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WEAK CONTAINMENT AND
KRONECKER PRODUCTS OF GROUP REPRESENTATIONS

J. M. G. FELL

Introduction* Throughout this paper G is a fixed locally compact
group. Let us recall some concepts bearing on the representation
theory of G. The family of all unitary equivalence classes of unitary
representations of G will be called J^~(G). A function φ of positive
type on G is associated with a subset S^ of J7~(G) if there is an S
in t9% and a vector ξ in the space H(S) of S, such that φ{x) = (Sxξ, ζ)
for all x in G. An element T of ^(G) is weakly contained in a
•subset &* of J7~(G) if every function of positive type on G associated
with T can be approximated uniformly on compact sets by sums of
functions of positive type associated with ^ . The notion of weak
containment leads to that of the inner hull-kernel topology of J7~(G):
A net {T1} of elements of J7~(G) converges to T in this topology if
and only if every subnet of {T1} weakly contains T. Relativized to
the subset G of J7~(G) consisting of the irreducible representations
of <?, this topology becomes the ordinary hull-kernel topology of G.
{For these notions and facts see [1] and [2]).

If H is a Hubert space, the adjoint space H of H can be defined
as the Hubert space whose underlying set is the same as that of H,
and which is conjugate-isomorphic with H under the identity map.
If T is a unitary representation of G, the adjoint representation T
is defined by the requirements: H(T) = H(T)~, fx = Tx(xeG). The
Kronecker product S ® T of two unitary representations S and T of
G is that representation whose space is H(S)§§ H(T), and for which
<S(g) T)x(ξ<g>7}) = (Sxξ) (8) (Tjj). We can also describe the Kronecker
product S (8) f as follows: H(S (g) T) is the Hubert space of all Hilbert-
Schmidt operators on H(T) to H(S), and (S(g) T)X(A) = SXAT~\

If^czjT (G) and ^ c ^ (G), let ^ (g) ̂  denote {S(g) Γ| S e ^ ,

Throughout this paper / will be the one-dimensional identity repre-
sentation of G. It is well known and easily verified that if S and T
are finite-dimensional unitary representations of G and T is irreducible,
S§§ T contains I if and only if S contains T. Can this be generalized
to the case where S and T are infinite-dimensional and 'containment'
is replaced by 'weak containmenty ? The main object of this note is
to answer this question affirmatively for the case that S is infinite-
dimensional but T is still finite-dimensional (Theorem 4). In preparation
for this we shall show (Theorem 2) that the Kronecker product oper-
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ation is continuous with respect to the inner hull-kernel topology of

Another by-product of the main result is the following strenth-
ening (Theorem 3) of a remark of Godement ([4], p. 77): If the regular
representation R of G weakly contains some finite-dimensional irre-
ducible unitary representation of G, then R weakly contains all unitary
representations of G.

l The continuity of the Kronecker product.

LEMMA 1. Suppose that S^c:^~(G) and TejΓ(G); and let K
be the set of all those ξ in H(T) such that the function φ defined
by φ(x) = (Txξ, ξ)(x e G) can be approximated, uniformly on compact
sets, by sums of functions of positive type associated with £f. Then
K is a closed T-invariant linear subspace of H(T).

Proof. Obviously K is closed in the norm and under scalar multi-
plication. By the easy argument of [1], p. 368, (ii'), Σ?=i ai Tx£ is in
K whenever ξ e K, the x{ are in G, and the a{ are complex; in par-
ticular K is T-invariant. It remains only to show K closed under
addition.

Let ξ and rj be elements of K; let L and M be the closed invari-
ant subspaces of H{T) generated by ξ and η respectively; and let Q
be the closure of L + M. By the preceding paragraph

(1) LdK and MaK.

If A is projection onto LL, A(M) is a dense subspace of Q Π LL. So
by Mackey's form of Schur's Lemma ([7], Theorem 1.2), the restriction
of T to the invariant subspace Q Π Lx is equivalent to a subrepre-
sentation of the restriction of T to M. This and (1) show that

(2) Qn^dK.

Putting ζ = ξ + η, we have ζ = ξ' + rf, where ξ' e L and rf e Q Π L1.
Since L and Q f) L1 are orthogonal and Γ-invariant,

(3) (T£,ζ) = (Txξ',ξ') + (TxV',y')

(x e G). By (1) and (2) ξ' and rf are in K; so by (3) ζ e K, and K is
closed under addition.

REMARK 1. If A is a C*-algebra, ^(A) is defined as the set of
all equivalence classes of ^representations of A. Exactly the same
proof shows that Lemma 1 is valid for C*-algebras, provided that we
replace functions of positive type by positive functionals, and uniform
approximation on compact sets by weak* approximation.
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REMARK 2. According to Lemma 1, T will be weakly contained
in £f provided H( T) is generated (under T) by those ξ in H( T) whose
associated functions of positive type are approximated by sums of
functions of positive type associated with S^. For example, we have
immediately:

THEOREM 1. Suppose that ^ c ^ " ( G ) and £Ί weakly contains
Tk(k = 1, 2). Then ,9i®Si weakly contains 2\(g) T2.

