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POWERS OF A CONTRACTION IN HILBERT SPACE

SHAUL R. FOGUEL

Introduction. Let H be a Hubert space and P an operator with
| | P | | = 1. Our main problem is to find the weak limits of Pnx as
n —> co. This is applied to Markov Processes and to Measure Preserving
Transformations.

Markov Processes. Let (Ω, Σ, μ) be a measure space. Let xn be
a sequence of real valued measurable functions on Ω and:
1. μ(xn+a> eAΠ xm+* e B) = μ(xn eAf}xmeB).
2. Conditional probability that xke A given x{ and xjf i < j < k, is
equal to conditional probability that xke A given xJu

Let I(σ) denote the characteristic function of σ. Define P(n) by
linear extension of:

P(n) I(x0 e A) = Conditional probability that xne A given xQ.
Then:

2'. P(n) = P ( l ) \
For details see [1] and [2].

We will study limits of

(P(1Y I(x0 e A), I(x0 G B)) - jt£(a?Λ e A f] x0 e B) .

Many of the results here appear in particular cases in [1,] [2] and [3].

1. Reduction to unitary operators. For every x e H
a. ||p**pκp*χ - p*χ\\* ̂  2 | | P ^ | | 2 - 2Re{P*kPkPnxPnx)

| | 2 - | | P * + ^ | | 2 ) — 0

b. \\PkP*kPnx - P ^ | | 2 ^ ||P**P*P—*α> - P*-^ | | 2 — 0.
n->°°

Therefore:
If weak lim Pnix — y then P*kPky = pkp*ky = y (here and elsewhere
-Ui or mi will denote a subsequence of the integers). This means
| |y | | = | | P * y | | = | | P * * y | | β Notice that if P*Px = x then HPtf||2 =
{P*Px, x) = p | | 2 . On the other hand

||PaH|2 = (P*Px, x)^ | |P*P»II \\x\\ ^ P l l 2 since | | P | | = 1.
Hence if | |Pα?|| = ||aj|| then (P*Px, x) = | | P * P O J | | p | | and thus

P*Pα; = α.

THEOREM 1.1. Let K = {a?|||P*a?|| = ||P**a?|| = \\x\\ k = 1, 2, . •}
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then K is a subspace of H, invariant under P and P*. On K the
operator P is unitary. If x 1_ K then

weak lim Pnx = weak lim P*nx = 0 .
n-*oo n->o°

Proof. It is only necessary to prove the last part. If x ± K and
y = weak lim Pnix then by the preceding remark y e K hence y = 0.
Now from the weakly sequentially compactness follows: weak lim
Pnx = 0.

This theorem is a consequence of Theorem 2 of [9] and was
reproduced here only because of the elementary proof.

If F is the self adjoint projection on K and H is finite dimensional,
then F is the spectral measure of the circumference of the unit circle
in the sence of Dunford's spectral theory, with respect to P. This is no
longer true when H is infinite dimensional and P a spectral operator
(even a scalar type operator) in the sense of Dunford. These remarks
are proved in [4].

LEMMA 2.1. Let y = weak lim Pnix. Then \\y\\2 <Z lim sup \(Pnx, x)\.

Proof. Let x — u + v where u e K and v _L K. Then
y — weak lim Pniu, lim sup \(Pnx, x)\ — lim sup \(Pnu, u)\. Now

\(Vf p*u)\ = lim |(P W % Pku)\ = lim |(P"«-*w, u)\

since ue K. Thus

11 y 112 = lim \(y, Pn*u)\ ̂  lim sup \(P*u, u)\ .

This could also be written in the form

lim sup \{Pnx, z)\ ̂  \\z\\ lim sup \(Pnx, x)\m .

DEFINITION A. Let Ho = {ίc|lim (Pwα?, x) = 0}.

THEOREM 3.1. xe Hoif and only if weak lim Pn# = 0, i/ and only
if weak lim P*nx = 0. T%β sβί i?"0 is α closed subspace of H containing
K1. If T commutes with P or with P* and xeH0 then TxeH0.

