry over to Me without modifications [7], We further introduce:

DEFINITION. The class MB (or MeB) consists of functions w in
M (or Me) with bounded characteristics,

(6) T(Ω) = 0(1) .

Explicitly, one requires the existence of a bound C < co inde-
pendent of Ω such that T(Ω) < C for all Ω cz W. That (6) is inde-
pendent of ζ will be a consequence of a decomposition theorem which
we proceed to establish.

§ 2 The decomposition theorem,

7. We continue considering arbitrary open Riemann surfaces W.

THEOREM. A necessary and sufficient condition for w e MeB on
W is that

(7) log \w\=u — v,

where u, v e LP.

The proof will be given in nos. 8-18. As a corollary we observe
that w e MB on W if and only if (7) holds.

8 First we shall discuss in nos. 8-11 the case w(ζ) = 0 or oo.
Suppose weMeB. We begin by showing that W$0Q. If w(ζ) =

co, then

T(Ω) ^ N(Ω, w) ^ n(-oo, oo)kΩ ^ kΩ .

From WeOG it would follow that ka—>co as Ω —• TFand consequently
T(Ω)-+coy a contradiction. We conclude that WίOQ. If w(ζ) = 0,
then in Jensen's formula

T(Ω,w) = T[Ω,—) + 0(1)
w

we have

TlΩ,—) ^ ( ,
w / V w
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and arrive at the same conclusion Wί OQ.
On the other hand, if condition (7) is true, the existence of

nonnegative superharmonic functions uf v implies W$ OG. Thus either
condition of the theorem gives the hyperbolicity of W, and we may
henceforth assume the existence of g{z, ζ) on W if w(ζ) = 0 or co.

9. The functions

(8) φ{z) = eWζ)+Wζ» f

(9) Wx{z) = W(z)φ(z)

belong to Me. We shall show:

LEMMA. A necessary and sufficient condition for w e MeB is
that wx e MeB.

Proof. By definition,

(10) T(Ω, φ) = N(Ω, φ) + m(Ω, φ) .

For λ > 0 we have trivially N(Ω, φ~Ύ) = 0, m(Ω, φ~x) = 0, hence
T{Ω, φ-1) = 0, and it follows from Jensen's formula that T(Ω, φ) —
0(1). If λ < 0, then N(Ω, φ) = m(Ω, φ) = 0, and T(Ω, φ) = 0, hence
T(Ω, φ-1) = 0(1). In both cases

(11) T(Ω, φ) = 0(1), T(Ω, φ-1) = 0(1) .

The inequalities

T(Ω, w) ^ Γ(β, wx) + T(Ω, φ-1) = T(Ω, wx) + 0(1) ,

T(Ω, wx) g T(Ω, w) + T(Ω, φ) = T(Ω, w) + 0(1)

yield

(12) T(Ω, w) = T(Ω, wx) + 0(1)

and the lemma follows.

10* The following intermediate result can now be established:

LEMMA. A necessary and sufficient condition for

(13) log I w I = u — v

with u, v G LP is that

(14) log \w1\=u1 — v1

with u19 vx e LP.
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Proof. We know that

(15) log I w11 = log I w I + Xg = log | w | + (nQ — nj)g ,

where n0, n^ are the multiplicities of the zero or pole of w(z) at ζ. If
(13) is true, then

(16) Zog I wx I = (u + nog) — (v + Wooflr)

and (14) follows. Conversely, (14) implies

(17) log I w I = (u, + n^g) - (v, + nog) .

This proves the lemma.

11 We conclude that Theorem 7 will be proved for w with
w(ζ) = 0 or co if we establish it for wx. Since w^ζ) Φ 0, oo, the
proof for wx will also apply to w with this property. Explicitly, we
are to show that wλ e MeB if and only if log | w1 \ =u1 — vlf ulf vx e LP.

12. Let p£Z be the capacity function in Ω with pole at z. For
a harmonic function h on Ω it is known [7] that

(18) h(z) = - ί - ί h dp% .

Denote by aM bv the zeros and poles of w in W. Those in W — ζ
are the zeros and poles of w1 in W. Suppose first there is no aμ, bv

on βQ. Then the function

(19) h(z) = log I wx(z) I + Σ 9o(z9 αμ) - Σ flr^, &v)

is harmonic on £?. Throughout this paper the zeros and poles are
counted with their multiplicities. We set

(20)

(21)

and

(22)

Then

(23)

/y» (/y sijj \ —

uΩ(z, wj =

log 1 wλ{z) | =

1
2π

Σ_.

xΩ{z

uΩ(z

• log wx | dptz ,

, w,) + ya{z, Wl) .

, Wi) — UO(Z, Wιl)

Since all terms are continuous in aμf bv, the equation remains
valid if there are zeros or poles of w on βΩ.
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We observe that

(24) xo(ζ, wx) = m(Ω, wx) ,

(25) yo(ζ, wx) = N(Ω, wx) .

Here we shall only make use of the consequence

ί26) uo(ζ, wx) = T(Ω, wx) .

13* We next show:

LEMMA. For ΩQaΩ,

(Φ7\ 01 (% fit) \ <C OL (% 01) \

/Ό7\' oi (v on—^~\ "^ oi i'Φ on—^\

Proof. By (23),

(28) log I W&) I g ua(z, w,)

for every Ω. It follows that

χo(Z w)£-±-\ Ua(t W

because this difference is regular harmonic in Ωo. We have reached
statement (27),

%φ, ^1) + y0o(zf wx) ^ uo(z, wx) ,

and inequality (27)' follows in the same fashion.

14 From (26) and (27) we infer that T(Ω, wλ) increases with
Ω. We can set

(29) T(W, wx) = lim T(Ω, wx)
Ω-*W

and use alternatively the notations T(Ω) = 0(1) and T(W) < 00.

15 The convergence of uΩ can now be established:

LEMMA. // T(W, wx)< 00, then the functions

(30) u(z, wx) — lim uo(z, wx) ,
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(30) u(z, W[x) = lim uΩ(z, wr1)

are positive harmonic on W except for logarithmic poles of u(z> w^}
at the bve W — ζ and those of u(z, w^1) at the a^e W — ζ.

Proof, By Harnack's principle the limit in (30) is either identi-
cally infinite or else harmonic on W — {bv}. That the latter alterna-
tive occurs is a consequence of

limuΩ(ζ, wx) = T(W, wx) .
ΩWΩ-+W

The statement for uΩ(z, wΐ1) follows similarly from uQ(ζf wΐ1) =
T(Ω, wΐ1) = T(Ω, wj + 0(1).

16. On combining the lemma with (23) we see that w1 e MeB
has the asserted representation

(31) log I wλ(z) I = u(z, wλ) - u(zf wτι)

with the ^-functions in LP. It remains to establish the converse.

17. Suppose

(32) log I wx(z) I = ux{z) — vx(z)

where uu vt e LP. The positive logarithmic poles of uΩ(z, wλ) are those

of log I wλ(z) I in Ω, hence among those of ux(z). Consequently uλ(z) —

uΩ(z, wj is superharmonic in Ω and its minimum on Ω is reached on

βΩ, where uL(z) — uΩ(z, w^ — ux(z) — log | wλ(z) | ^ 0. One infers that

uλ(z) ^ uΩ(z, wλ) in β. At ζ this means

(33) T(Ω, wλ) - uo(ζ, wx) ̂  11,(0 .

If uλ{ζ) < co, the proof is complete.

18. If ux{ζ) = oo, then

(34) u^z) + λx log I z - ζ I

is harmonic at ζ for some positive integer λlβ We set

(35) w, = wre-^'+w e Me ,

where g — g(z, ζ), and obtain

(36) log I w21 = log I w11 - λ ^ = (ux — λ^) — vx .

The function ux — λ^^ with gΩ — 9Ω(ZJ ζ) is superharmonic on Ω, hence
its minimum on Ω is taken on βΩ, where
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(37) ux - \g0 = uλ ^ 0

From ux ^ XλgΩ on Ω it follows that

(38) ux — \g = lim (^ — λ

on W. On setting

(39) u2 = Mi — λ ^ , v, =

one gets

(40) log I w21 = u 2 — v2

with w2, i;a

The positive logarithmic poles of uo(z, w2) are those of log | w21
on Ω, hence among those of u2. The minimum of the superharmonic
function u2(z) — uΩ(z, w2) on Ω is taken on βΩy where it is

+
min (u2 — log | w21) ^ 0 .

One infers that

(41) T(0, wa) - uo(ζ, w2) S u2{ζ) < co ,

that is, T(Ω, w2) = 0(1). The reasoning leading to (12) yields

(42) T(Ω, wλ) = T{Ω, w2) + 0(1) ,

and consequently T{Ω, w±) = 0(1).

We have shown that (32) implies T( W, wx) < α>. The proof of
Theorem 7 is complete.

19 As an immediate consequence we see that the property
T(Ω, w) ~ 0(1) and thus the class MeB is independent of ζ.

§ 3 Extremal decompositions,

20. Consider an arbitrary we Me. In contrast with no. 12 we
now make no restrictive assumptions on w(ζ) and form

w
1 Γ +

(43) xo(z, W) = log
2π ha

(44) yo(z, w) = Σ ί/i?(«, W ,
ί>v€i2

(45) wβ(«, w) = a?fl(j2, w) + yo(z, w) .

It is seen as in no. 13 that uΩ increases with Ω and that
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(46) u(z, w) = lim uΩ(z, w)

is either identically infinite or else positive harmonic on W except
for logarithmic poles 6V. The same is true of

(47) u(z, w~τ) — lim uΩ(z, w~τ)
Ω-*W

with singularities αμ.
The functions (46) and (47) will now be shown to be extremal

in all decompositions (7):

THEOREM. If there is a decomposition

(48) log I w(z) I = ux(z) — u.2(z)

with uu u2 e LP, then also

(49) log I w(z) I = u(z, w) — u(z, w~τ)

and

(50) u{z, w) tί ux(z)

u(z, w~λ) g u2(z) .

Proof. One observes that the positive logarithmic poles of
uo(z, w) are those of log | w(z) | in Ω, hence among those of ux{z) in
Ω. The superharmonic function ux(z) — uo(z, w) in Ω dominates

+
min (uτ(z) — log | w(z) |) ^ 0

βQ

and we find that u^z) — u(z, w) — MmQ^u^z) — uβ(z, w)) ^ 0 in W.
Similarly, the superharmonic function u2(z) — uΩ(z, w~λ) ^ 0 on fl, and
u2(z) ^ u(z, w-1) on W. By virtue of Harnack's principle, equality
(49) then follows on letting Ω —+ W in

(51) log i w(z) I = uΩ{z, W) — uo(z, W~Ύ) .

21 The extremal functions u(z, w), u(z, w1) can in turn be
decomposed:

THEOREM. A function w on W belongs to MeB if and only if

(52) log I w I = (x(z, w) + y(z, w)) - (x(z, w~λ) + y(z9 w~x)) ,

where the functions x ^ 0 are regular harmonic and the function®
y ^ 0 have the representations
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y(z, w-1) =

the sums are extended over all poles 6V and all zeros αμ of w
on W respectively, each counted with its multiplicity.

22. Suppose indeed that w e MeB. It is evident from the maxi-
mum principle that

(54) yΰQ(z, w) g yo(z, w)

for β o c β . We know that

(55) log I w I = ux - u2,

uu u2 e LP, and the superharmonic function ux{z) — yΩ(z, w) on Ω
cannot exceed m i n ^ ^ ^ 0. Hence yΩ(z, w) <* ux{z) on Ω and, by
Harnack's principle,

(56) y(z, w) = lim yΩ(z, w)

is positive harmonic on W except for logarithmic poles bv. Analogous
reasoning shows that

(57) y(z, w1) = lim yΩ(z, w~x)
Ω-+W

is positive harmonic on W — {aμ}.

23. To prove (53) we must show that

(58) l imΣΛ>(*A) = Σ 0 ( * Λ )

and similarly for Σ g(z, αμ). First,

(59) Σ go(*, K) ^ Σ g(z, K) ^ Σ g(*> K),
bβΩ by,βΩ b^βW

and we have

(60) Him Σ ft>(s, W ^ Σ »(«, 6v) .

Second, for ΩoaΩ,

(61) Σ g(*f δv) = lim Σ ^ ( ^ , δv) g lim
byeΩQ Ω-*Wby€ΩQ ~Z

and a fortiori

(62) Σ g(z, 6v) = lim Σ ff(«, &v) ^ lim Σ ^ ( ^ , 6V) .
bew Ω0-+wbyeΩ0 -Q^wb^Ω
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Statement (58) follows.

24. The convergence of xΩ(zf w) is obtained at once from

(63) xΩ(zf w) = uΩ(z, w) - yΩ(z, w) ,

and the limiting function is

(64) x(z, w) = u(z, w) — y(z, w) .

The limit x(z9 w1) of xΩ(z, w~λ) is obtained in the same way. Both
limits are obviously positive and regular harmonic on W.

Necessity of (52) for w e MeB has thus been established. Suf-
ficiency is a corollary of the main Theorem 7.

§ 4. Consequences.

25. If only the #-terms in (52) are considered, the following
corollary of Theorem 21 is obtained:

THEOREM. If we MeB on Wy then

(65) lim \ \\og\w\\dpt < o^

for any ζ.

Here pΩ signifies, as before, the capaity function on Ω with
pole at ζ. For the proof we have

(66) ( (log I w II dpi = ί log I w | dpi + ί log — dpi
JβΩ Jβa JβQ W

= 2π(xΩ(ζ, w) + xΩ(ζ, w-1)) ,

and this quantity tends to

(67) 2π(x(ζ, w) + x(ζ, w1)) < oβ .

The limit (65) thus exists.

