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ON COMPLEX APPROXIMATION

L. C. EGGAN and E. A. MAIBR

1. Let C denote the set of complex numbers and G the set of
Gaussian integers. In this note we prove the following theorem which
is a two-dimensional analogue of Theorem 2 in [3].

THEOREM 1. If β,yeC, then there exists ueG such that
I β — u 1 < 2 and

(27/82

As an illustration of the application of Theorem 1 to complex
approximation, we use it to prove the following result.

THEOREM 2. If θeC is irrational and aeC, a Φ mθ + n where
m,neG, then there exist infinitely many pairs of relatively prime
integers x,yeG such that

I x(xθ -y - a)\< 1/2 .

The method of proof of Theorem 2 is due to Niven [6]. Also in
[7], Niven uses Theorem 1 to obtain a more general result concerning
complex approximation by nonhomogeneous linear forms.

Alternatively, Theorem 2 may be obtained as a consequence of a
theorem of Hlawka [5]. This was done by Eggan [2] using Chalk's
statement [1] of Hlawka's Theorem.

2 Theorem 1 may be restated in an equivalent form. For
u,b,ce C, define

g(u, b, c) = \u — (b + c)\\ u — (b — c)\ .

Then Theorem 1 may be stated as follows.

THEOREM 1'. If b, ce C, then there exist ulf u2eG such that
(i) I uλ - (6 + c) \< 2, I u2 - (6 - c) | < 2

and for i = 1,2,

r \ ( K ^ ί27/32 ίf M<l/Π/32(n) g(Ui, b,c) < \

It is clear that Theorem 1' implies Theorem 1 by taking
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b = {β + 7)/2, C = 03 - 7)/2 .

To see that Theorem 1 implies Theorem 1', first apply Theorem 1 with
β = b + c, Ύ = b — c and then apply Theorem 1 with £ = 6 — c,
7 = 6 + c.

3* We precede the proof of Theorem 1' with a few remarks-
concerning the nature of the proof.

Given b,ceC, introduce a rectangular coordinate system for the
complex plane such that b has coordinates (0, 0) and b + c has co-
ordinates (fc, 0) where k = | c \. Then if ue C has coordinates (x, y)

g*(u,b,c) = | % - δ - c flw - 6 + c |2

= ((a? - fc)2 + y2)((x + kf + y2)

= (x2 + y2 + fc2)2 - 4fcV.

Now for k a positive real number let R(k) be the set of all points
(x, y) such that

/ > • , , i * i . 7 2 2 / ί(27/32)2 if fc < τ/11/32

(x2 + y2 + k2)2 — 4fcV < \ ,
V U ' [2k2 if k ^ i/H/32 .

Theorem 1' depends upon showing that R{k) under any rigid
motion always contains two lattice points, not necessarily distinct.
These lattice points correspond to the integers uλ and u% of the theorem.

For k > l/l/ 2 , R(k) contains two circles with centers at

(±l/fe2 - 1/2, 0)

and each of radius \\V 2 . Each of these circles contains a lattice
point no matter how R(k) is displaced in the plane. In this case,
ux and u2 correspond to these lattice points.

For k < τ/ll/32, R(k) contains the circle with center at (0, 0)
and radius l/l/ 2 . In this case, ux = u2 corresponds to a lattice
point in this circle. Finally if τ/ll/32 ^ fc ^ l/i/"2~ #(fc) contains a
region described by Sawyer [8] which always contains a lattice point
no matter how it is displaced and ux = u2 corresponds to a lattice
point in this region.

4. We turn now to the proof of Theorem 1'. As above, for given
6, c e C, introduce a coordinate system so that b has coordinate (0, 0)
and b + c has coordinates (fc, 0) where k = \c\. Then if U G C has
coordinates (x, y),

(1) g\u, b, c) = (x2 + y2 + fc2)2 - 4fcV .

Suppose that \c\ = k> 1/l/ΊΓ. For i = 1, 2 let
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- 1/2, 0)

where δt = (--l) ί + 1 and let uteG be a closest Gaussian integer to

di(i.e.\di — v,i\ ^\di — t\f teG) . Then, omitting the subscripts,

I d - (b + δc) I = I 5-l/Zc2 - 1/2 - δfc | = fc - l//c2 - 1/2 < 1/vΊF.

Hence

I u - (6 + δc) I ̂  I w - d I + I d - (6 + δc) | < 2(1/VΊF) < 2

and condition (i) is satisfied.
Now let Ui have coordinates (a?*, ̂ ) . Then, again omitting sub-

scripts, since \d — u\ ^ l/i/!Γ, we have

( 2 ) (a? - 5-//C2 - 1/2 )2 + y2 ^ 1/2 ,

equality holding if and only if d is the center of a unit square with
Gaussian integers as vertices. Also, since for any two real numbers
a and 6, 2ab ^ α2 + b\ equality holding if and only if a = 6, we have

( 3) 2δxVk2 - 1/2 ^x2 + k2 - 1/2 ,

equality holding if and only if x — Vk2 — 1/2 /δ. Thus

(1 + 2δxVk2 - 1/2 )2 = ΔδxVk2 - 1/2 + 4ίU2(&2 - 1/2) + 1

^ 2α;2 + 2fc2 - 1 + 4x\k2 - 1/2) + 1

- k\2 + 4α?2)

and since fe and k\2 + 4ίc2) are positive,

1 + 2δxVk2 - 1/2 ^ feτ/2 + 4x2.

