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1. Introduction. In a recent paper [3] J. R. Philip has discussed
some properties of the function inverfc ¢ defined by means of

1.1) ¢ = erfc (inverfe ) .
Since

(] — SR AR NN NN
(1.2) im(1 — erfe ) =2 5 + 215~ 317 + 119

it follows that

1

(18) inverfe 6 = u + zu'+ T

w +

127 an 4369 .,
30 630 22680

w4 e,

‘where
U = %7[1/2(1 - ﬁ) .

The coefficients in (1.3) are rational numbers. It is therefore of
some interest to look for arithmetic properties of these numbers.
It will be convenient to change the notation slightly. Put

coe—t%/2

(1.9) foy =" at,
so that
flw) = (%)“2(1 — erfe 2')

-and let g(x) denote the inverse function :

(1.5) flo(w) = g(f(w) = u,
where

N o u2n+1 .
(1.6) g(u) = %Amﬂm 4, =1).

It follows from (1.4) and (1.5) that
(1.7) g'(w) = exp (3g°(w)) .

Differentiating again, we get

" Received April 11, 1962.
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460 L. CARLITZ

(1.8) 9" (u) = gu)(g'(w))* .
It follows from (1.6) and (1.8) that

2n + 1)!
1.9 Az,,,, 3 — ( 21- 1A2s 1A2n—-2r—— 3 .
(1.9) 0= 2 @r)! (2s)! @n — 2r — 25 + 1)1 T e

Since A, =1 it is evident from (1.9) that all the coefficients A,,., are
positive integers. It is easily verified that the first few wvalues of
A,n1q are

A =A,=1 A, =17, A, =127, A, = 4369 = 17.257 .
We shall show that

(1.10) Appip = —2.4.6 -+« (p — 1)A,,4, (mod p),
where p is an arbitrary prime and that

(1.11) Aspis = — Asprn (mod 8)

and indeed

(1.12) Asio = Asyy (mod 16) .

We also find certain congruences (mod ) for a sequence of
integers e,, related to the A,,., (see Theorems 2 and 3 below).
Finally we put

27L

;‘ (211,) !

g(u)
and obtain a theorem of the Staudt-Clausen type for the £,,, namely

B2n = GZn - i - Z _lA%;n/(p~1) ’
3 »Gmp

where G,, is an integer, b = 2 or 1 according asn = 1 or = 1 (mod 3)
and the summation is over all primes » >3 such that p — 1/2n..
Moreover

A, =—246---(p—1) (mod p) .
2. A series of the form [2]

@.1) H@) = 3 a,->,
n!

where the @, are rational integers, is called a Hurwitz series, or
briefly an H-series. It is easily verified that sum, difference and
product of two H-series is again an H-series. Also the derivative
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and the definite integral of the H-series define by (2.1):
H@) = S0 2, [(HOdt = a0, 2
=0 n! 0 =1 n!

are H-series. If H,(x) denotes an H-series without constant term
then Hi(x)/k! is an H-series for £k =1,2,8,.-.-; it follows that
H(H,(x)) is an H-series, where H(x) is an arbitrary series of the
form (2.1).

By the statement

Ms

(mod m) ,

Il
)

n

where the a,, b, are integers, is meant the system of congruences
a,=b, (mod m) rn=0,1,2,..-).
Thus the above statement about H/(x)/k! can be written in the form
(2.2) HXz) =0 (mod k!) .
Returning to (1.4) it is evident that

. 21L+1 oo w2n+1
@8 @)=t = ST
where
(2.4) o = (— 1) ML _ (41 8. 5. (20 —1),
2"n!

so that f(x) is an H-series without constant term.
If p is an odd prime, it follows from (2.4) that

(2.5) €1 =0, (mod p) (2n+1>p).
Thus (1.5) implies

1/2(p—1) 2n+l(u) _
(2.6) 2; 2n+1m u (mod p) .