26. A consideration of the y'-terms in (52) gives:

THEOREM. Suppose w e MeB. Then the sum Σg(z, zj, with zi

ranging over all poles and zeros of w, is harmonic on W — {αμ} —

In fact,
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(68) Σ »(*,«<) = Km Σ </(*,«<)
GW ΩW ΩΩ->W

aμ€W byeW

27. For a sufficient condition the first terms of both x- and y-
parts in (52) must be taken into account:

THEOREM. / / for some ζ e W

(69) j log I w I dpS = 0(1)

and

(70) & Σ/(z, δ v ) < oo in W - {6V} ,

then w e MeB and hence

(71) limί \log\w\\dpS < «

(72) . ? / ^ α^ < ^ °̂  ^ - Kl

as well.

Indeed, the characteristic

T(Ω) = wΛ(ζ, w) = α?Λ(ζ, w) -

1 f +

= —— log I w I dpt
2ττ JβΛ o v ^ w

is 0(1) if (69), (70) hold. Properties (71), (72) then follow from
w G MeB.

Another sufficient condition for w e MeB is, of course, that

\ log I w'11 dpo is bounded and Σg(ζ, aμ) < oo in W — {aμ}.
JβΩ

28 For "entire" functions in MeB the conditions simplify. Let
EeB be the class of such functions, characterized by w(z) Φ oo on W.

THEOREM. A necessary and sufficient condition for weEeB on
W is that

(73) ( log I w I dp* = 0(1) ,
JβQ
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The proof is evident.

29, Consider the class H of regular harmonic functions h on W
+

and let HP be the subclass of nonnegative functions. Set h =
max (0, h).

THEOREM. A harmonic function h on W has a decomposition

(74) h = uL — u, , ul9 u2 e HP

if and only if, for some ζ,

(75) f h dpi - 0(1) ,

or, equivalently,

(76) lim \ \h\ dpi < oo .
Ω-+W JβQ

Proof. The multiple-valued function w = eh+ih* is in Me, and
w Φ 0, oo on TF". If (74) is given, then log | w \ = uλ — u2 and ^ e ikfeβ.
This implies

Γ Γ
lim \ I log I w 11 dpj = lim \ \h\ dp% < oo

Γ 4

and consequently \ fe^ί = 0(1). Conversely, suppose the latter con-

dition holds,

ί log I w I dpi = 0(1) .
Jβ.Q

Then w e MeB and

h = log | ^ | = x(z, w) — x(z, w^1) ,

the ?/-terms vanishing because of the absence of zeros and poles of w.
It is known that functions u harmonic in the interior W of a

compact bordered Riemann surface and with property (76) have a
Poisson-Stieltjes representation (e.g., Rodin [6]). For further in-
teresting results see Rao [5].

30. It is clear that theorems on log | w \ can also be expressed
directly in terms of \w\. Theorem 7, e.g., takes the following form:

THEOREM, W eMeB if and only if
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(77)

where η e MeB and \ η | < 1 on W.

Proof. Suppose w e MeB9 hence

(78) log I w I = u(z, w) — u(z, w~x) ,

u e LP. Set

(79) Ύ]{z, w) = exp [—u(z, w~x) — ίu(z, w~ψ] ,

and (77) follows. Conversely, if (77) is given, then

(80) log I w I = log \η(z, w) | - log | η(z, w~λ) \

is a difference of two functions in LP, and we have w e MeB.

31 The counterpart of Theorem 21 is as follows:

THEOREM, W G MeB if and only if

φ(z, W)ψ(z, W)
(81) I w

φ(z, W~1)ψ(z1 W~ι)

where φ, ψ e MeB and φ Φ 0 on W, \ φ \ < 1, | ψ | < 1.

If w e MeB> choose

<P(z, w) = exp [- x(z, w-1) - ίx(z, w~ψ] ,

φ(z, w) = exp [— y(z, w1) — iy(z, w~ψ] ,

and we have (81). Conversely, (81) gives log | w | = ux — u2 with uu

u2 € LP, hence w e MeB.

32. We introduce the classes OMB and OMβB of Riemann surfaces
on which there are no nonconstant functions in MB and MeB re-
spectively. Similarly, let OEB and OEeB be the subclasses determined
by entire functions w(z) Φ oo on W in MB and MeB. The problem
here is to arrange these four classes in the general classification
scheme of Riemann surfaces [1],

The inclusion relations

OMφBc:OMBczOBB,

OMeBc:OEeBczOEB

are immediately verified.



ON LOCALLY MEROMORPHIC FUNCTIONS 723

33 The smallest class in (83) is easily identified:

THEOREM. All functions in MeB on W reduce to constants if
and only if W is parabolic,

(84) OG = OMeB .

Proof. If W& OQy there is a Green's function g{z, ζ), and

(85) w = e~g-ig* e MeB .

In fact, g is bounded above in any W — Ω, hence m(Ω, w) — 0(1),
and N(Ω, w) = 0 gives T(Ω) = 0(1). Conversely, if there is a non-
constant w e MeB on W, then log | w \ = ^ — w2 where at least one
Ui e LP is nonconstant superharmonic. This means that TF^O^. The
same proof gives 0G = 0EeB.

34* By the preceding theorem, every ikfe-function on a parabolic
TFhas unbounded characteristic. Even more can be said of M-ΐunctions
on the larger class 0MB by comparing T(Ω) with kΩ (no. 4):

THEOREM. On WeOMB, the characteristic T{Ω) of any weM
tends so rapidly to infinity that

(86) limlim ^ i .
ir^w kΩ

Proof. Let w(ζ) = a. The counting function of w for a is, by
denfinition,

S kQ
(n(hf a) — n( — co, a))dh + n(— c», a)kΩ ,

— oo

where n(h, a) is the number of α-points of w in the set Ωh: pΩ ^ h ^
fcβ. We obtain from the first fundamental theorem [7] that

(87) T(Ω) + 0(1) ̂  iV(β, α) ^ rc(- oo, α)fcΛ ,

and (86) follows.
Thus (86) is obviously a property of every we M, w $ MB, on

every W.

35* We also observe:

THEOREM. A function weM on WeOMB cannot omit a set of
values of positive capacity.
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More accurately, the counting function N(Ω, a) of w e M on OMB

is unbounded on any set E of positive capacity. To see this we dis-

tribute mass dμ(a) > 0 at a e Ey with I dμ = 1, and integrate

Jensen's formula

(88) log I MO - α | = — ( log\w-a\dpξ + N(Ω, oo) - iV(β, α)

(w(ζ) =£ oo) over E with respect to dμ(a). We obtain Frostman's
formula on W:

(89) JV(fl, oo) - _L \ u(w)dpΐ = ( JV(β, α)dμ(α) - w(«;(C)) ,

where u(w) = log \w — α |~J dμ(a). For equilibrium distribution dμ
JB +

it is known from the classical theory that u(w) — — log | w \ + 0(1),

and a fortiori 1 u(w)dpt= — 2πm(Ω, oo) + 0(1), where 0(1) depends

on E only. Substitution into (89) gives

(90) T(Ω) - ( N(Ω, a)dβ{a) + 0(1).

This proves our assertion.

36, A comprehensive study of the role played by 0MB m the
classification theory of Riemann surfaces is contained in the doctoral
dissertation of K. V. R. Rao [5].
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SEMIGROUPS AND THEIR SUBSEMIGROUP LATTICES

TAKAYUKI TAMURA

1. Introduction. Let S be a semigroup of order at least 2, and
L(S) be the system of all subsemigroups of S. Generally L(S), includ-
ing the empty subset, is a lattice with respect to inclusion. L(S) is
called the subsemigroup lattice of S. A semigroup S contains at least
one nonempty subsemigroup besides S itself. In the previous paper
[4], as the first step towards the investigation of the structure of S
with a given type of L(S), we determined all the /'-semigroups,1 namely,
the semigroups S's in which L(S)'s are chains. In the present paper
we shall define Γ*-semigroups as generalization of Γ-semigroups and
shall obtain all the types of /^-semigroups except for infinite simple
Γ* -groups.

Since all the semigroups of order 2 are Γ* -semigroups, we shall
treat non-trivial /^-semigroups, namely, those of order Ξ> 3 in the
discussion below. First, in §2 we shall prove that Γ*-semigroups of
order ^ 3 are unipotent, i.e., having a unique idempotent, and that
they are periodic; and hence a /"^-semigroup is determined by a group
and a ^-semigroup, i.e., a unipotent semigroup with zero. Accordingly,
in §3 we shall determine all the types of Γ* -^-semigroups which will
have to be of order <5; in §4 we shall treat solvable Γ*-groups and
prove that finite /^*-groups or non-simple /""-groups are solvable;
finally in § 5, unipotent Γ*-semigroups which are neither groups nor
Z-semigroups will be discussed. It is interesting that there are no
infinite unipotent Z1*-semigroups except groups.

For convenience, the results from the paper [4] are stated as
follows:

LEMMA 1.1. A semigroup is a Γ-semigroup if and only if it has
one of the following types.2 Except for (1.3) they are all cyclic semi-
groups, i.e., semigroups generated by an element d. We show defining
relations below.

(1.1) Z-semigroups:

(1.1.1) d2 = dz {order 2)

(1.1.2) d* = dA {order 3)

Received February 21, 1962, and in revised form February 23, 1963. This paper was
delivered in the meeting of the American Mathematical Society in Seattle in June, 1961;
and the rapid report was published in [7].

1 The author called them F-monoids in [4].
2 As the trivial case, a semigroup of order 1 is also regarded as a .Γ-semigroup. This

remark will be needed for the definition of a Γ*-semigroup.

725
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(1.2) Cyclic groups G(pm) of a prime power order: d = dpm+1

(1.3) Quasicyclic groups [1]: G(p°°), i.e.,

where Q(p) c G(p2) c c G(pk) c , p being a prime.
(1.4) Unipotent semigroups of order n, the kernel (the least ideal)

of which is a group G(pm):

(1.4.1)

(1.4.2)

(1.4.2.1)

(1.4.2.2)

2.

if P = 2

if PΦ2

Prel iminar ies .

d2 =

d2 =

d3 =

d'-' +ί

d*m+2

(order

(order

(order

n

n

n

= 2W H

= pm -

h i )

h i )

h2)

DEFINITION. A semigroup S is called a /^-semigroup if every
subsemigroup different from S is a /^-semigroup.

S is a /""'-semigroup if and only if the subsemigroup lattice L(S)
is a lattice satisfying

(2.1) Any subset which can tains the greatest element 1 is a sub-
semilattice with respect to join, equivalently to

(2.1') Let x, y be any elements of a lattice. Then

χ \ j y = xoryorl.

Notation. If Xand F a r e subsets of S, X\ Y means either l £ 7
or 1 3 Y;X\\Y means that X and Y are incomparable, that is,
neither is contained in the other. ((X, Y, •••)) denotes the subsemi-
group generated by X, Y, . In particular, ((α?)) denotes the sub-
semigroup generated by an element x, {{x, y)) the subsemigroup gener-
ated by elements x and y, while {xl9 x2, •••} is the set composed of

Xlt %2i ' * * .

S is a Γ* -semigroup if and only if any two subsemigroups A and
B satisfy the following condition: A\\B implies S = ((A, B)). Of
course a Γ-semigroup is a Γ*-semigroup. Since the homomorphic
image of a F-semigroup is also a /"-semigroup, we get easily

LEMMA 2.1. A homomorphic image of a Γ*-semigroup is a Γ*-
semigroup.

LEMMA 2.2. A Γ*-semigroup is periodic.

Proof. Suppose there is an element x of infinite order. S con-
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tains an infinite cyclic subsemigroup [xl\ i = 1, 2, •}. Hence we can
consider a proper subsemigroup3 T of S.

Γ = {&«; i = 1, 2, ••-}'

which contains two incomparable subsemigroups Tx and T2:

Tx = {α«; ΐ = 1, 2f •} , T2 = {a?M; ΐ = 1, 2, -} .

This contradicts the assumption of S.
By Lemma 2.2, we have seen that a /"*-semigroup has at least

one idempotent. However, we have

THEOREM 2.1. A Γ*-semigroup of order >2 is unipotent.

Proof. Suppose that a /^-semigroup S of order >2 contains at
least two idempotents, say, e, /. First, since β is a right identity
of Se, and / is a left identity of fS, we see easily that if Se = fS,
then e = /. Second, we shall say that either both of Se and Sf or
both of eS and /S are proper subsemigroups. Suppose either of Se
and Sf is equal to S, say, Se = S. Then, by the above fact, fSczS,
and so we have to show eS c S. Let us assume Se — eS = S. There
is a proper subsemigroup {β, /} of order 2 because ef = fe — f; but
{e, /} is not a /"-semigroup since e and / are both idempotents. This
is a contradiction. Therefore eSczS.

Next, assume that both eS and /S are proper subsemigroups of
S. Since eS and /S are /"-semigroups with left identities, they are
groups by Lemma 1.1. We shall prove that {e,f} is a proper sub-
semigroup which is not a /"-semigroup, and then the contradiction
will be derived. For proof, the idempotency of ef and fe is shown
as follows:

(ef)(ef) = (efe)f = (ef)f = e(ff) - ef

(fe)(fe) - (fef)β = (fe)e - f(ee) = fe

because e and / are two-sided identities of the groups eS and fS res-
pectively. Since efeeS and feefS, we have

whence {e, /} is a subsemigroup. We can have the same result, when
Se c S and Sfd S. Thus the proof of the theorem has been completed.

LEMMA 2.3. The index of an element a of a Γ*-semigroup S
cannot exceed 3.

3 By "a proper subsemigroup ϊ 1 of S" we mean "a subsemigroup T which is differ-
ent from S."
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Proof. Let a have index greater than 1. Then ((α)) — {α} is a
/"-semigroup, so ((α2)) | ((α3)). Hence there is a positive integer n such
that either

a2 = adn or α3 = a2n .