Hence

( 4 ) 1/2 - (x - δi/fc2 - 1/2 )2 = 1 + 2δx Vk2 - 1/2 - £2 - /b2

^ fcτ/2 + Ax2 - x2 - k2 .

Using (4) and (2), we have

£2 + k2 + y2 ^ fcl/2+l?+ (x -δ Vk2 - 1/2)2 - 1/2 + τ/2

^ fc 1/2 + 4ίc2,

( 5 ) (x2 + fc2 + ί/2)2 ^ 2fc2 + 4fc2a;2 .

Thus, from (1) and (5), g2(u, 6, c) ^ 2Λ2, the equality holding if and
only if equality holds in both (2) and (3). If equality holds in (2),
then there exist four possible choices for u, at least two of these
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choices having unequal first coordinates. Now equality holds in (3) if
and only if, for fixed k, x is unique. Thus if equality holds in (2), u
may be chosen so that equality does not hold in (3). For this choice
of u, g2(u,b,c) < 2k2 which establishes condition (ii).

Next suppose |c\ = k < τ/ll/32. Now there exists ueG such
that \u-b\S 1/ι/T. Thus

\u-(b±c)\^\u-b\ + |c|<2(l/l/Y)< 2.

Also, if u has coordinates (x, y), x2 + y2 ^ 1/2 and thus

g*(u, b, c) = (x2 + 2/2)2 + 2k\y2 - a;2) + ¥

which establishes the theorem for | c | < α/ll/32.
Finally, for i/ll/32 ^ | c | = fc ̂  1/vΊΓ, we use a result due to

Sawyer [8] which states that the region denned by | x \ S 3/4 — y*,
12/1 5Ξ 1/2 always contains a lattice point no matter how it is displaced
in the plane. Thus there exists ueG with coordinates (*, y) such
that I x I ̂  3/4 - j/ 2 , | y | ^ 1/2.

If I » | < 1/2, then

| « - ( 6 ± C ) | ^ | M - 6 | + | C | = l/* 2 + 2/2 + | c | ^ VΊF .

Also since | a ; 3 - Jc2\ ^ 1/2,

ff2(w, 6, c) = (a;2 - fc2)2 + 2y\xi + fc2) + t

< + 2 ( + W
4 4 V 4 2 / 1 6 16

If 1/2 ̂  I * I ̂  3/4 - y\ then

Hence

Also - x% ^ -1/4 so a/2 - x2 g 0. Thus

g\u, b, c) = (»2 + yγ + 2k\y* - x2) + k<

This completes the proof of Theorem Γ.
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5 To prove Theorem 2, we require a well-known result of Ford
[4] which states that for any irrational Θ eC, there exist infinitely
many pairs of relatively prime h, keG such that

( 6 ) \k{kθ -h)\ < 1/vΊΓ:

For θ and a is in the statement of Theorem 2, choose h, k
satisfying (6) and let teG be such that \t — ka\ ^ 1/vΊΓ. Since /&
and fc are relatively prime, there exist r, seG such that rh — sk = t
and hence

( 7 ) I rh - sk - ka | ^ 1/vΊF .

Now, in Theorem 1, let

r^ - 8 - α = _r_

kθ -h ' k

and set

a; z= r — &w, y = s — hu

where ^ is the Gaussian integer whose existence is guaranteed by the
theorem. Then x,yeG and

\xθ — y — a \ \ x \ = | / 3 — u \ \ j — u \ \ k \ \ k θ — h \ .

Hence if | β — 71 < l/H/8 we have, using Theorem 1 and (6),

If \β — 71 ^ τ/11/8 , using Theorem 1 and (7), we have

[αtf - y - α | | α ? | < — v Ί Γ | 7 - £ | \k(kθ - h)\

hr — ks — ka

k(kθ - h)

Thus for each pair h, k satisfying (6) we have a solution in G of

(8) \x(xθ-y-a)\<ll2.

To show that there are infinitely many solutions to (8), we note
that since | β — u \ < 2 and a Φ mθ + n, m,neG, we have with the
use of (6).

( 9 ) O < | 3 0 - y - α | = | β - u \ \ kθ - h | < 2/(l/3" | k\) .

If there are only a finite number of solutions of (8), let M be
the minimum of | xθ — y — a \ for these solutions. Then from (9), for
every h, k satisfying (6) we have \k\ < 2/(τ/3ilf) and
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\h\S\h-kθ\ + \kθ\<ll(VΎ\k\) + \k\\θ\<N,

say. But this is impossible since there are infinitely many pairs
h, keG which satisfy (6).
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