We now compute the coefficient of u?/p! in the left member of
(2.6). Clearly the terms with 1 < n < (p — 1)/2 contribute nothing.
Hence (2.6) yields

A, +¢,=0 (mod p).
Using (2.4) this becomes
2.7 A,=—(—D"1.3.5---(p—2) (mod p),
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or if we prefer

(2.8) Ay = —2 4.6 ---2m = —-(%)m! (mod p) ,

where p = 2m + 1 and (2/p) is the Legendre symbol. For example
we  have

A, =—-1.3=2 (mod 5),
A, =1.3.5=1 (mod 7),
A;=1.8.5.7.9= —1 (mod 11).

We consider next the residue (mod p) of 4,.,,.. If 2n <p we
have

2r)! 2s)! (p + 2n — 2r — 25)1 (21! (2s)! (2n — 2r — 25)! (mod p)

by a familiar property of multinomial coefficients. Thus (1.9) implies
(for 2n < p)

s (2n)!
rfesn (21r)! (28)! (2n — 2r — 2s)!
'A2r+1A28+1Ap+2n—2r—2s (mOd p) -

(2-9) Ap+2n+2 =

Since 4, = 0 (mod p) we may put
(2.10) Apion = Ay, (mod p) (2n =p+1).
Then (2.9) becomes

s (2n)!
rissn (2’7‘)! (28)! (2’”/ — 2r — 28)!
'A2r+1Azs+1ezn~2r~zs (mOd p)

(2.11) Conts =

provided 2n < p.
We now define a set of positive integers ¢,, by means of ¢, = 1,

@.12) Cpn= 3 @n)!

A r A s n—2r—2s
5 @R (29)] (20 — 27 — 2g) © rrifmentmr

n=01,2,-.-+).

If we put

oo

(@) = 3 eny 2

= N T
then (2.12) is equivalent to
(2.18) 9"'(x) = ¢(x)(9'(®))" .
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Comparing (2.13) with (1.8) we get

" () _ g"(x)
(2.14) i@ o)

It follows that
#(@)g'(x) — g(x)g'(w) = 1.
A little manipulation yields

(@) = — 9(@) S 2 — g(2) S 9'(x) exp (— $9°(x))dx

7@ gi(x)
and we get
_ =1 (=
(2.15) HNx) =1 — nzl Sl 2 — 1
Since
__@m e (2 —
5@n — Dnl 1.3.5 @2n — 3),

it follows from (2.2) and (2.15) that

(2.16) a) =1~ 3 @ (mod ),

where » = 2m + 1.
We notice also that (1.7) gives

2.17) g =32@  mod p),
=0 2%n)

while (1.8) yields

2.18) o' = 5 LE mod ).

3. We may rewrite (1.8) as
(3.1) 9"(w) = g(u) exp g*(w) .

Differentiating again and using (1.7) we get
(3.2) 0" () = (1 + 20°w) exp (Sgw)) .

Since

463
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exp( 2(u)) =1 (mod 3),

it is clear that (3.2) implies
g""(u) =1+ 2¢°(u) (mod 3) .
On the other hand (1.7) gives
g(w) =1+ 3¢*(w) =1 + 29%(u) (mod 3) .
We have therefore
(3.3) 9""(u) = ¢'(w) (mod 3).
Comparison with (1.6) yields
(3.4) A, =1 (mod 3) n=20,1,2, ).
If we differentiate (3.2) two more times we get
Dtg(u) = (Tg(u) + 6¢°) exp (2g*(w)) ,

(3.5) 5
Dg(u) = (7 + 46¢°(w) -+ 249°w)) exp (24°(w))

where D = d/du. From the last equation it follows easily that
Dg(uw) = 2 + g*(u) + 4¢*(w) (mod 5) .
Since by (1.7)

Dg(u) =1 + ~—92(u) + “(u) =1+ 39°(w) + 29*(w) (mod 5),

it follows that

(3.5) (D° — 2D)g(w) =0 (mod 5).

This is equivalent to

(3.6) Asnis = 24,1, (mod 5) n=0,1,2,---).