This shows that a has index 2 or 3.

3. Γ^-Z-Semigroups* In this section we shall determine the types
of /^-Z-semigroups, i.e., unipotent /^-semigroup with zero 0.

Let S be a /7*-^-semigroup with 0. Since S is periodic, every
element of S is nilpotent, that is, some power of the element is 0.
By Lemma 2.3,

x* = 0 for all x e S .

LEMMA 3.1. x — xy implies x — 0; x — yx implies x — 0.

Proof, x = xy ~ xy2 = xys = Q; the proof of the second part is
obtained in a similar way.

LEMMA 3.2. If x2 = 0, £foew xy = yx = 0 for all y.

Proof. We may assume x Φ 0, let y Φ 0. If ((^)) | ((a?a/)), ajy = 0
because of Lemma 3.1. If ((a?)) || ((ί»2/)), then S = ((x, xy)) and so y —
α;̂  for some u.

Xy — χ2u = 0 .

The proof of yx = 0 is similar.

To determine the types of Γ^-Z-semigroups, we consider the possi-
ble three cases:

Case I. x2 = 0 for all a? ̂  0.

Case II. There exists only one nonzero element x such that x* =
0, #2 =£ 0.

Case III. There exist at least two nonzero elements x and y such
that #3 = 0, x2 φ 0, τ/3 = 0, y2 Φ 0.

THEOREM 3.1. S is a non-trivial Γ*-Z-semigroup if and only if
S is isomorphic or anti-isomorphic to one of the following:

Case I. S — {0, α, 6} where xy — 0 for all x,y e S.
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Case II. S = {0, α, α2} wfoere α3 = 0. This is a I"-semigroup which
is isomorphic to (1.1.2).

Case III. S — {0, α, δ, c} where a2 = b2 = c, a2x = xa2 = 0 for all
xeS.

Subcase ΠIj ab = ba = c
Subcase III2 αδ = c, δα = 0
Subcase IΠ3 αδ = δα = 0

Proo/.

I. Let a and δ be distinct nonzero elements of S. Since
((&)) II ((&)), S = ((α, δ)). By Lemma 3.2, we have αδ = δα = 0. Hence

S = ((α, δ)) - {0, α, δ} .

Case II. Let a be an element with index 3. Suppose that there
is beS — ((α)). In the present case we know δ2 = 0. By Lemma 3.2,
ab = ba = 0, whence A — {0, α2, δ} is a subsemigroup which does not
contain α, and hence A is a /"-semigroup. On the other hand, since
δ Φ α2, we have ((α2)) || ((δ)). It is impossible in a /^-semigroup S.
Therefore S = ((α)).

Case III. Let a and δ be distinct nonzero elements, both of which
have index 3. Since (α2)2 = (δ2)2 = 0, Lemma 3.2 gives us

(3.1) α2δ = δα2 = δ2α = αδ2 = 0 and so α2δ2 = δ2α2 - 0 .

Using (3.1) and Lemma 3.2 repeatedly, since (αδα)2 = aba2ba = 0, we
have

(3.2)

and hence

(3.3)

Similarly we get

(3.3')

(aby = (aba)b

aba — 0 .

bob = 0 .

Now we have two subsemigroups T — ((α2, δ2)) and U — ((ab, a2)):

T=((a\b2)) = {0,a\b2}$a

where we see a Φ δ2, otherwise, a — b2 would imply α2 = 0; also

U = ((αδ, α2)) = {0, αδ, α2} ί δ .



730 TAKAYUKI TAMURA

Accordingly both T and U are Γ-semigroups and so

((α2))|((δ2)) and ((ab)) | ((α2)) .

The first implies (3.4); the second implies (3.5)

(3.4) α2 = δ2

(3.5) αδ = α2 or 0 .

Similarly we have

(3.5') ba = a2 or 0 .

Clearly ((α))|| ((&)). By (3.1) through (3.5'),

S = ((α, b)) = {0, a, b, α2}

which consists of exactly four elements. Thus we have obtained the
three types for Case III. It is easy to show that the systems thus
obtained are Γ^-ϋΓ-semigroups.

4 /^-groups* By Lemma 2.2, a group G is a F*-semigroup if
and only if it is a F*-group, i.e, every proper gubgroup of G is a
F-group. By Lemma 1.1, every F-group is of type G(pk),k ^ oo. In
this chapter we determine all solvable Γ*-groups. We also show that
every finite /""-group is solvable. The question whether infinite simple
/^-groups can exist remains open.

LEMMA 4.1. Let G be a non-abelian solvable Γ*-group which is
not also a Γ-group. Then G contains a proper normal subgroup
N Φ 1 and an element a not in N, such that

(4.1) JVΊ| ((α)), so that G - ((N, a))

(4.2) ag e N for a prime number q .

Proof. Since G is solvable, it contains a proper normal subgroup
N such that G/N is abelian. NΦl since G is not abelian. Since N
is a proper subgroup of (?, it is a /'-group. Since G is not itself a
jΓ-group, there exist a and b in G such that ((a)) || ((&)), and then we
have G = ((α,δ)). If ΛΊI ((&)), then (4.1) holds with b instead of
a. To prove (4.1) suppose N\\((b)). If NΏ((b)), then N£((a))t

since N is a Γ-group; and ((a)) ||((δ)), and N£((a)) since otherwise
((&)) S 2V S ((α)). Hence iSΓ||((α)) in this case. If i V s ((&)), then,
since G/iSΓ is abelian, α&cr^-16 ΛΓ S ((6)), so α&or1 e ((δ))δ S ((&)). Since
G ~ ((α, 6)), we conclude that Nr = ((&)) is a normal subgroup of (?,
and (4.1) holds with N' instead of N. Hence N and a exist such
that (4.1) holds. Let k be the least positive integer such that ak e N9
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and let k = k!q with q a prime. Let ar = ak\ Then (4.1) and (4.2)
hold with α' instead of α.

THEOREM 4.1. Let G be a solvable Γ*-group which is not a Γ-
group. Then one of the following holds:

(4.3) G is a group of order pq, p and q primes excluding the
cyclic group of order p2.

(4.4) G is the quaternion group of order 8.

Proof. First let us take the case G abelian. If G were directly
indecomposable, it would be isomorphic with G(pk) for some k ^ co
(cf. Theorem 10, p. 22, [2]), and so would be a Γ-group. Hence G is
directly decomposable: G = Gx x G2 where G1 Φ 1, G2 Φ 1. Let αt be
an element of G{ of prime order p{ (i — 1,2). Then ((ax))\\(a2)), so
G = ((a19 α2)) - ((αO) x ((α2)). Thus G has type (4.3).

Let G be non-abelian. By Lemma 4.1, G contains a proper normal
subgroup NΦ 1, and an element α not in iSΓ such that N\\((a)) and
aq e N for some prime #. Since AT is a proper subgroup of (?, it is
isomorphic with G{pk) for some prime p and some k ^ co. Hence α9

has prime power order pn, say.
If # Φ P, then ĉ  = apn & N, and αf = 1. If b is any element of

N of order p, we have ((α^) || ((&)) and hence G = ((al9b)). Since
a^aΐ1 S Af and every subgroup of JV is characteristic, α1((6))αr1 C ((&)).
Hence G is an extension of the cyclic group ((&)) of order p by the
cyclic group ((aj) of order q.

We may now assume q = p. Since iV g ((α)), there exists 6 in iV
such that δp = ap. Let c = ap = bp. Since c commutes with α and 6,
and G = ((α, 6)), c belongs to the center C of G. If c = 1, then, as
in the above statements, G is an extension of the cyclic group ((6))
of order p by the cyclic group ((a)) of order p. Hence we may assume
that the order of c is pn with n > 0.

Since {(b)) is invariant under α, we have abarΛ — br for some
positive integer r > 1. Then

c = bp = α6^α^

whence r = 1 + sp71 for some integer s. Hence

aba~ι — br — bd or b~λaba~~λ — d Φ 1

where cί = b*p* — c^*1"1 is an element of C of order p. As in the
familiar way,
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If p is odd, we conclude that (ab'ψ = 1. Let a1 = ab~\ Then αf = 1
and this case is reduced to the previous case c = 1. We are left with
the case p — 2. Setting ax = ab~τ, we have a\ = d. Let bλ be an
element of N such that b\ = d. Then G = ((al9 &0), and ((60) is invariant
under ax. Since 6} = 1, and G is not abelian, we must have

a&az1 = b\ .

Together with a\ = b\ = 1, this shows that G is the quaternion group
of order 8. Thus this theorem has been proved.

THEOREM 4.2. A finite Γ*-group is solvable.

Proof. For /"-groups, the theorem is obvious. Let G be a finite
jP*-group which is not a /"-group. If G is of order pm of a prime
power, then this theorem holds, since G has a normal subgroup of
order p™"1 by the familiar theorem of p-groups. So we may assume
that the order of G has at least two distinct prime divisors.

First we shall prove that G has a proper normal subgroup. Let
M be a Sylow subgroup of G, and consider the normalizer H of M.
If £Γ= G, then M is normal; if M g F c G , then H is a Γ-group, a
cyclic group. By Burnside's theorem ([8], p. 169), G has a proper
normal subgroup N such that G = ΛΓiί, N Π H = 1.

Since JV" is a proper subgroup, it is a Γ-group, say, G(pai). Then,,
suppose the order of the factor group G/N is

(4.5) j / V r γ . . . f a2^0, / 3 ^ 1 , 7 ^ 0 , •••

which has a prime divisor qφ p. Since G/ΛΓ has a subgroup of order
q, G has a proper subgroup of order p*ιq, which contains two incom-
parable subgroups, unless

(4.6) aΛ = 0,β = l .

Thus we have proved that the index of N is a prime q.

THEOREM 4.3. A non-simple Γ*-group is solvable.

Proof. Let G be a non-simple /^-group and N be a proper normal
subgroup of G. We may assume that G/N contains a proper subgroup
H of prime order p, since G/N is a jP*-group and so G/N is periodic.
Consider a coset xN which is a generator of H and take an element
a e xN. Then H — ((a)) is a group of order p, and there is a subgroup
K of G such that JSΓ/iSΓ ̂  i?. Clearly iΓ = NH. On the other hand,
since N\\ H, we have G - ((ΛΓ, iί)) - NH = K. Accordingly, G/N = Ήy

which is prime order. Thus the proof has been completed.
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Consequently, (4.3) and (4.4) of Theorem 4.1 give us all the types
of finite or non-simple /^-groups which are not .Γ-groups.

5 Unipotent /^*-semigroups*

l In this chapter we shall discuss unipotent Γ*-semigroups S's
which are neither groups nor Z-semigroups. By Lemma 2.2 and Theorem
2.1 we see that a /"^-semigroup S of order > 2 is a unipotent inversible
semigroup. By "inversible" we mean "for any element a of S there
is an element b such that ab = e where e is a unique idempotent."
According to [5], [6], a unipotent inversible semigroup which contains
properly a group is determined by a group G (or kernel, i.e., least
ideal), and a ^-semigroup D (the difference semigroup of S modulo G),
and certain mapping of the bases of D into G: a —> ea.

First of all we shall prove that the kernel is finite.

LEMMA 5.1. Let S be a unipotent inversible semigroup with the
kernel G of type G(pk), k being infinite or finite, and let d be an
element of S which is not in G such that ed generates G(pm), m < k,
and dι~~τ & G(pk), dι e G(pk). Then there is a subsemigroup H of order
pm+1 + 1 — 1 of S which contains two incomparable subsemigroups:
G{pmvι) and {&; i ^ 1}.

Proof. Let a = ed. As is easily seen (cf. [5]), we have

(5.1) a = ed = de, dι = α\ i ^ I

(5.2) x d — d x — x a — a x f o r e v e r y x e G .

Especially for x e G(pm+1), xd = dxe G(pm+1). Therefore the set union
H = G(pmJrl) U {d{; I - 1 ^ i ^ 1} is a subsemigroup of S; and the two
subsemigroups G(pm+1) and {dim

f i ^ 1} are incomparable, because
{*'; i ^ 1} S G(pm).

THEOREM 5.1. Let S be a unipotent inversible semigroup ivhich
is neither a group nor a Z-semigroup. If S is a Γ*-semigroup, then
S is finite.

Proof. The proper subgroup G is a Γ-group G(p°°) or G{pn), and
the difference semigroup D = (S: G) of S modulo G in Rees' sense [3]
is a /^-Z-semigroup of order ^ 4 by theorems in §3. There is an
element z1 outside G such that z\eG, for example, we may take a
nonzero annihilator as z1 (cf. [6]); and let m be a positive integer such
that ezx generates a subgroup G(pm). If S is infinite, then G is of
the type G(p°°) and so S has a proper subsemigroup of order pm+1 + 1,
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which contains two incomparable subsemigroups by Lemma 5.1. This
contradicts the definition of /^-semigroups of S. Thus the theorem
has been proved.

Hereafter we shall determine the desired semigroups S in each
case according as the order of D.

2. The case with D of order 2.
Let G(pn) denote the kernel of S, and let d be a unique element

outside G(pn). Of course d2 e G(pn). G{pk) denotes the subgroup gener-
ated by a — ed. If k — n> then, by (5.1), we have

S = {d*; i ^ 1} , G(pn) = {#; i ^ 2}

that is, S is a /"-semigroup of type (1.4.1) or (1.4.2.1).
If k < n, then by Lemma 5.1 there is a subsemigroup H =

G{pk+1) U {d} of order pk+1 + 1 which contains two incomparable sub-
semigroups, so that S = H and hence we have k = n — 1. In other
words, a is a generator of G{pn~ι); this a determines S and there is-
a unique S to within isomorphism, independent of choice of generator
a (cf. [6]). Conversely, a semigroup S thus obtained is easily seen
to be a /^-semigroup. In fact, by (5.1) we see that a proper sub-
semigroup incomparable to G(pn) is nothing but

G{p^) U {d} = ((d)) .