THEOREM 2. The map <S, T} -> S <g) T (of J^~(G) x ^~(G) into
is continuous with respect to the inner hull-kernel topology

of

Proof. Let S* -> S and T* — T in ^(G). By the definition of
the topology of ^~{G), we have only to show that the net {Sι® T1}
(and hence by the same argument every subnet of it) weakly contains
S (g) T. But Theorem 2.2 of [2] clearly shows that the function of
positive type associated with each product vector ξ(g)η in Ή(S)(£)H(T)
can be approximated by functions of positive type associated with the
S* <g) T\ Hence by Lemma 1 S (g) T is weakly contained in {S{ (g) Γ*}.

It should be mentioned that the "easy verification" of the pro-
position used in the proof of [2], p. 260, Corollary 1, actually requires
the above Theorem 1.

2 When does S ® T weakly contain. U In this section G is as-
sumed to satisfy the second axiom of countability; and we shall con-
sider only unitary representations acting in a separable space.

Suppose that TeG and Se^(G). Is it true that SφT weakly
contains / if and only if S weakly contains TΊ In general, as we
next show, the implication is false in both directions, even if S is
assumed irreducible.

Let R be the regular representation of G, and T some irreducible
representation weakly contained in R. Clearly R = R. By [6], Theorem
12.2, R ® R is a multiple of R. So R 0 R weakly contains / if and
only if R does. Choose G so that R does not weakly contain /; for
example G might be the free group on two generators, or a non-compact
connected semisimple Lie group (see [8]). Then R§§ R does not weakly
contain /, and hence, by Theorem 1, nor does Γ ® T.

For an easy counter-example in the other direction take G to be
the "ax + V group, and T to be one of the two infinite-dimensional
irreducible representations of G. Then T — 7® T weakly contains /
(see [2], Theorem 5.1), but I does not weakly contain T. A "better"
example, in which S® T weakly contains /but neither S nor T weakly
contains the other, will be given in §3.
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However, if T is finite-dimensional, the answer to the question
posed above is affirmative (Theorem 4).

LEMMA 2. If £f c S~{G) and SS weakly contains a finite-dimen-
sional irreducible unitary representation T of G, then ,9* §§ T weakly
contains I.

Proof. Sf ® f weakly contains Γ ® f by Theorem 1. Since ϊ7

is finite-dimensional, T ® T contains /.

Here is an interesting consequence of Lemma 2:

THEOREM 3. If the regular representation R of G weakly contains
some finite-dimensional irreducible representation T of G, it weakly
contains all unitary representations of G.

Proof. By Lemma 2 R ® T weakly contains I. But by [2], Lemma
4.2, 22® f is a multiple of R. Hence R weakly contains /, and the
conclusion follows from Godement's remark ([4], p. 77, or [2], p. 260).

LEMMA 3. Let T be an irreducible finite-dimensional unitary
representation of G. To each δ > 0, there is a finite subset F of G
and an e > 0 such that, whenever A is a positive linear operator on
H(T) satisfying (i) || A \\ = 1 and (ii) || ATX - TXA | | < e for all x in
F, then \\ A — E\\ < δ (E being the identity operator on H(T)).

Proof. Assume the lemma false. Then there is a 8 > 0 and a
net {Ai} of positive operators in Q such that A{TX — TZA{—τ-> 0 for

all x in G; here Q is the compact set of those positive operators A
on H(T) for which | |Λ| | = 1 and || A - E\\ ^ δ. Replacing {A*} by a
subnet, we may assume that A{ -+ A in Q. Passing to the limit, we
deduce that ATX = TXA for all x, whence A = XE. Since A is positive
and of norm 1, we must have λ = 1; but this contradicts || A — E\\ ̂  δ.

LEMMA 4. Suppose that ^cz_^(G), and T is a finite-dimensional
irreducible unitary representation of G such that Sf ® T weakly
contains I. Then S^ weakly contains T.

Proof. The family of all finite direct sums of elements of <?
weakly contains T if and only if & does; hence we may assume without
loss of generality that £? is closed under finite direct sums. But then
/ belongs to the quotient closure of Sf ® T ([2], Theorem 1.1).

Let C be a compact subset of G. For fixed δ > 0, choose F and
ε as in Lemma 3. Let r be the dimension of H(T); and put C —
(C U F) U (C U F)-1.
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By [2], Lemma 1.1, there is an S in y and a unit vector ζ in
Ή(S (g> T) such that

for all x in C\ Fixing an orthonormal basis ξlf * ,fr of H(T), let
us write ζ = Σ -i ̂  (g) f ^ e H(S)), where

r
/ pς \ -J II r j | 2 . V ^ I I y> 112

i = l

If the matrix of Tx in the basis {fj is {Tij(x)}, we have T̂ f̂  =
Σi=i τvi(5)fi. So (S ® T),ζ = Σ i (Σ* τί&)SβVi) (8) fi, whence

V r,Y

By (4) and (6),

• < 7 )
2r4

e C, i = 1, , r). From (7) and the unitariness of τ(x),

<8) ^ Σ
3

2r3

Let A be the linear map of H(T) into H(S) sending ξ{ into ^ i ^ =
1, , r). Then (8) gives

•(9) (x e C)

From this and the symmetry of C",

•(10)

By (5),

(11)

\A*S,- TXA*\\<

= || A* || £r and also

2r% (xeC).