Since 4, = A, = 1, (2.6) implies

3.7 A = Ay = 2" (mod 5) =012 ---).
It is clear from (3.1), (3.2) and (3.5) that |

(3.8) D*g(u) = (o)) exp (2 w)

where +r,(2) is a polynomial of degree n in z with positive integral
coefficients. Differentiating (3.8) we find that +,(2) satisfies the
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recurrence

(3.9) V() = () + N2y, (2) .

We shall require the residue (mod p) of 4,,(2). It is not evident
how to obtain this residue using (3.8) and (3.9). We shall therefore
use a different method.

The writer has proved [1, §6] that if

9(@) = S a, 2 (a,=1)
1 n!
is an H-series without constant term, if
Mz) = b, 2 (b, =1)
1 n!

is the inverse of g(x) and in addition

(3.10) b, =0 (mod p) (n > p),
where p is an arbitrary prime, then

(3.11) Untp = Qpll,yy (mod p) (02 0).

Clearly (8.10) is satisfied in the present case and therefore (3.11)
implies

(3.12) Aspip = A A5, (mod D) .

Making use of (2.8) we may now state

THEOREM 1. The coefficients of g(u) defined by (1.6) satisfy
(8.13) Ay, = —2.4.6 -+ (p — )4y, (mod p) (n=0,1,2,--),

where p is an arbditrary odd prime.

It is easily verified that (3.4) and (8.6) are in agreement with
(3.13).

Since (3.12) is equivalent to
(D* — A,D)g(w) = 0 (mod p),

comparison with (3.8) yields

Vo) = 4, exp (4°w) = 4, 35 L mod 1),

where p = 2m + 1,
If we put
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(g(u))k A(k) (k = lv 2v 3’ i ') >

we can show [1, Theorem 10] that A satisfies
(3.14) AR, = A,A, (mod p) (n = 0)

for all &k = 1.
We shall apply this result to the series #(u) defined by (2.15).
Since (3.14) is equivalent to

(D* — A,D)g*(u) = 0 (mod p),

it is clear that (2.16) implies

=AD" — App)%‘l‘l (mod p),

where p = 2m + 1.
Now by [1, (6.12)] we have

9) = 3, Aups L (mod ),

@2n + 1)!
where
(3.16) g(u) = u + 4, l;‘;“—) ;
moreover
g]p(u) _ oo N xn(l) 1)+1 d
(3.17) o= §=j,A U (mod p) .

It follows from (3.16) and (3.17) that

(D* — A,,D)% =1 (mod p).

Thus (3.15) becomes

(D? — A,D)p(w) = —A,g(u) (mod p),
which is equivalent to
(3.13) Canipis = Apl€snis — Aspir) (mod p) n=012-.-).

We may state
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THEOREM 2. The coefficients e,, defined by (2.12) satisfy (3.18).

In view of (2.10) we may rewrite (3.18) as
(3.19) Asinis = ALApi + €ninn 2R < D).
Since
AyAsis = Ay
(3.19) is equivalent to
(3.20) Asnipis = Asnip + auipnn (mod p) (2n < p).
We notice also that repeated application of (3.18) yields
(8.21)  eyu(p — 1) = Afes, — kAyns(p — 1) — 1 (mod p) ;
in particular we have for k = »p
(3.22) Contpin—ry = Apey, (mod p) .
It is also easy to extend (3.20) to

(3.23) Asirio—n+ = kBAsuirip-1-1 + Contikir—n (mod p)
0<2n=p+1;k=123,---).

Indeed it follows from (3.23) and (3.18) that

Cant e - = Ap(anirio—1) — Asnrrr—1-1)
= Aplonirio—y — Asntternio—1—1
= Ap(A2n+k(p—~1)+1 — kAyuikio-n—1) — Asrein -1
= Azn+(k+1)(p—1)+1 —(k — DAsiwernov-1 -

Note that (3.23) does not hold for k = 0.
We may state the following theorem which supplements Theorem 2.

THEOREM 3. The coefficients e,, defined by (2.12) satisfy (3.21),
(3.22) and (3.23).