3. The case with D of type Case I of order 3.
Let S = G(pn) U {dlf d2} where dxd2, d\, d\, d2dλ e G(pn). S is de-

termined by the two elements alf a2, i.e.,

aλ — edx , α 2 = ed2

where ax and α2 can be taken independently arbitrarily. The proper
subsemigroups G(pn) U {d^ and G{pn) U {c£2} are .Γ-semigroups of type
(1.4.1) or (1.4.2.1). We have already known that αx and αx are the
generators of G{pn), and

G(pn) U {dx} = ((d,)) , G(pn) U {d2} =

We can easily prove that there are two possible distinct types

in all cases except for the case p = 2 and n = 1. They are immediately
seen to be /^-semigroups.

4 The case with D of type Case II of order 3.
Let d be a generator of D: D = {0, d, d2}, d3 = 0, and let S =
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G(pn) U {d, d2}. We shall prove that a — ed generates G(pn). Suppose
that an element a generates G(pk), k < n. Then, since ed2 = (ed)2 and
(d2)2 6 G(pn)y ed2 generates a subgroup G{pm)> m ^ fc, and a subsemigroup
K — G(pm+1) U {d2} contains two incomparable subsemigroups by Lemma
5.1. K is a proper subsemigroup of S because

This contradicts the assumption of Γ*-semigroup of S. Hence it has
been proved that G(pn) is generated by ed. Accordingly we get G(pn) —
{d{; i ^ 3} by (5.1), whence S is generated by d. In the same way
as the Case with D of order 2, we see that arditrary different gener-
ators of G(pn) give some isomorphic S's.

The remaining thing to do is to testify the subsemigroup lattice
of such semigroups.

If p Φ 2, then ed2 generates G{pn), and only a proper subsemigroup
between S and G(pn) is

((d2)) - G(pn) U {d2} by (5.1)

and so S is a /"-semigroup of type (1.4.2.2).
If p = 2, then eώ2 generates G(2W~1) and so, by Lemma 5.1, we

have a proper subsemigroup

G(2") U {d2}

which contain, two incomparable G(2n) and ((d2)). Therefore, S is not
a Γ*-semigroup.

5. The case with Z) of order 4.
Let S = G(pn) U {di, d2, d3} where d2 = ^ = dl. D has any one of

the types of Case III with elements denoted by dlf d2y dz instead of
α, 6, c, respectively. Since the proper subsemigroups G(pn) U {du d2}
and G(pn) U {dlf d3} are both /"-semigroups of type (1.4.2.2), we have
by (5.1)

G(pn) U {dlf d2} - ((ds)) , G(pn) U {dx, d8} - ((^))

where p ^ 2, and α2 = ed2 and α3 = βcί3 are both generators of G(pn).
One the other hand, there are relations between α2 and α3 as follows:
(We called these relations the primary equations for D in [6], §3.)

a\ = a\ in Case IΠ3 ,

α2 = a3 in Cases IΠj and ΠI2 .

We see easily that a\ = a\ in G(^%) implies α2 = α3 because p =̂ 2.
Thus for G(p%) and each D, there is a unique S to within isomorphism.
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As far as the subsemigroups containing G(pn) are concerned, besides
((d2)) and ((4)), there is ((d^) and we have

((dύ) = (W) n ((d3))

because p Φ 2. Accordingly it can be seen that S is a jΠ*-semigroup.
Thus we have

THEOREM 5.2. When G(pn) is given, all the possible unipotent
Γ*-semigroups S whose kernel is G(pn) and which are not Γ-semigroups
are determined as shown below. Let e be the unique idempotent of
S, and let D = (S: G{pn)). We remark G(p°) = 1, G{p-χ) = empty.

(5.3.1) In the case D of order 2, S = G(pn) U {d}, n Φ 0,
ed e Gip71-1) - G(pn~2)

(5.3.2) In the case D of order 3, D is of Case I and
S = G(pn) U {dlf d2}, nΦO

(5.3.2.1) ed, = ed2 e G(pn) - G{pn~λ)

(5.3.2.2) pn Φ 2, ed1 Φ ed2f and edl9 ed2 e G(pn) - Gip71-1)

(5.3.3) /^ the case D of order 4, S = G(pw) U {c ,̂ da, d3}, d2

2 = cί23 = d l f

(5.3.3.1) D of type Case IIIX

(5.3.3.2) D of type Case IΠ2

(5.3.3.3) D of type Case ΠI3

ed2 =

After all, under the given G(pn), if p Φ 2, then there are six types
of S; ifp = 2 and n Φ 1, then three types of S; ifp — 2 and n = 1,
then two types of S.
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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF PROPER

SOLUTIONS OF A CLASS OF SECOND-ORDER

NONLINEAR DIFFERENTIAL EQUATIONS

PUI-KEI WONG

1. This paper deals with proper solutions of the second-order
nonlinear differential equation

(1.1) y" = yF(yf x) ,

where ( i ) F(u, x) is continuous in u and x for 0 ^ u < + oo and

x =. XQ>

(ii) F(u, x) > 0 for u > 0 and x ^ a?0,

(iii) F(u, x) < F(v, x) f o r e a c h x ^ x 0 a n d 0<u<v< + co,

By a proper solution we understand a real-valued solution y of (1.1) which
is of class C2[a, oo), where x0 ^ a < + oo. An example of equations
of this type is the Emden-Fower equation [2, chapter 7]

(1.2) y" = xxyn .

Our interest is in the existence and asymptotic behavior of positive
proper solutions of (1.1). Since F(y, x) > 0 for y > 0, all positive
solutions of this equation are convex. They are therefore of two types:
(1) those which are monotonically decreasing and tending to nonnegative
limits as x —• + co, and (2) those which are ultimately increasing and
becoming unbounded as x becomes infinite.

In this section we shall consider proper solutions which are of
type (1), i.e., solutions which are confined to the semi-infinite strip
S — {(x, y): 0Sy^kK,a^Lx< +oo}. We observe that in view of
properties (i) and (iii) the function yF(y, x) satisfies a Lipschitz con-
dition

(1.3) I uF(uf x) - vF(vf x) \ ^ H\ u - v \

in every closed rectangle R = {(x, y): 0 ^ y S. K, a ^ x ^ 6}, where
H = H(K, α, 6). Before taking up the existence of such solutions, we
first derive the following lemmas.

LEMMA 1.1. Let u{x) be a nonnegative solution of (1.1) passing

Received June 20, 1962. Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at the Carnegie Institute of Technology. The author
wishes to thank Professor Zeev Nehari for his invaluable advice and guidance during the
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through two points (α, A) and (6, B), where a < b and A, B > 0.
Then the solution is unique.

Proof. Suppose that v(x) is a second nonnegative solution such
that u(a) = v(a) = A and u(b) = ^(6) = JB. We first assume that (α, A)
and (δ, B) are two consecutive points of intersection of u and v and
that ΐ φ ) > v(x) for α < a? < b. Using (1.1) and property (iii) we find
that

(1.4) Ϋ(u"v - uv")d% = [buv[F(u, x) - F(v, x)]dx > 0 .

Since

(1.5) \\u"v ~ uv")dx - B[u'(b) - v'{(b)] - A[u'(a) - v'
Ja

and since u'(a) > v'{a) while u'(b) < v'(b), the right-hand side of (1.5)
is clearly negative which contradicts (1.4). If u and v should have
other points of intersection on (α, b) we can partition the interval
[α, b] into several segments whose end points are the abscissas of the
consecutive points of intersection of u and v. The same argument
leads to a contradiction in each case. This proves the assertion.

LEMMA 1.2. Let u(x) be a nonnegative solution of (1.1) passing
through (α, A) such that limx_b u'(b) = 0, where b may be finite or in-
finite. Then u{x) is unique.

The proof is identical with that of Lemma 1.1 since the right-
hand side of (1.5) will also be negative under the present assumptions.

The next lemma guarantees the existence of solutions passing
through two points, provided the abscissas of these points are suffi-
ciently near each other.

LEMMA 1.3. Let (α, A) and (ό, B) be two points such that

a < 6, A, JS > 0

(6 — α) is small enough so that

(1.6) H(b ~af< p<l

and

(1.7) L(x) > \bg(x, t)L(t)F(Lf t)dt ,
Ja

where
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__ A(b - x) + B{x - a)
j^χu/j

and

(1.8) L(x)
(b-a)

Φ -a)
(i.9> Λ O = ( 4 _ ( ) ( I : α )

φ _ x){t _ g)

(6 - α) ' * ~ * '

Then there exists exactly one positive solution yeC2[a,b] of (1.1)
which passes through these points.

Proof. In view of Lemma 1.1, a solution, if it exists, is neces-
sarily unique. To establish the existence we replace the boundary
value problem by the equivalent integral equation

(1.10) y(x) = L(x) - \bg(x, t)y(t)F(y, t)dt ,
Ja

where L(x) and g(x, t) are given by (1.8) and (1.9) respectively. To
solve (1.10) by successive approximations, we introduce a sequence
{yk(x)} of twice diίferentiable convex functions passing through (α, A)
and (6, B) defined by

(1.11)

yo(x) = L(x)

ykn(x) - L(x) - \bg(x, t)yk(t)F(yk, t)dt
Ja

k = 0, 1, 2, -. .

Since both g(x, t) and L(x) are positive in (α, 6), (1.7) shows that
0 < yx{%) < L(x). If we assume that 0 < yk(x) < L{x)y then (1.7) and
property (iii) implies

L(x) > yk^(x) = L(x) - \bg(x, t)yk(t)F(ykf t)dt
Ja

> Has) - [hg(x, t)L(t)F(L, t)dt = yfa) > 0 .
Jo

It follows by induction that 0 < yk(x) ί£ L(x) ^ max {A, B) for all
The sequence {yk(x)} is thus positive and uniformly bounded.

Let K = max {A, B) and M — sup .F(iΓ, x), then

(̂ , t)L{t)F{L, t)dt

'flf(αj, t)dt
a

- a)2 .
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If R denotes the closed rectangle defined by 0 S V ̂  K and a ^ x :£ b,
then by (1.3),

uF(u, x) — vF(v, x)\ ^ H\u — v\

for all points of R. Moreover, (1.11) shows that

I V^(x) - yk(x) I S H[ g(x, t) \ yk{t) - yk^(t) \ dt
Ja

so that we have, by induction,

(1.12) I ykΛ1{x) - yk(x) \ ̂  (KM)Hk(b - α)2<*+1> .

We thus obtain the estimate

(1.13) I yn(x) \^K+ HιKM± [H(b - α a )] f c M

1

which, in view of (1.6), implies the uniform convergence of {yn(x)}.
This proves the lemma.

As pointed out before, a positive proper solution of (1.1) is either
monotonically decreasing or monotonically increasing. As the following
theorem shows there always exists exactly one solution of the former
type which passes through a given point (α, A).

THEOREM 1.1. For any given point (a, A) τυhere A > 0, there
exists exactly one positive proper solution y of the class C2[a, co)
which passes through (α, A) and is monotonically decreasing in [a, co).

To prove this result we consider the variational problem of mini-
mizing the functional

(1.14) J(y) = \ \{yj + 2h(y, x)]dx ,

where

(1.15) h(y,x)= VtF(t,x)dt,

within the class Ω of all nonnegative functions y e Dτ[af oo) such that
y(a) = A and that the integral (1.14) exists. Since (1.1) is the Euler-
Lagrange equation of problem (1.14), the solution y of (1.14) will be
a solution of (1.1), provided, of course, y exists and is of class C\a, co).

Since the functional J(y) is positive-definite, J(y) has the trivial
lower bound 0. We next remark that we may restrict our attention
to positive functions ye Ω which are convex in [α, co). To show this,
we assume that the positive function y is concave in an interval
(c, d), i.e.,
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y(x) ;> *Wd - χ ) + y(d)(x - G) s L(x) .
(d-c)

In view of hypothesis (iii) and the definition of h(y, x), we then have

h(L, x) ^ h(y, x), c ^ x S d ,

and, by a variational argument,

(1.16)

unless ?/(#) = L(x) in (c, d). Hence, if y* denotes the function obtained
from y by substituting L(x) for y(x) in (c, d),

WO < W .
Also, we need only consider positive convex functions y which are

nonincreasing in [α, co), since, as (1.16) shows, the functional J(y)
becomes infinite for convex increasing functions. Finally, the problem
J(y) — min is not vacuous, since the function v defined by

v(x) =
0,

b — a'

is in Ω and evidently J(v) < C < +co.
The proof of the theorem depends on the validity of an analogous

result for a finite interval [α, 6] and the performing of a suitable
passage to the limit b —•> oo. The result in question is the following:

LEMMA 1.4. There exists a unique positive solution u(x) of
equation (1.1) which passes through the two points (a, A) and (6, B)f

where b > a and A, B > 0. If v denotes any other positive function
of Dλ[ay b] for which v(a) = A, v(b) = B, and if J(y; b) denotes the
functional

(1.14') J(y; b) - [[(y'Y + 2h(y9 x)]dx ,

then

(1.17) J(u; b) < J(v; b)

unless v(x) = u(x) in [α, 6].
We first assume that the interval [α, b] is short enough so that

conditions (1.6) and (1.7) are satisfied. Lemma 1.3 will then guarantee
the existence of the unique positive solution u of (1.1) through the two
points, and all we have to prove is inequality (1.17). To do so, we
note that the solution w(x) of the linear differential system
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(1.18)

'w" = p(x)w, p(x) > 0

w(ά) — A

w(b) = B

satisfies the inequality

(1.19) \b[(wΎ + p(%W2]dx < [[(v'Y + p(x)v2\dx ,

where v is any other function of Dx[a9 6] which satisfies the same
boundary conditions and does not coincide with w(x). Inequality (1.19)
is an obvious consequence of the identity

b

[{vf — w'f + p(x)(v — wf\dx
a

( O 2 + p(x)v2]dx - \\(w'Y + p(x)w2]dx

which is obtained by expanding the left-hand side and observing that,
in view of (1.18) and the boundary conditions,

S b Γb Γb

v'w'dx = \vw% — I vw"dx = [vw']h

a — \ pvwdx
a J a J a

and

S b Γb

(w'2 + ww")dx = I (wr2 + pvf)dx .
a Ja

Setting, in particular, p(x) = F(u, x), we have w(x) = u(x) and
thus, by (1.19)

(1.20) Γ [ ( O 2 + u2F(u, x)]dx < [b[(Vy + v'2F(u, x)]dx .