Hence, denoting A*.A/||A*A|| by B, we obtain from (9) and (10)
J| BTX - TXB\\ < ε (xe C"). Since J5 is positive, || B|| = 1, and F G C ,
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Lemma 3 asserts that || B — E\\ < δ. From this, setting η\ = %l\\ A | | r

we get

(12) l(M)-a«l<*

for all i, j . Let φ{x) = ψxη[, η[){x e G). By (8) and (11) \\Sxrj[-

Tιiτn(χWi\\ < εf2r\ Combining this with (12) we have for x in C

x) - τn(x) I ̂  I (fsmη[ - £ τ}1{x)η'}j, η

+ I (Σ τn&Wh V') ~ τJ

which is as small as we wish. Thus we have an S in &* and a function.
φ of positive type associated with S which differs from τn on C by
an arbitrarily small quantity. So S/ weakly contains Γ.

Combining Lemmas 2 and 4 we get:

THEOREM 4. Let &* be a family of unitary representations of
G and T a finite-dimensional irreducible unitary representation of
G. Then S^ weakly contains T if and only if S? (%) T weakly con-
tains J.

As a corollary we mention the following weak "Frobenius-like""
proposition. As usual, IIs denotes the representation of G induced
from the representation S of a subgroup.

COROLLARY. Let K be a closed subgroup of G, and J and I the
identity representations of K and G respectively. We assume that
UJ weakly contains J. If S^ c J7~(K), T is a finite-dimensional
irreducible unitary representation of G, and £f weakly contains some
irreducible component of T\K, then {Us \ S e £S} weakly contains T.

Proof By Theorem 4 £f ® T | K weakly contains /. Hence by
[2], Theorem 4.2, {UssJ¥ικ\SeS^} weakly contains UJ. By hypothesis,
the latter weakly contains J; so {Us^1' κ | Se ^} weakly contains J.
But by [2], Lemma 4.2, JJss;ψκ = Us ® f. Hence another application
of Theorem 4 gives the required conclusion.

3. A counter-example* Let G be the proper Euclidean group
in three-dimensional real space R\ We observe that the hull-kerneL
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topology of G is Tλ (i.e. points are closed). Indeed, the results of
[5] show that Tf is completely continuous whenever TeG and feLx{G).
So, by [1], Lemma 1.11, G is 2\. Thus, if S and T are inequivalent
elements of G, neither weakly contains the other. We shall now
construct two inequivalent elements S and T of G such that S ® T
weakly contains I (see the beginning of § 2).

Let N and K be the translation and rotation subgroups of G
respectively; τu will denote translation by u: τu(v) = u + v{u, v e R3).
Let χ be the fixed character of N defined by χ(τu) = eiuκ The
"stationary subgroup" for χ (consisting of those σ in G such that
^(στ^- 1 ) = χ(τu) for all %) is Z = flϊSΓ, where if - {p e K \ p(l, 0, 0) =
{1, 0, 0)}. Thus, by [6], Theorem 14.1, to each character ψ of the
Abelian group H we get an irreducible representation Tφ of G, namely,
that induced from the character ψ of Z, where

<13) ψ(ρτu) = φ(p)χ(τu) (peH,ue i23) .

Further, if ψ and φ' are distinct characters of H, Tψ and Tφf are
inequivalent.

Now let φ and φ' be distinct characters of H. Let 0 < θ < π/2
^nd let /? be the element of K consisting of rotation through an angle
β about the third axis. We verify easily that Z Π pZp~x — N. Hence
by [3], Theorem 5.4 (the 'weak containment' version of Mackey's
Kronecker Product Theorem), Tφ(&(Tφ')- weakly contains the repre-
sentation of G induced from the character χθ of N given by χ$(τu) =
^ P ( « ) ) Z ( ^ U ) . (Here (Tφ')~ is the adjoint of Tφt). Since this is true
whenever 0 < θ < TΓ/2, we can use [2], Theorem 4.2, to pass to the
limit as #—>0; we then conclude that TφζZ)(TφΎ weakly contains
ί7Xo, where χ0 is the identity character of N. But U%0 is obtained by
lifting to G the regular representation of the compact group K; hence
it contains / as a direct summand. Thus we conclude that Tφ ® (Tφ')~
weakly contains /. This is the desired example, since we have already
observed that Tφ and Tφl are inequivalent irreducible representations
of G.
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