4. We now derive congruences for A,,., (mod 8). From the first
of (8.5) we have

Dig(u) = (—g(u) + 6g°(n)) exp (2¢*(w))
= (—g(u) + 6g°(w)(1 + 2¢°(w))
= —g(u) + 40°(u) + 4¢°(w) (mod 8),

so that
4.1) Dig(w) = —g(u) (mod 8).
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This is equivalent to

4.2) Aspis = — Ay, (mod 8) =012 ---),
which implies

4.3) Ay = Aipis = (—1)*  (mod 8) n=0,1,2,--2).

This result can however be improved without much difficulty.
Working modulo 16 we find that the +r,.(2) defined by (3.8) and (3.9)
satisfy

¥(2) = Tz + 62°, ¥i(2) =T — 22,
¥i(2) = —2 + 62°, ¥o(?) = —1 + 122°,
v (2) = 2 + 42°;

note that the +,(2) are here treated as finite H-series. Then by (3-8)
Drg(u) = (g(u) + 49°(w)) exp (4¢°(w))
= (g(u) + 4g°(W))(1 + 49°(w)) ,
so that
4.4) D*g(u) = g(uw) (mod 16) .
This is equivalent to
4.5) Aro = Asyr (mod 16) .
Since A, = A, =1, A, =17, A, =7 (mod 16), (4.5) implies

A8n+1 = A8n+3 = 1 (mOd 16) ?

4.6
(4.6 Agis = Aguir =7 (mod 16) .

We may state

THEOREM 4. The coefficients A,,;, satisfy (4.2), (4.3), (4.5), (4.6).

5. We now put

5.1 ‘L = S n"ﬂ ’

&1 g B !

so that

(52) §<2n2—;‘— 1> AppsriiBer =0 (1> 0).

It follows from (5.2) that the B,, are rational numbers with odd de-
nominators.

From (5.1) and (2.3) we have
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5.3 U S G 97(W)

¢ g(u) =2n + 1 (2n)!

By (2.4)

(5.4) Ol = =S4 = (— 1) 135---@n—1)

2n +1 2n + 1

Let p be an odd prime. Then for 2n + 1 > p, ¢},,, is integral (mod
p) except possibly when »/2n + 1. Let

n+1=kp, p+k, r=1.

If £ >1 it is obvious from (5.4) that c.,., is integral (mod p). If
k =1, the numerator of cj,., is divisible by at least p“, where
w = (p"' — 1)/2. But since

LV VI

except when p = 3, r = 2, it follows that

(5.5) Pt =l ol p) (>3,
(5.6) 3=~ 92}“ . ggg‘) (mod 8) .

In the next place we have [1, (6.2)]

5. ' g?—l(u) _ oo Az—l e
o0 v~ =Y oy ™Y

for all p. As for ¢°(u)/8!, we have by (3.16)

3(u) _ _ oo u2n+1
0 =% = 2o T

gi(w) =1 + 3g°(u)9’(w) = 1 + }¢°(w) = ¢'(w) (mod 3).
It follows that

g4(u) _ oo _ u2n
TR ;(n 2) —(Zn)! (mod 3)

and a little manipulation leads to

gs(u) _ % un+?
65.8) T 6n + 2)!

If we recall that

(mod 3).

Cp = '_Ap (mOd p)
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and make use of (5.1), (5.8), (5.5), (6.6), (6.7) and (5.8) we get the
following analog of the Staudt-Clausen theorem:

THEOREM 5. The coefficients 5, defined by (5.1) satisfy

2n}{p—1)
(5-9) an = GZn - ‘g— - Z Ap ’
e

where G,, s an integer,

2 n=1 (mod 3)

b=
1 n#*1l (mod 3)

and the summation is over all primes p > 8 such that p — 1|2n.

6. The following values of A, were computed by R. Carlitz in
the Duke University Computing Laboratory.

A, =17, A =127,

A, =17.257,

A, = 7.34807,

A,; = 20036983,

A,; = 17.134138639,

A,; = 7.49020204823,

A,y = 127.163.467.6823703,

A, = 23.109.6291767620181,

A, = 7.6565889589032992201%,
A, = 17.94020690191035873697*,

The numbers marked with an asterisk have not been factored com-
pletely but at any rate have no prime divisors < 10%
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