Since F(s, x) is a nondecreasing function of s for s > 0, the function
h(u, x) defined by (1.15) is convex in u. Hence, for nonnegative u and
v,

2[h(u, x) ~ h(v, x)] ^ (u2 - v*)F(u, x) .

Combining this with (1.20), we obtain

\\{uγ + 2h(u, x)]dx < [[(v'Y + 2h(v, x)\dx
J a j a

unless u and v coincide. This establishes (1.17) in the case in which
the interval [α, b] is short enough so as to satisfy conditions (1.6) and
<1.7).

If b is an arbitrary value in (α, oo), it is sufficient to consider the
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problem

\J(y; b) = [b[(yΎ + 2h(y, x)\dx = min
(1.21) J σ

(y(a) = Ay y{b) = B

in the class Ωb of nonnegative convex functions y e Z>x[α, δ]. We thus
may assume

0 g y(x) fg max (A, 5) = K, a ^ x ^b .

Now we divide the interval [α, δ] into a finite number of sub-
intervals [ak, αΛ+1] (α = α0 < αx < am = δ) in each of which the
assumptions of Lemma 1.3 are satisfied. If y(ak) =Ak, where yeΩb,
the conditions restricting the length of these subintervals will be

(1.22) H(ak[ί - akγ < p < 1

and

(1.23) £* rigk(x, t)Lk(t)F(Lk, t)dt < Lk(x) ,

where

(1.24) Lk(x) = Aίά2±Σi χ) + Ak^x 5*L
V^/f-fl &k)

and

'(αfc-κ —

(1.25)

x < t .(ak+1 - α Λ )

Since Afc g max (A, B) = IT, we have F[Lfc(ί), ίj < F(iΓ, ί). Hence, if
M = maxFίiΓ, #) in [α, δ]? condition (1.23) will be satisfied if

Mgk(x, t)Lk{t)dt < Lk{x) .

In view of (1.24), this will be true if both the inequalities

gk(xf t)(akι - t)dt < (ak^ - x)

and

(1.26) M \ak+1gk(xf t)(t - ak)dt < (x - ak)
Jak

hold. Since these inequalities are equivalent, it is sufficient to con-
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sider one of them. A computation shows that

1
= — (x — ak)(ak+1 - x)(x + ak+1 - 2ak) ,

6

and (1.26) will therefore follow if

M
-—(ak+1 - x)(x + ak+1 - 2ak) < 1 .

Since

(ak+1 - x) ^ (ak+1 - ak)

and (x + ak+1 — 2αfc) = (x — ak) + (ak+1 — ak) S2{ak+1 — ak), t h e length

of the interval is thus restricted by the condition

M(ak+1 -ak)<2

and inequality (1.22). Since H = H(K, a, b), this shows that a finite
partition of the type indicated is indeed possible. -

In each of these subintervals we now replace y,y e Ωb, by the
solution of (1.1) having the same values at the ends of the interval.
If the new function so obtained is y*, it follows from the result just
proved that

J(y*; 6) < J(y; &)

In the treatment of the minimum problem (1.21) it is therefore suf-
ficient to consider curves y consisting of a finite number of arcs each
of which is a solution of (1.1). Moreover, the abscissas of the points*
where two adjacent arcs meet may be taken to be the same for all
functions of a sequence {yn} minimizing the functional J(y; b).

Since in each of the subintervals [ak, ak+1] the functions yn are
solutions of (1.1), elementary considerations show that we can select
a subsequence {yn,} which converges in each subinterval [ak, ak+1] to a
solution y(k) of (1.1) and that, moreover, yik)(ak+1) — y{k+ι){ak+1). The
function y defined by y(x) = y{k)(x) for ak ^ x ^ ak+1 is therefore of
class Dι[a, 6], and it is thus a solution of the minimum problem (1.21).

To show that y(x) coincides in all these intervals with the same
solution of (1.1), we have to show that y' is continuous at the points
ak. To do so, we choose a positive ε such that

(αfc_χ + ε ) < ak, (a + ε ) < ak+1

and ε is small enough so that Lemma 1.3 applies to the interval
[ak — ε, ak + ε]. There will then exist a solution u of (1.1) for which
u(ak — ε) — y(ak — ε), u(ak + ε) = y(ak + ε) and, as shown above, we
have the inequality
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}ak~2
V 2 + 2h(u, x)]dx < Γ * V 2 + 2h(y, x)]dx ,

J

unless y(x) = u(x) in this interval. Hence if y' is discontinuous at
x — ak, it is possible to replace y by another function which yields a
smaller value of J(y; b). But this contradicts the minimum property
of y, and we have thus proved that yf must be continuous throughout
[α, 6]. This completes the proof of Lemma 1.4.

We are now in a position to complete the proof of Theorem 1.1.
As pointed out above, it is sufficient to consider positive admissible
functions y e Ω which are convex and decreasing in [α, oo). If y
is any such function, we choose a value b in (a, oo) and define a
function ueω, ωaΩ, as follows: u(x) = y(x) in [6, oo) and u(x) = yb(x),
where yb(%) denotes the solution of (1.1)—whose existence is established
in Lemma 1.4—which satisfies yb(a) = A and yb(b) = y(b). In view of
Lemma 1.4, we have

J(yb) < J(v),

and it is clear that 0 S yb{^) ^ A in [α, oo).
We now take a sequence {yn} in β for which

(1.27) lim J(yn) - inf J(y) ,
71—>oo

and we choose a sequence of values bm(a < bλ < ί>2 < ) for which
lim &m ~ + co. For each of these values bm we construct the corre-
sponding function yn,bfΛ e ω. As just shown, we have

Hence, the diagonal sequence J(yn,bn) cannot have a larger limit than
the sequence J(yn), and (1.27) shows that J(yn,bn) is likewise a minimiz-
ing sequence.

Since 0 ^ # w . 6 n S A , and since 2/n>δw is a solution of (1.1) in
[α, 6 ]̂ if n ^ N, an elementary argument shows that this sequence
contains a limit function y which is a solution of (1.1) in [α, 6^].
But N is arbitrary, and y is thus a solution of (1.1) throughout [α, oo),
the function y—being necessarily convex—must be decreasing for
a ^ x < +oo. This completes the proof of Theorem 1.1.

Such a solution separates those solutions which are convex and
increasing to +oo from those which are decreasing and becoming
ultimately negative.

We add here a property of the positive decreasing solutions whose
existence is established in Theorem 1.1.

LEMMA 1.5. If y is a decreasing, positive proper solution of
(1.1), then
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(1.28) lim xy'(x) = 0 .
X—+oo

Since (xyr — y)' = xy" = xyF(y, x) > 0, the negative quantity
φ(x) ~ χyr — y is increasing for x > a. Let lim y(x) = c, c ^ 0, then
clearly 0(a?) ^ — c. If lim^(^) = — c, the lemma is proved. If lim φ(x)
= — (c + A), where A > 0, we have xy' — y ^ —(A -f c) for a? in
(α, oo), i.e.,

^ " A ~ c g O α < ^ < + o o

This, however, implies a contradiction, since the expression x~\y — A — c)
is negative for large x and tends to zero for x —» + co. This completes
the proof.

THEOREM 1.2. Equation (1.1) /ιαs solutions which ultimately
decrease monotonically to positive constants if, and only if, there is
some β > 0 such that

(1.29)

Proof. If 2/ is such a solution, it is easily confirmed that

y(x) = y(b) + y\b)(x — 6) + Γ(t — x)v{t)F(y, t)dt .

Since 3/(6) > 0 and y\b) < 0, it follows that

y(a) ^ |/(a?) ^ [(t - x)y(t)F(yf t)dt ^ a \ \ t - x)F{a, t)dt ,
J J

where \imy(x) = a > 0. This shows that condition (1.29) is necessary.
To show sufficiency, we consider the integral equation

(1.30) y(x) = a+\~(t- x)y(t)F(y, t)dt ,
Ja;

and suppose that β is a positive constant such that (1.29) holds. Then
we can find a point a ^ x0 such that for all x >̂ a, we have

(t - x)F(β, t)dt < — .
Li

We define a sequence of functions {^0*0} by

yo(x) = a

(1.31) - x)yk(t)F(yk, t)dt

k = 0, 1, 2,
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If we choose a such that 0 < a < β/2, we see that 0 < a < yk(x) and
yo(x) — a < β. By assuming yk(x) < β we find that

- x)yk(t)F(yk, t)dt

A + / 9 ί ( t - ίtOF(/3, t )dί < /9 .

Hence induction shows that 0 < a ^ £/*(#) < /? for all k. Moreover,
if xx and x2 are any two points such that a ^ xλ < x2 < co, then,
from (1.31), we have

ykF(yk, t)dt + ykF(yk, t)dt

yk(t)F(yk,t)dt .

In view of the uniform boundedness of {yk} and (1.29), it follows that
the sequence is equi-continuous also. Since F(u, x) < F(v, x) when-
ever 0 < u < v < co? it follows from the assumption yk,rl > yk that

+» t) - 7/,F(̂ //c, ί)]dί > 0 .

This, together with the fact that y1 > yQ, shows that {yk{x)} is a
monotonically increasing sequence. We can therefore find a uniformly
converging subsequence whose limit function y(x) is the solution of
equation (1.30).

It remains to show that the solution of (1.31) so obtained is indeed
of class C2[a, oo) and satisfies (1.1). To this end, we observe that,
for h > 0,

+ h)-y(x)
h

X o y(t)F(y, t)dt
h

, t)dt .

A corresponding inequality holds for h < 0. The solution y of (1.31)
being continuous in [a, oo), it follows that

= -\~y(t)F(y,t)dt.

In a similar manner, we can show that y" = yF(y, x), and the con-
clusion follows.

COROLLARY. Equation (1.1) has proper solutions which ultimately
decrease monotonically to zero if, and only if, for each β > 0
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(1.32) \°°xF(β, x)dx = +co .

Proof. We note that Theorem 1.1 assures the existence of a.
positive solution of (1.1) which is asymptotically equivalent to either
a positive constant or zero, and that Theorem 1.2 gives a condition
which is both necessary and sufficient for the former to hold, it follows
that (1.32) is both necessary and sufficient for a solution to decrease
to zero. The necessity can also be shown directly by the following
simple argument.

If y(x) —• 0 as x —> co, we can choose a value a Ξ> x0 such that
y(x) < λ if x > a and y(a) = λ, where λ is a positive constant. Writ-
ing (1.1) in the form

X = y(a) = y(b) + y'{b){a - b) + \\t - a)y(t)F(y, t)dt
Ja

^ y(b) + y'φ)(a - b) + λ \\t - α)F(λ, t)dt ,
Ja

where 6 is a number in (α, oo). By Lemma 1.5, we can make | y'(b)(a — 6) |
arbitrarily small by taking b large enough. Since y(b)-~>0 for δ—> oof>

we can thus choose a b such that

Hence,

— < fh tF(\, t)dt < [°tF(X, t)dt.
2 Jo Jα

Since a can be taken arbitrarily large, the result follows.

2 In this section we consider positive proper solutions of (1.1),
which are convex and increasing. We begin with a necessary con-
dition for the existence of such a solution, which is valid if hypothesis
(iii) is replaced by the nonlinearity condition (iv) u~*eF(u, x) is a
strictly increasing function of u for each x ^ x0 and some positive
constant ε.

THEOREM 2.1. // F(yfx) satisfies hypothesis (iv) instead 0/(111)*,
and if (1.1) has positive, convex increasing proper solutions, then

(2.1) Γ [x~2sF(/3x, x)f2+*dx < + 00

for some β > 0.
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Proof. Let y be a positive, convex increasing proper solution of
(1.1), then y(x) > βx for β > 0 and some x ^ x0. Let

(2.2) w(x) = y(x)y'(x)

so that by (iv)

w' = (v'Y + y2F{y, x)

- (y')a + t ξ^ X\ F(βxy x)
F{βx, x)

(2.3) > {y'f + y*+*G(x)

where G(a;) = (βx)-2sF(βx, x). If we set r = (1 + ε)/(2 + ε) and s =
(2 + ε)"1, then, r, s > 0 and r + s = 1. With the help of the inequality
[4, p. 37]

(2.4) rA + sB > A r£ 3 ,

where we have set

y'y~x = rA

and

G(x)y1+2t(y')-1 = s5 ,

we find that

(2.5) w'w-*-1 > p[x~2*F(βx, x)]ll2+s ,

where /? = constant and 0 < α = ε(2 + ε)"1 < 1. We now define

(2.6) h(x) - p [X [x~2*F(βx, x)]ll2+*dx ,
J a O

and

H(x) = l.[W(a?)]- + A(») ,

then (2.5) becomes

-ff'(αθ < 0 .

