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SOLUTION OF LOOP EQUATIONS BY ADJUNCTION

R. ARTZY

Solutions of integral equations over groups by means of adjunction
of new elements have been studied by B. H. Neumann [3] and F. Levin
[2]. Here an analogous question for loops will be dealt with, and the
results will prove to be useful also for groups.

Let (L, .) be a loop with neutral element e, x an indeterminate.
Let w be a word whose letters are x and elements of L. Let n be the
number of times that x appears in w. Form f(x) from w by inserting
parentheses between its letters so as to make it into a uniquely defined
expression if juxtaposition means loop multiplication. The equation
f{x) — r, r in L, will be called an integral loop equation in x of degree n.

An integral loop equation f(x) = r is monic if f(x) is a product
of two factors both containing x. Every integral loop equation can
be made monic by a finite number of left or right divisions by elements
of L.

Not every integral loop equation has a solution as indicated by the
monic example x2 — r, r Φ e, L the four-group. Our aim is finding a
loop E in which L is embedded and in which f(x) = r has a solution.
The loop E used here will be an extension loop [1] of L by (Cn, +),
the cyclic group of order n. The construction follows the

Extension Rule. The elements of E are ordered couples (c, a) where
ceCn,aeL. Equality of couples is componentwise. The multiplication
in E is defined by (clf ax) (c2f α2) — (cx + c2, axa2'h{cx, c2)), where h(clf c2)

is an element of L depending on cx and ca, assuming the value e except
in the case when cx + c2 = 0 and cx Φ 0.

THEOREM 1. A monic integral loop equation f(x) = r of degree n
over a loop L has a solution in an extension loop E = (Cn, L) constructed
according to the Extension Rule, with f(e)h(cf n — c) = r whenever
cφ 0.

Proof. If the element b of L is represented in E by (0, 6), L is
mapped isomorphically into E. Let x be represented in E by (1, e),
where 1 is a generator of Cn. All elements of Cn will be written as
integers. Then f(x) can be constructed by stages. For every x entering
into the successive multiplication one summand 1 appears in the first
component. In the second component only the loop elements of f(x)
will appear as factors because x has the second component e. The h'&
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do not enter the picture until the last step because they depend on
the first components, and all multiplications but the last yield h(c19 c2) =
e in view of 0 ̂  cλ + c2 < n. Thus, at first, the construction of the
second component of f(x) in E follows exactly the pattern of the
successive multiplication which yielded f(x), with the exception of the
factor x. The result is, therefore, the same as though x had been
replaced by β, namely f(e). However, the last product, one of whose
factors contains by definition at least one x, requires a factor h(c, n—c),
0 < c < n. Thus the final result is (n, f(e)h(c, n — c)) = (0, r) and
consequently f(e)h(c, n — c) = r, c Φ 0.

THEOREM 2. An integral loop equation of degree n has in E at
least φ(n) solutions, φ being Euler's function. For each two of these
solutions, x and y, there exists an automorphism of E carrying x
into y and leaving L unchanged elementwise.

Proof. Let again x = (1, e). If k and n are relatively prime, (k, e)
is another solution because nk = 0 and h(m, q) — h(km, kq) since m = 0
or Φ0 according to km = 0 or = 0̂. There are φ{n) distinct k's with
the properties 0 < k < n and {k, n) — 1. This proves the first part of
the theorem. Now, 1 —> k is an automorphism of Cn preserving the
0-element and hence also the fc's. The loop L is unaffected by these
automorphisms, because they act only on the first components.

DEFINITION. An abelian integral identity over a loop L is an
equation u(w) = v(w'), where (i) w and wf are words using the same
set of elements of L, but not necessarily in the same order, (ii) u(w)
and v(wf) are formed from w and w', respectively, by inserting parenthe-
ses between the letters of the words so as to make them into uniquely
defined expressions if juxtaposition means loop multiplication, (iii) the
equality is preserved when the loop elements forming w and w' are
replaced by arbitrary elements of L.

In general the validity of abelian integral identities in L, like
associativity or the Moufang property, does not carry over into E.
However, in the case of degree 2 we are able to obtain the following
result.

THEOREM 3. Let an integral equation of degree 2 over a loop L
have the monic form f(x) = r. Every abelian integral identity valid
in L will hold also in the extension loop E, constructed as in Theorem
1, provided h(l, 1) = [f(e)]\r lies in the center of L.

Proof. The first component of the elements of E is 1 or 0. Moreover,
λ(0,1) = h(l, 0) = h(0, 0) = 1; write h(l, 1) = h, for short. We have
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then h(p, q) — hpq, where pq is the product of p and q in GF(2), and
h° = e, h1 = h. The addition in C2 = {0,1} is the addition of GF(2).
The loop elements h° and h1 multiply according to the rule hphq — hp+q,
and, by the hypothesis of the theorem, they lie in the center of L.

Now, the abelian integral identity u(w) = v{wf) in E would surely
be satisfied for the first components since they behave as elements of
C2, an abelian group. If in the second components the h's are disregarded,
the abelian integral identity over E yields an exact replica of the same
identity over L. But, as center elements of L, the h's appearing in
u and v can indeed be pulled out and shifted to the right of each side.
We denote the product of the h's of u by hΉ{u\ In the degenerate
case where u consists of one letter only, we define H(u) = 0. We have
to prove for the second components that u(w)hH{u) ~ v(w')H{v). Since
u(w) = v{wf) it will be sufficient to prove H{u) = H{v).

Let the first components of the elements of w be p19 , pm. We
claim now that H{u) — ̂ jTj=i.i<jPiPst independent of the order of the
p'a, and that therefore H{u) = H{v). For m = 2 we have trivially
H{u) = p,p2. F o r m = 3, hmu) = hp'p%{Pί+P2)P3 = hPlP*+PlP*+p*p*. Suppose

H{n) = Σi!ί=i.i<j PiPj has been proved for every word length m' < m.
If the last multiplication of u(w) is u'u", where vf is a product of
Piy , Pk and u" of pk+19 , pm, then the induction hypothesis yields
H{W) = Σ*ϊ >=ι.i<i PiPs and H{u") - ΣΓi=*+i.i<i 2>*PJ.

 T h e n

= Σ * i=i.*o Λ Pi + ΣΠi=*+i.i<i PiPi

+ (Pi+ -•- + pk) (pk+ι + + pm) = ΣΠi=i.i<i P<2>i

This completes the proof.

COROLLARY. Tfce equation xax — r over a group G has a solution
in an extension group E — (C2, G) constructed as in Theorem 1, provided
a~λr lies in the center of G. In particular the equation has always a
solution in E if G is abelian.
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