The positive function H is thus necessarily decreasing for sufficiently
large x and must ultimately tend to some finite limit λ2 ^ 0. Since
vr* is bounded for all x ^ xQ, we conclude that h(x) must ultimately
be bounded also. This proves our assertion.

In the case of the special equation

(2.7) y" - Q(x)y2n+1 ,
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where Q is a nonnegative continuous function in [x0, oo), Theorem 2.1
reduces to

COROLLARY 3.1. A necessary condition for equation (2.7) to have
positive convex increasing proper solutions is that

(2.8) [~ [Q(x)]lln+2dx < +oo .

With slight changes, the technique used in the proof of Theorem.
2.1 will yield the following more general result:

THEOREM 2.2. / / F(y, x) satisfies hypothesis (iv) instead of (iii),
and if equation (1.1) has positive, convex increasing proper solutions,
then there is some constant β > 0 such that

(O Q\ \ /y.2s—δ—1Γ TΓίQ/γ /vΛΊβ/7/y ^ J_ nn

where δ and s are any two positive constants which satisfy

0 < s < 1

• δ + 2s ^ 1

,δ + 1 ^ 2s(l + ε) .

(2.10)

Proof. If y is a positive, convex increasing proper solution of
(1.1), then there is some β > 0 such that

(2.11) y(x) > βx , y\x) > β , for all x > x0 .

From (2.3) and inequality (2.4), we see that

— > v'y-1 + Gixyy
w

Hence, for any δ > 0,

(2.12) w- 1-^' > ])

where k — constant. If moreover, s and δ are so chosen as to satisfy
condition (2.10), then the exponents of y and y' in the inequality (2.12)
above are both nonnegative. Combining this inequality with (2.11),
and using the fact that G(x) = (βx)~2sF(βx, x), we obtain

(2.13) w-^w' > pxu-^[F{βx, x)Y ,

for all x ^ x0, and |0 = constant.
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As in Theorem 2.1, we now define

h*(x) = ρ\* x^'^Fiβx, x)]sdx

and

H*(x) = JL[w(a?)]-β + h*(x) .

It follows from (2.13) that

4-H*(x) < 0 ,
dx

and we thus conclude, as in Theorem 2.1, that h*(x) is necessarily
bounded. This completes the proof.

It is easily confirmed that for δ = ε(2 + ε)"1 and s = (2 + ε)"1,
condition (2.10) is satisfied, and (2.9) reduces to (2.1) so that Theorem
2.1 is indeed a special case of Theorem 2.2. If we apply Theorem 2.2
to equation (2.7), we obtain the following extension of Corollary 2.1:

COROLLARY 2.2. If δ and s are any two positive constants for
ivhich condition (2.10) holds, and if equation (2.7) has positive, convex
increasing proper solutions, then

(2.14) j xλ[Q(x)]sdx< +CX3 ,

where λ — 2s(n + 1) — δ — 1.

We will now consider the problem of existence of positive increas-
ing proper solutions of (1.1) having specified asymptotic forms. The
simplest case is that of finding a solution y such that y(x) — ax, where
a > 0.

THEOREM 2.3. Equation (1.1) has positive proper solutions y of
the form

(2.15) y(x) ~ ax , a > 0 ,

if, and only if, there exists a positive constant β such that

(2.16) [~xF(βx, x)dx

We write y(x) = xu(t), where t = 1/x. The function u(t) will then
have a constant limit if t decreases to zero. Making the necessary
substitutions in equation (1.1) we obtain
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(2.17) -ίgL = ut~*F (-£ , 1) = uG(u, t)
at \ t t /

for u(t). Since

[tG(β, t)dt = \ V ( A , i ) ^ = Γ ajFOβa?, a>)ίte ,
JO JO \ t t / t Jl/α

Theorem 2.3 will be a consequence of the following result (which we
formulate in terms of x, y and F rather t, u and G):

THEOREM 2.4. If F(y, x) is continuous for 0 <x<b and other-
wise satisfies hypotheses (i), (ii) and (iii), then equation (1.1) will have
solutions which are continuous in some interval [0, a) (0 < a < b)
and decrease to a positive constant as x decrease to zero if, and only
if, there exists a constant β > 0 such that

(2.18) \'*F(β, x)da
Jo

co .

Theorem 2.4 is in many respects analogous the Theorem 1.2, and
its proof depends likewise on our solving a suitable integral equation.
The integral equation in question is

(2.19) y(x) = A + Bx- \g(x, t)y(t)F(yf t)dt
Jo

where g(x, t) is the Green's function

x , a g ί g α ,

To show that condition (2.18) is necessary for the existence of a
tion y with the required properties, we note that y(x) must satisfy
the integral equation

(2.20) y(x) = A, + Bxx - Γ g(x, t)y(t)F(yf t)dt ,
Js

where 0 < ε < α, and Ax and Bλ are determined from the conditions

y(ε) = A1

Since y'(a) > 0, Bt must be positive. In view of the fact that

y(x) ^ lim y(x) = A > 0 ,
x-»0

it thus follows from (2.20) that
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L, t)dt ^ Ax + Bxa ,
J S

and this implies (2.18).
To show that (2.18) is also sufficient, we solve the integral equation

(2.19) by the iteration

yo(x) = A

yk+1(x) = A + Bx- \"g(x, t)yk(t)F(yk, t)dt(2.21)

k = 0,1, 2,

where A = β/2, B = β\2a, and the value α is chosen so that

The possibility of choosing such a value of a follows from (2.18). If
0 g yk(x) g β, we have

'*, t)dt ̂  β \ tF(β, t)dt ̂  ̂ i-
Jo 2

a n d t h u s , by (2.21),

yk+1(x) ^ A + Bx — ~- =5 — ^ 0

Moreover,

yk+1(x) ^ A + Bx = ξ-(l + —)sβ.

It follows that 0 S yk+i(x) ̂  β. Since yo(x) == β/2, all functions yk(x)
of the sequence (2.21) satisfy these inequalities.

The rest of the convergence proof for the iteration (2.21) is
exactly the same as the corresponding argument used in the proof of
Lemma 1.3.

COROLLARY 2.4. Under the hypotheses of Theorem 2.4, equation
(1.1) will have solutions which are continuous in [0, a) and decrease
to zero for x —> 0 if, and only if, there exists a positive constant β
such that

(2.22) \aχF(βx,x)dx
Jo

< +oo .

With the help of the transformation y(x) = xu(t), where t = llx,
and equation (2.17), we have
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7 t

= \ xF(βx, x)dx .
Jo

Hence, if u(t) is any positive solution of (2.17) which decreases mono-
tonically to a positive constant as t —• oo, then y(x) = xu(x) will be
the desired solution of (1.1) in [0, a). By Theorem 1.2, a necessary
and sufficient condition for (2.17) to have such solutions is that

, t)dt < + oo ,

for some β > 0, and the result follows from (2.23).
We will now consider the following more general question: Let

v be a given positive convex increasing function of class C2[a, oo).
The problem is to determine whether equation (1.1) has positive proper
solutions which are asymptotically equivalent to v. To answer this,
question we introduce a Liouville type transformation

(2.24,
(as = x(t) ,

where the new independent variable t is defined by

(2.25) t = Γ[v(s)]~*ds .

Under this transformation, the interval [α, co) is mapped onto (0, 6]r

and a computation shows that u must satisfy the equation

(2.26) ^ - = u\x*F(uv, t) - —{x,«}] = uG(u, t) ,

where {x, t} denotes the Schwarzian differential operator

dt ^x / 2 V x

In order that y(x) ~ cv(x), u(x) must therefore be a positive solution
of (2.26) which decreases to a positive constant for t —> 0.

We observe that if the given function v were convex decreasing
rather than convex increasing, the problem of determining whether
(1.1) has proper solutions of this type can be treated in the same way.
However, the new variable t in the Liouville transformation will now
be given by

t =
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where v is now a positive, convex decreasing function of class C2[a, oo).
Since the procedure is the same in either case, we need only consider
the convex increasing case.

To simplify matters we shall further restrict ourselves to those
convex functions v(x) for which the positive continuous function p(x)
defined by

(2.27) p(x) = ^ M
v(x)

is such that [F(uv, x) — p(x)] is ultimately of one sign. That is to
say, we assume that either (1) G{u, x) < 0 for all u > 0 and 0 < t ^ a < 6,
or (2) G(β, t) > 0 for some β > 0 and all sufficiently small t.

If case (1) holds, then the Atkinson-Nehari criterion [6, Theorem
I] shows that a necessary and sufficient condition for the existence of
a positive solution u(t) which decreases to a positive constant as t
decreases to zero, is that

(2.28) 0 g - [atG(μ, t)dt < + oo
Jo

for some constant μ > 0.
On the other hand, if (2) holds, then by Theorem 2.4, the cor-

responding necessary and sufficient condition is the existence of some
positive constant β for which

(2.29) [atG(β,t)dt
Jo

Expressed in terms of x and v(x), both (2.28) and (2.29) may be combined
into a single condition:

dx < + oo .(2.30) \~v\x) Γ-^- F(βv, x)-v—

If we regard (2.27) as a linear homogeneous equation with p(x) given,
and that u and v are two linearly independent positive solutions whose
Wronskian is negative, then one solution must be convex increasing
and the other is convex decreasing. Moreover, if v denotes the in-
creasing solution, then

u(x) = v{x) \ [v(s)]~2ds

so that (2.30) may be written as

\ u(x)v(x) I F(βv, x) — p(x) I dx < + oo .

We can now state the following result:
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THEOREM 2.5. Let p{x) be a positive continuous function in [x0, oo)
and u and v be two linearly independent positive solutions of (2.27).
//, moreover, [F(μv, x) — p(x)] is either negative for all μ > 0 or
positive for some μ > 0, then a necessary and sufficient condition for
equation (1.1) to have positive, convex proper solutions y of the form

(2.31) y(x) ~ cv(x) , c> 0 ,

is that there is some β > 0 such that

(2.32) \"u(x)v(x) I F(βv, x) - p{x) \ dx < + oo .

COROLLARY 2.51. / / F(ux", x) — a(a — l)x~2 is ultimately of one
sign, where a > 1, then a necessary and sufficient condition for
equation (1.1) to have positive proper solutions of the form

(2.33) y(x) ~cx« , c > 0 , a > 1 ,

is that, for some β > 0,

(2.34) [°x \F{βx«, x) - a(a - l)x~21 dx < + oo .

Proof. If we let p(x) = a(a — l)x~2, then u(x) = xx~a and v(x) = #%
and the result follows from (2.32).

COROLLARY 2.52. If F(ue"x, x) — a2 is ultimately of one sign,
where a > 0, then equation (1.1) has positive proper solutions of the
form

(2.35) y{x) - ce«x , a,c>0 ,

if, and only if, there exists some constant β > 0 such that

(2.36) Γ I F{βe«% x) - a2 \ dx < + co .

As pointed out before, the Emden-Fowler equation

(1.2) y" = xλyn , n > 1 ,

is a particular example of equation (1.1) with F(y, x) = xκyn~λ. We
can therefore apply the results obtained here to investigate the existence
and asymptotic behavior of proper solutions of this equation.

From Theorem 1.2, we see that a necessary and sufficient condi-
tion for equation (1.2) to have positive proper solutions which ultima-
tely decrease to positive constants is that
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^dx < + 0 0 .

It follows that we must have

(2.37) λ + 2 < 0 .

From Theorem 2.3 we find that equation (1.2) has positive proper
solutions y of the form y(x) ~ ex, c > 0, if, and only if

[°°xλ+ndx < +00 .

Hence, we obtain the condition

(2.38) λ + n + 1 < 0 .

Corollary 2.51 shows that a necessary and sufficient condition for
(1.2) to have positive proper solutions of the form y(x) ~ ex", a > 1,
is that

[°° a(a - l ) α r 2 \dx < + 00 .

This condition will be satisfied if, and only if β^1 = a{a — 1) a n d
a(n — 1) + λ = — 2 . Thus, t h e requi red condition in t h i s case will be

(2.39) a = - ±±A > l .
n — 1

From Corollary 2.52, it is easy to see that equation (1.2) cannot
have any proper solution which is exponential. Finally, suppose that
u(x) is any positive, convex increasing proper solution of the Emden-
Fowler equation, then, by Corollary 2.1, it is necessary that

\[Q(x)]2ln+zdx = \x2λln+*dx< +00 .

In other words, we must have

(2.40) 2λ + n + 3 < 0 .

Applying this inequality to the special equation

yff = χ-2yn 9 n > l ,

we find that it cannot have any proper solution which is convex and
increasing. Moreover,

[°°xλ+1dx = \~χ-iln+*dx = +00

so that, by the Corollary of Theorem 1.2, this equation has a decreas-
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ing proper solution through every point (α, A), A > 0, which decreases
to zero as x ~> oo. (cf. [2], Chapter 7, Theorems 1 to 5).

An elementary example of the Emden-Fowler equation for which
an explicit solution is known is the equation

y" = 2χ-βy* .

It is easily confirmed that x2 is a solution of this equation. If we set
a = 2 and β = 1 in (2.34) we find that the integral vanishes so that
the condition of Corollary 2.51 is indeed satisfied.

If we assume moreover that v(x) is a proper solution of (1.1), then
(2.30) may be used to determine the possible existence of a second
proper solution y distinct from v such that their ratio is asymptotically
constant. Without loss of generality we may assume that y(x) ^ v(x)
for each x ^ x0. A necessary and sufficient condition for the existence
of such solutions is the boundedness of

\~v\x)\j^L \F(βv, x) - F(v, x)]dx
J J v2(x) 'v2(x) '

for some β > 1.
A condition for the difference of two proper solutions to be asympto-

tically constant may be obtained as follows: Let w(x) be a positive
proper solution of (1.1), and we let a second proper solution y be of
the form

y(x) = u(x) + w(x) ,

where ue C2[a, oo) and u(x) ~ k, k > 0. Differentiation shows that n
must satisfy the equation

[u" = G(u, x) ,

[G(u, X) = uF(u + w, x) + [F(u + w, x) — F(w, x)] .

In view of Theorem 1.2, this equation will have proper solutions
which ultimately decrease to positive constants if, and only if, there
exists some β > 0 such that

\"xG(/3,x)dx < +co .

THEOREM 2.6. Let w(x) be a positive proper solution o/(l.l).
1. A necessary and sufficient condition for the existence of a

second positive proper solution y such that y(x)/w(x) — fe, k > 0, is that

w\x) _ ^ ± _ [F(βw, x) - F(w, x)]dx
J w%s)
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for some β > 1.
2. A necessary and sufficient condition for the existence of a

second solution y such that y{x) — w{x) ~ e, c > 0, is that for some μ>0

S oo

x[(μ + w)F(μ + w, x) — F(w, x)]dx

All results obtained thus far concern the asymptotic behavior of
proper solutions, but the question of positive convex solutions having
unite asymptotes is also of interest. As the following result shows,
equation (1.1) always has such discontinuous solutions.

THEOREM 2.7. // F satisfies hypothesis (iv) instead of (iii), and if
A is an arbitrary real number and a and δ are positive; then there
exists a solution y of (1.1) with y(a) = A, which is not continuous in
<α, a + δ).

Proof. Since y(x) is convex, the value of y(a + δ) can be made
arbitrarily large by a sufficiently large choice of y'{a). We may accord-
ingly assume that y(a + δ) > 1. Let c be the point in (α, a + δ)
where y(c) = 1, and we recall that, for y > 1, F(y, x) > y2sF(l, x). It
follows from (1.1) that

[y'(x)f = α2 + 2 \*y(t)F(y, t)y\t)dt ,
Ja

where y'(a) = a, and a < x < a + δ. If 0 < p^ F(l, x) for x e [a, a + δ]
.and x > c, we then have

2 \*yy'F(y, t)dt > 2 \'yy'F(y, t)dt
Ja Jc

^ 2ρ \*y1+2Έy'dt

1 + ε

For # e [a, c], this holds trivially. Choosing a2 large enough so that
<oc2 > ρ(l + ε)-1, we conclude from (2.41) that

[y'(χ)Y ^ a2 + —£—[y2+2s - l ] ,

1 + ε

or, with β2 = a2 - ρ(l + ε)-1 and λ2+2ε = ρ(l + ε)"1,

[y'{x)Y ^β2
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If y(x) is continuous in [a, a + δ], y'{x) necessarily remains positive.
Hence

Jo Vβλ + (λί) 2 + 2 B

where 6 = a + δ, and this reduces to

dt
(h - a) ^ /9~ε/1+ε

1 + (λί)2

Since the integral exists, this provides a bound for the right end
point of the interval of continuity. In view of the fact that β2 —
a2 ~ p(l + ε)"1, it is also obvious that (b — a) can be made arbitrarily
small by a sufficiently large choice of a = y'(a). This completes the
proof.

REFERENCE

1. F. V. Atkinson, On second-order non-liner oscillations, Pacific J. Math., 5 (1955),
643-647.
2. Richard Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York,
1953.
3. Lamberto Cesari, Aspmptotic Behavior and Stability Problems in Ordinary Differen-
tial Equations, Springer-Verlag, Berline, 1959.
4. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, second edition, Cambridge
University Press, Cambridge, 1952.
5. R. A. Moore and Zeev Nehari, Nonoscillation theorems for a class of nonlinear
differential equations, Trans. Amer. Math. Soc, 9 3 (1959), 30-52.
6. Zeev Nehari, On a class of nonlinear second-order differential equations, Trans.
Amer. Math. Soc, 95 (1960), 101-123.
7. , Characteristic values associated with a class of nonlinear second-order
differential equations, Acta Math. 105 (1961), 141-175.

LEHIGH UNIVERSITY



FREE EXTENSIONS OF BOOLEAN ALGEBRAS

F. M. YAQUB

Introduction. This paper is concerned with the problem of im-
bedding a Boolean algebra B into an ^-complete Boolean algebra 5*
in such a way that certain homomorphisms of B can be extended to
B*. We investigate two such imbeddings which arose naturally from
the consideration of the work of Rieger and Sikorski in [5] and [7].
In [5] Rieger proved the existence of a certain class of free Boolean
algebras and investigated their representability by α-fields of sets.
Rieger's theorem on the existence of "the free α-complete Boolean
algebra on m generators" is equivalent to the following statement:
Every free Boolean algebra B can be imbedded in an ^-complete
Boolean algebra J5* such that every homomorphism of B into an in-
complete Boolean algebra C can be extended to an ^-homomorphism
of B* into C. The question now arises: Does this result hold for an
arbitrary Boolean algebra B which is not necessarily free? If such
an imbedding exists, we call B* the free a-extensίon of B.

In [7], Sikorski gave a characterization of all the σ-regular ex-
tensions of a Boolean algebra B. To obtain this characterization, he
first proved that B can be imbedded as a σ-regular subalgebra of a
^-complete Boolean algebra B * such that every α-homomorphism of B
into a σ-complete Boolean algebra C can be extended to a ^-homomor-
phism of B* into C. We call J5* the free σ-regular extension of B.

In § 2 of this paper we prove that the free α-extension BΛ of B
exists uniquely for every Boolean algebra B and every infinite cardinal
number a. In § 3 we investigate the representability of BΛ by an
α-field of sets. We first prove that Ba is isomorphic to an α-field of
sets if and only if it is α-representable. A corollary to this result
is that the free σ-extension Bσ of an arbitrary Boolean algebra B is
isomorphic to a σ-field of sets. The problem of characterizing those
Boolean algebras B for which Bω is α-representable for a ^ 2Ko is also
discussed. In §4 we investigate the α:-regular extensions of Boolean
algebras for an arbitrary cardinal number α. Sikorski's results on
the σ-regular extensions depend on the Loomis-Sikorski theorem which
does not hold for uncountable cardinal numbers. We use our results
on the free α-extension B^ of B to prove the existence of the free
α-regular extension and to give a characterization of the α-regular
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extensions of B.
Our result on the existence of the free α-regular extension of B

is a special case of a more general result of Kerstan [3], but it is
obtained here by a different method. We also learned through a
written communication from Professor Sikorski that he also proved
the same result and his proof will appear in [10]. Sikorski's proof is
similar to ours; however he works with the free α-complete Boolean
algebras while we work with the free α-extension of B (see Theorem
4.1 below). The characterization of the α-regular extensions of B
given in Theorem 4.2 does not appear in [3] or [10]; the free α-exten-
sions of Boolean algebras have not been considered in either of these
papers.

l Preliminaries* Throughout this paper, the product (=greatest
lower bound) of a set {xt:te T} of elements of a Boolean algebra B
will be denoted, whenever it exists, by ILer »t If A is a subalgebra
of B and xteA for every te T, then the set {xt:te T} may have two
products, one taken in A and the other in B; we denote these products,
whenever they exist, by ΠίW χt and JIfeτ%t respectively. The com-
plement of an element x of B will be denoted by x, and the symbol
"0" will designate the zero element of B.

Definitions of the more familiar Boolean concepts which are not
given in this section can be found in [9] or [2]. A homomorphism h
of a Boolean algebra A into a Boolean algebra B is an a-homomorphism
if it preserves α-sums (hence α-products) whenever they exist in A.
Equivalently ([9], §22), h is an α-homomorphism of A into B if and
only if J[xes h(x) = 0 for every subset S of A such that | S | ^ a and
ΓLes 8 = 0. h is an a-isomorphism if it is a one-to-one α-homomor-
phism. h is a complete homomorphism (complete isomorphism) if it
is an α-homomorphism (α-isomorphism) for every infinite cardinal number
a. A subalgebra A of a Boolean algebra B is a-regular if the injection
mapping of A into B is an α-isomorphism. Equivalently, A is an ir-
regular subalgebra of B if and only if ΐl*es x = 0 for every subset S
of A such that \S\^a and ΐ[ies x = 0. A is a regular subalgebra
of B if it is α-regular for every infinite cardinal number a.

A Boolean algebra B is free on m generators (m is an arbitrary
cardinal number) if it is generated by a subset E with cardinality m
and with the property that every mapping of E into a Boolean algebra
C can be extended to a homomorphism of B into C. All free Boolean
algebras on m generators are isomorphic ([9], §14) and will be denoted
throughout this paper by Am. An α-complete Boolean algebra B is a
free a-complete Boolean algebra on m generators if it is α-generated
by a subset E with cardinality m and with the property that every
mapping of E into an α-complete Boolean algebra C can be extended
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to an α-homomorphism of B into C. All free α-complete Boolean
algebras on m generators are isomorphic [5] and will be denoted here
by At.

For every Boolean algebra B and every infinite cardinal number
a, there exists an α-complete Boolean algebra B* and a complete
isomorphism h of B into 5* such that h(B) α-generates .B* ([9], § 36).
This Boolean algebra i?*, which is unique up to isomorphisms, is called
the normal a-completion (also minimal α-extension) of B and will be
denoted here by B*. If 1?* is complete and h is a complete isomor-
phism of B into i?* such that J3* is completely generated by h(B),
then 5* is called the normal completion (also, minimal extension) of
B and will be denoted by S°°. When dealing with the normal α-com-
pletion (completion) of J5, we shall usually identify B with h(B) and
thus consider B as a regular subalgebra of both Ba and B°°.

The Stone space ( = Boolean space) of a Boolean algebra B is the
compact, Hausdorff, totally disconnected space whose open-and-closed
subsets, ordered by set inclusion, form a Boolean algebra isomorphic
to B. For every Boolean algebra B and every infinite cardinal number
α, S(B) will denote the Stone space of B, F0(B) the Boolean algebra
of open-and-closed subsets of S(B), and Fa (B) the smallest α-field of
subsets of S(B) containing FQ(B).

A Boolean algebra B is called a-representable if it is isomorphic
to an α-regular subalgebra of a quotient algebra F/I, where F is an
α-field of sets and I is an α-ideal of F. If B is α-complete, then this
definition reduces to: B is α-representable if and only if it is an a-
homomorph of an α-field of sets. There are α-complete (even complete)
Boolean algebras which are not α-representable for a ^ 2No ([9], § 29).
However, for the case a — ̂ 0 , we have the Loomis-Sikorski theorem
([9], §29): Every Boolean algebra is σ-representable.

2 Free α>extensions*

DEFINITION 2.1. An α-complete Boolean algebra B* is called a
free a-extension of the Boolean algebra B if B* is α-generated by a
subalgebra Bo isomorphic to B such that every homomorphism of Bo

into an α-complete Boolean algebra C can be extended to an α-homo-
morphism of B* into C.

We shall show in this section that for every Boolean algebra B
and every infinite cardinal number α, the free α-extension of B exists
and is unique up to isomorphisms. We denote the free α-extension
of B by Ba, and we shall consider B as a subalgebra of Ba, thus
identifying it with the subalgebra 2?0 of Definition 2.1.

The following lemma follows immediately from Definition 2.1,
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LEMMA 2.1. Let Am be the free Boolean algebra on m generators
and At the free a-complete Boolean algebra on m generators. Then
At is the free a-extension of Am.

LEMMA 2.2. Let I be an ideal of Am and I* the smallest a-ideal
of At containing I. Then I* Π Am — I.

Proof. Let h be the canonical homomorphism of Am onto AJI
and let i be an isomorphism of AJI onto FQ(AJI). Then the homo-
morphism ih can be extended to an α-homomorphism h* of At into
Fa(AJI). And the kernel of h* is an tf-ideal which contains 7* and
intersects Am in /. Hence I* Π Am = I.

THEOREM 2.1. For every Boolean algebra B and every infinite
cardinal number a, the free a-extension of B exists and is unique
up to isomorphisms.

Proof. Let \B\ — m. Then there exists an ideal I of Am such
that AJI is isomorphic to B. Let I* be the smallest α-ideal of At
containing /. We shall show that Aj/7* is a free ^-extension of B.

Lemma 2.2 shows that the subalgebra AJI* of At/I* is isomor-
phic to B. And since At is ^-generated by Am, it follows that AJI*
^-generates A;//*. Thus it only remains to show that homomorphisms
of AJI* can be extended to A*//*. Let A be a homomorphism of
AJI* into an α-complete Boolean algebra C. Let / be the canonical
α-homomorphism of At onto A*//* and denote the restriction of / to
Am by / ' . Then the homomorphism g = hf has an extension g* which
is an <x-homomorphism of At into C. Since both /* and the kernel
of g* are α-complete ideals containing J, it follows that I* is contained
in the kernel of g*. We now define the mapping h* by:

Then h* is the desired extension of h; hence A%\I* is a free ^-extension
of B.

The uniqueness of the free ^-extension of B follows from the
standard argument used to show that all free Boolean algebras on the
same number of generators are isomorphic. Indeed, suppose that B
has two free ^-extensions Bx and B2. Let ί be an isomorphism of the
subalgebra B of Bx onto the subalgebra B of B2. Then i can be ex-
tended to an α-homomorphism of Bτ onto B2 and the isomorphism i~ι

can be extended to an α-homomorphism i2 of B2 onto B1Λ Let J?* =
{x e Bx: i2(ii(%)) = %}- Then JB* is an ^-complete, α-regular subalgebra
of Bλ containing B. Hence B* — Bu and ix is an isomorphism of Bx

onto B2.
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LEMMA 2.3. Let h be a homomorphίsm of a Boolean algebra B
into an a-complete Boolean algebra C. Then the extension of h to
an a-homomorphism of Bω into C is unique.

Proof. Suppose h has two extensions hx and h2. Let B* —
{x e Ba: hx(x) = h2(x)}. Then 5* is an ̂ -complete, α-regular subalgebra
of Bω containing B. Hence B* — Ba, and hλ = h2.

A slight modification of the proof of Theorem 2.1 yields the fol-
lowing result.

LEMMA 2.4. If I is an ideal of B, then the free a-extension of
B/I is isomorphic to BJI*, ivhere I*, is the smallest a-ideal of B*
containing I.

LEMMA 2.5. If A is a subalgebra of J3, then AΛ is isomorphic
to the a-complete, a-regular subalgebra A* of Ba a-generated by A.

Proof. We only need to show that if A is a homomorphism of
A into an ^-complete Boolean algebra C, then h can be extended to
an α-homomorphism of A* into C. Thus, we imbed C into its normal
completion C°°. Then, by a known result ([9], § 33.1), h can be ex-
tended to a homomorphism hλ of B into C°°. Furthermore, hx can be
extended to an α-homomorphism h2 of J5Λ into C°°. Let h* be the
restriction of h2 to A*. Then, since A* is an ^-regular subalgebra
of Ba, h* is an α-homomorphism of A* into C°°, and the proof will
be complete once we show that Λ*(A*) is contained entirely in C.
Since both &*(A*) and C are ^-complete, ^-regular subalgebras of C°°,
their intersection /&*(A*)fΊ C is also an ̂ -complete, α-regular subalgebra
of C°°. And since /̂ *(A*) is α-generated by h(A), it follows that
Λ*(A*) = ft*(A*) n C. Hence ft*(A*) c C, and the proof is now complete.

3» Representability by α>field of sets* In investigating the repre-
sentability problem of the free α-extensions of Boolean algebras, the
following two natural questions arise: When is the free ^-extension
Ba of a Boolean algebra B isomorphic to an α-field of sets? And,
when is Ba α-representable? The following theorem shows that these
two questions are equivalent.

THEOREM 3.1. For every Boolean algebra B and every infinite
cardinal number a, there is an a-homomorphism j * of Ba onto Fa(B)
whose restriction to B is the canonical imbedding of B in F0(B).
Moreover, j * is one-to-one if and only if Bω is a-representable.

Proof.1 Let j be the canonical isomorphism of B onto F0(B) and
1 This proof, which is considerably shorter than the one intended, is due to the referee.
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extend j to an ^-homomorphism j * of Ba into FΛ(B). Since Fω(B) is
α-generated by F0(B), j * is onto. Since B is a subalgebra of Bω, there
is a continuous mapping λ of S(i?Λ) onto <S(1?) such that for every
xe By λ"^ j(ίc)) = i(#), where ΐ is the canonical isomorphism of Ba onto
FQ(BΛ). Let & denote the homomorphism E —^X~1(E), mapping the
subsets of S(B) to subsets of S(Ba). Then fc is an α-isomorphism
which maps FQ(B) into F0(Ba), since k(j(x)) = i(x) for every x e B.
Consequently, k maps i^(J3) into Fa{BΛ). If i?* is α-representable,
then FQ{Bω) is an α:-re tract of Fa(Bω); that is, there is an α'-homomor-
phism h of Fa(Ba) onto F0(Ba) whose restriction to BΛ is the identity
mapping. Then i~τhkj* is an ̂ -homomorphism of Ba onto itself which
is an extension of the identity mapping on B. Thus, it follows from
Lemma 2.3 that i~1hkj*(x) = x for all x e Ba. Thus i* is an ^-isomorphism.

Since every Boolean algebra is σ-representable (the Loomis-Sikorski
Theorem), the last theorem yields the following corollary which answers
the representability question for the free σ-extensions of Boolean
algebras.

COROLLARY 3.1. For every Boolean algebra B, Bσ is isomorphic
to the σ-field of sets FJβ).

The next theorem gives a strong necessary condition that a Boolean
algebra B must satisfy in order for Bω to be cr-representable when
a ^ 2*°.

LEMMA 3.1. If Ba is a-representable, then so is every subalgebra
and every homomorphic image of B.

Proof. Let h be a homomorphism of B onto a Boolean algebra
C. Imbed C into its normal α-completion Cω and extend k to an a-
homomorphism of B^ onto C*. Since Ba is α-representable, so is Ca.
And since C is an α-regular subalgebra of Cα, C itself is α:-repre-
sentable. On the other hand, if A is a subalgebra of B, then it
follows from Lemma 2.5 that Aa is ^-representable. Hence A is a-
representable.

DEFINITION 3.1. A Boolean algebra B is called super-atomic if
every subalgebra and every homomorphic image of B is atomic.

THEOREM 3.2. Let B be a Boolean algebra and a ^ 2Ko. If B«
is a-representable, then B is super-atomic.

Proof. We shall first show that if Bω is ^-representable, a ^ 2Ko,
then B is atomic. Suppose B is not atomic, Then B has an element
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x such that the principal ideal (x), when considered as a Boolean
algebra, is atomless. Now the Boolean algebra (x) is isomorphic to a
subalgebra A of B. For let P be a prime ideal of (x) and let P* =
{x: xeP}. Then it is not difficult to show that A = P U P* is a
subalgebra of B isomorphic to the Boolean algebra (x). Since A is
atomless, it has a subalgebra Ar isomorphic to the free Boolean algebra
on ^o generators ([1], § 1.7). And since Ba is α:-representable, Lemmas
2.5 and 3.1 show that A' is α-representable also. This contradicts
the fact that the free Boolean algebra on fc$o generators is not a-
representable if a ^ 2Ko. Thus we conclude that B is atomic.

The proof of the theorem now follows immediately. If C is a
subalgebra of B, then, by Lemma 2.5, C* is α-representable. Hence
C is atomic. On the other hand, if C is a homomorphic image of B,
then Cω is an α:-homomorph of Ba. Thus Ca is α-representable, hence
C is atomic.

Super-atomic Boolean algebras were discussed briefly in [4] and
more recently in more detail by G. W. Day [1]. In particular, Day
proved ([1], Theorem 16) the converse of Theorem 3.2. Day also gave
the following characterization of super-atomic Boolean algebras: A
Boolean algebra B is super-atomic if and only if every subalgebra
of B is atomic if and only if every homomorph of B is atomic. A
characterization of super-atomic Boolean algebras with ordered basis
is given by Theorem 3.3 of [4].

Combining Day's result ([1], Theorem 16) with Theorem 3.2, we
obtain:

THEOREM 3.3. Let B be a Boolean algebra and a ^ 2*°. Then
Bφ is a-representable if and only if B is super-atomic.

If B is not super-atomic and a i> 2*°, then Fa(B) is not isomor-
phic to Ba\ however; we shall now show that FΛ(B) is the free a-
extension of B "over the class of α:-representable Boolean algebras."
An α-complete, α-representable Boolean algebra 2?* is called the free
a-representable extension of B if B* is α-generated by a subalgebra
Bo isomorphic to B such that every homomorphism of Bo into an in-
complete, α-representable Boolean algebra C can be extended to an
α-homomorphism of J3* into C. We need the following result of
Sikorski ([9], 31.1):

LEMMA 3.2. Let Am be the free Boolean algebra on m generators
and a an infinite cardinal number. Then Fa(Am) is the free a-
representable extension of Am.
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A slight modification of the proof of Theorem 2.1 shows the
following:

THEOREM 3.4. For every Boolean algebra B and every infinite
cardinal number a, the free a-representable extension of B exists and
is unique up to isomorphisms.

The following theorem can be proved by an argument similar to
the one used in the proof of Theorem 3.1.

THEOREM 3.5. For every Boolean algebra B and every infinite
cardinal number a, Fa(B) is the free a-representable extension of B.

4, Free ^-regular extensions*

DEFINITION 4.1. An ^-complete Boolean algebra B* is called an
a-regular extension of the Boolean algebra B if 5 * is α-generated
by an α-regular subalgebra Bo isomorphic to B. If, in addition, every
^-complete homomorphism of Bo into an ^-complete Boolean algebra
C can be extended to an <x-homomorphism of B* into C, then JB* is
called a free a-regular extension of B.

σ-regular extensions of Boolean algebras were investigated by
Sikorski [7]. In this section we investigate the α-regular extensions
of Boolean algebras for an arbitrary infinite cardinal number a. We
denote the free α-regular extension of B by B* (its existence and
uniqueness are proved in Theorem 4.1). Also, for every Boolean algebra
B and every infinite cardinal number a, we define the two ideals IΛ

and Ja as follows: Iω is the smallest α-ideal of BΛ containing all
elements u such that u = lifer ^tι where | T\ g a, each xteB, and
Π?er χt — 0. The elements u will be called the generators of IΛ. Ja

is the smallest α-ideal of FJβ) containing all the nowhere dense en-
closed subsets of the Stone space of B. (A subset E of a topological
space X is called a-closed if E is the intersection of at most a open-
and-closed subsets of X.)

LEMMA 4.1. Let B be a Boolean algebra and I an a-ideal of Bω

such that: (a) I D / , , (b) / n ΰ = (0). Then BJI is an a-regular
extension of B.

Proof. Let h be the canonical α-homomorphism of Ba onto BJI
and observe that h is an isomorphism of B onto the subalgebra B/I.
Suppose that \T\ ^ a and, for each t e T, h(xt) e B/I such that
Πί&M0t) = O. Then
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where the last equality follows from the fact that ΠflV χt e IΛ and
condition (a) of the hypothesis. Thus B/I is an α-regular subalgebra
of BJI. Furthermore, since Ba is α-generated by B and h is an a-
homomorphism, it follows that Bjl ^-generates BJI. Hence BJI is
an ^-regular extension of B.

THEOREM 4.1. Let B be a Boolean algebra and a an infinite
cardinal number. Then the free a-regular extension i?* of B exists
and is unique up to isomorphisms. Moreover, Bl is isomorphic to
BJL.

Proof. We shall first show that IaΓ\B = (0). Let B« be the
normal α-completion of B; thus Ba is α-generated by a regular sub-
algebra Bλ isomorphic to B. Let i be an isomorphism of B onto BΎ

and observe that i is a complete isomorphism of B into B*. Extend
i to an α-homomorphism i* of BΛ into B" and let u be a generator
of Ia. Then u = Ufir %u where \T\^a, and lifer ^ = 0. And

%*{u) = Π **(»,) = Π Φ«) = Π *(*,) = * ( Π a.) = 0 .

It follows from this that Ia is contained in the kernel J of i*. And
since J n 5 = (0), we have Iaf] B = (0) also.

Now, it follows from Lemma 4.1 that BJI# is an α-regular ex-
tension of B. Let h be an α-homomorphism of B/I* into an α-complete
Boolean algebra C. We wish to extend h to #„//*. Let / be the
canonical α-homomorphism of Ba onto BJIa and let g = hflf where fx

is the restriction of / to B. Then g can be extended to an α-homo-
morphism g* of Ba into C. And, \ί u — ΠflV #t is a generator of Im

then

flf*(w) = Π g*(Xt) - Π flf(^) - Π hf(xt) = hf(U x) = 0 .
ier ier ter \teτ /

Therefore Ia is contained in the kernel of g*. We now define the
mapping /&* by

Then fc* is the desired extension of h, and -BΛ//Λ is a free α-regular
extension of B. The uniqueness of B£ can be proved easily by an
argument similar to the one used in proving that BΛ is unique. (See
the proof of Theorem 2.1.)

COROLLARY 4.1. (Sikorski). For every Boolean algebra B, B% is
isomorphic to
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Proof. By Corollary 3.1, Bσ is isomorphic to Fσ(B), and the ideal
Iσi when considered as a cr-ideal of Fσ{B), coincides with Jσ. Thus
the conclusion follows from Theorem 4.1.

THEOREM 4.2. An a-complete Boolean algebra B* is an a-regular
extension of B if and only if B* is isomorphic to BJI, where I is
an a-ideal of Ba satisfying the following two conditions: (a) Ii)Ia;
(b) / ί l 5 = (0).

Proof. Suppose J3* is an ^-regular extension of B. Then 5* is
^-generated by an α:-regular subalgebra BQ isomorphic to B. Let i
be an isomorphism of Bjla onto J30. Then i is an α-isomorphism of
B/I* into B*, hence it can be extended to an <τ-homomorphism i* of
BJIa onto JB*. Let I = {x e Ba: i*([x]rJ = 0}. Then B* is isomorphic
to BJI and /satisfies conditions (a) and (b). The converse was proved
in Lemma 4.1.

Theorem 4.2 and Corollary 3.1 yield the following result of Sikorski
[7].

COROLLARY 4.2. A σ-complete Boolean algebra B* is a σ-regular
extension of B if and only if B* is isomorphic to Fσ{B)jI, where I
is a σ-ideal of Fσ(B) satisfying the conditions: (a) IZDjσ

m

9

(b) IΠF0(B) = φ.
The following result is well known ([9], §35 and 23.2).

THEOREM 4.3. The normal completion B°° of a Boolean algebra
B is isomorphic to Bt. That is, B°° has the property that every
complete homomorphism of B into a complete Boolean algebra C can
be extended to a complete homomorphism of B°° into C.

Using Theorem 3.5 and arguments similar to the ones used in the
proofs of Theorems 4.1 and 4.2, we obtain the following two theorems
which also can be proved by using Sikorski's methods for the σ-case
(see [9], §36).

THEOREM 4.4. For every Boolean algebra B and every infinite
cardinal number ay B* is isomorphic to Fa(B)/JΛ if and only if Bl
is a-representable.

THEOREM 4.5. Let B be a Boolean algebra for which J5* is a-
representable. Then an a-complete Boolean algelra B* is an a-regular
extension of B if and only if B* is isomorphic to Fa{B)jI, where I
is an a-ideal of Fa{B) satisfying the conditions: (a)
(b) I
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