Proof. The first parts of the theorem follow from Lemma 2.1
w

TPnx ~ 0.
and Theorem 1.1. Now if TP = PT and Pnx >0 then PnTx =

W Λ

x >0.
Applications.

l Markov processes.
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a. If lim μ(xn eAΠxoeA) = O then lim μ(xn eAf]xoeB) = O and

lim μ(x0 eAf]xneB) = 0 for every set B.

b. Let limμ(xneAf]x oeA) — μ(x0e A)2. Put x = I(x0eA) — μ(x0e A).
(Provided that μ(Ω) <co so that 1 e L2).
Then

(P(l) a, x) = (I(xn eA)- μ(x0 e A), I(x0 eA)- μ(x0 e A))

= μ(xnGin«flG4)- μ(x0ei)2->0.

Thus for every Borel set B:

lim (I(xn eA) - μ(x0 e A), I(x0 B)) = 0

or

μ(xneAf]xoeB)-^ μ(x0e A) μ(x0e B) .

Similarly

μ(xQ eAr)xneB)-> μ(x0 e A) μ(xQ e B) .

2 Measure preserving transformations* Let φ be a M.P.T. on
(β, Σ, μ). If μ{φ~n(A) f]A)->0 then

lim μ(φ~n(A) Π B) = lim j«(A Π 9>—(5)) = 0 .

if lim ^(^-W(A) Π A) = / (̂A)2 and μ(Ω)< oo then

3 Measure theory* Let μ be a positive finite measure on Borel
subsets of (0, 2π). Define the operator P by Pf(if) = eί5/(^). Then ί^
is the set of all functions / such that

Let feH0 and Aζ = {#||/(#)| ^ ε}. Define βrε = 1// on Aε and zero
elsewhere. Finally let

Then jPε commutes with P and by Theorem 3.1

where A= U Az.
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By taking unions of such sets one can prove:
There exists a set B such that for every h whose support is contained
in B a.e.

and this holds only for such functions.

2. Positive contractions* In this section we assume that H is the
real Hubert space L2(Ω, Σ, μ) where μ Ξ> 0 and μ{Ω) = 1. An operator
S will be called positive if:

a. If / ^ 0 a.e. than Sf ^ 0 a.e.
b. SI = 1.

We will assume that P is positive. It is easily seen that so are
P*, P*P*n and P*nPn.

LEMMA 1.2. Let S be a positive operator on L2(Ω, Σ, μ). The space

is generate by characteristic functions of a a subfield, Σr, of Σ:
feL if and only iff is Σr measurable.

Proof. Let Σr contain all σ e Σ such that SI(σ) = I{σ). If Sf = /
then

li/ll2 ^ (SI/I, I/I) ̂ |(S/,/)|HL/Ί|2

hence S|/ | = |/ | therefore if /, g e L so do max (/, g) and min (/, g).
This shows in particular that Σr is a field and since L is closed it is
a σ field.

Now if feL so does / — c for any constant, thus it is enough to
show that

Let /+ be the positive part of /, 2/+ = |/ | + / e L. Thus ε"1 min (e, / + ) 6 L
but as ε—>0 this converges to I{ω\f(ώ) > 0}.

This Lemma was proved in [8].

THEOREM 2.2. The space K is generated by characteristic functions
of a σ subfield Σx of Σ. Ifσe Σ1 then PI(σ) = I(τ) where τ 6 ΣΎf

similarly for P*.

Proof. The space K is the intersection of the space
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{ / 1 1 1 ^ / 1 1 = 11/11}, {f\\\P* f\\ = \\f\\} n = i , 2 , •••

By Lemma 1 each of this is generated by a σ subfield of Σ. Thus
K is generated by the intersection of these subίields.

Now if σeΣ1 then σr = Ω-σeΣ, too. The functions P(I(σ)) and
P(I(σ')) are positive, bounded by 1 and (P(I(σ)), P(I(σ'))) = (P*P(I(σ)),
J(σ')) = (I(σ), I(σ')) = 0. Moreover P(I(σ)) + P(I(<x')) = 1, therefore,
both functions are characteristic functions. As K is invariant under
P these are characteristic functions of sets in Σl9

Let I(A) and I(B) belong to K. Then

min

-On the other hand

or

Therefore

It could be shown that if f, g e K and f-geL2 then P(/#) = P/ Pflf
Thus if P/ = α:/ and Pβr = /5̂ r where | α | = \β\ = 1 then f,geK

and if / flrLa then P(/βr) - α/3/̂ f.
If Pf = α:/ where | α | = 1 let / = |/ |λ then:

"Therefore, P | / | = |/ | necessarily Ph = ah. It follows that

This is a Theorem of [8].
Following [1] let us define:

Doeblin's Condition. There exists a positive finite measure v define
«on Σ, and a positive e such that: If v{σ) < ε then for some n either

or

Using the same arguments as in Theorem 3.11 and its corollaries
<of [1] we conclude.
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THEOREM 3.2. // Doeblin's condition holds then Σ1 = {σlf , σn}
where σ{ are disjoint sets such that

1. \JUσt = Ω
2. P%I(σ()) = I(σ<) = P* (I(σ<)).
3. The operator P(P*) acts as a permutation on the σ{ sets.
4. For each f, g, e L2

lim (P *+-/t g) = ± μiσ,)-1 \ f(a>)μ(dω) \ g(ω)μ(dω)

where PaOi denotes the set whose characteristic function is Pa{I(σ$)*

Thus if xn is a Markov process and μ(Ω) = 1 then

lim μ(xkn+d eAf]xo£B) = Σ K^d'1^^ e i ί l σ^μ(xQ e B Π P ^ ) .

For detailed proves of these results and treatment of the case μ{Ω) —
co in the case of Markov processes see [1] and [3].

Measure Preserving Transformations. Let φ be a measure pre-
serving transformation on (β, Σ9 μ). The operator P is defined on
L2(Ω, Σ, μ) by P/ = g where g(ω) = f(φ(ω)). It is a positive contraction.
Thus the space K is generated by all characteristic functions f
that satisfy | |P* W / | | = | |/ | |, for P is an isometry. Let the restriction
of P to K be denoted by U and let Σx be the Boolean algebra that
generates K. On Σx ψ acts like a measure preserving invertable trans-
formation. (It maps 2\ onto itself).

We will use here the terminology of [5]

THEOREM 4.2. The transformation φ on Σ is ergodic, weakly-
mixing or strongly mixing, if and only if, ψ on Σx is ergodic, weakly
mixing or strongly mixing, respectively.

Proof. It is clear that if P satisfies any of the requirements so
does U. Conversely:

a. Let U be ergodic. If P was not then for some nonconstant
function /, Pf = /. But then Pnf = P*w/ = / and fe K, so U is not
ergodic.

b. Let U be weakly mixing. Given f — fι + f2 where fx 6 Kf2A_K
then for every g

- Σ I(P'/, o) - (/, 1) (i, ff)l s* - Σ l(P'/i, 0) - (Λ, i) (l, 0)1
% 3=0 n 3=0

+ Σ
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The first term tends to zero because U is weakly mixing and g
-can be replaced by the projection of g on K. The second term is equal to

-*£\(PJA,g)\

n J=O

for (/2,1) = 0. Thus it tends to zero with (Pnf2, g).

c. Let U be strongly mixing. Put again / = fx + f2 Pnfλ tends
weakly to (fu 1) 1 = (/, 1) 1 and Pnf2 tends weakly to zero.

COROLLARY. The transformation φ is weakly mixing, if and only
if, P has on the unit circle no eigenvalue except for 1 which is a
simple eigenvalue.

This generalizes the 'Mixing Theorem' in [5] page 39.

Proof. The operator U satisfies the same condition and by the
'Mixing Theorem' is weakly mixing. By the previous theorem so is P.

3. The space Hc.

DEFINITION. HC = {x \ x e K and the set Pnx n — 1, 2, is con-

ditionally compact}.

The set Hc is a subspace of H, invariant under P and P*. Pn%x
•converges for xeK iff (Pnίx, Pnjχ) -* n < > n j ^ \\x\\\ This is equivalent
to (P*nix, P*nΐχ) —> || x ||2 because P is unitary. Thus P could be replaced
by P* in the definition.

THEOREM 1.3. The following conditions are equivalent:
a. xeK and Pnx contains a convergent subsequence.
b. There exists a subsequence m{ such that x — lim Pmix.
c. limsup|(Pχ x)\ = \\x\\\

Proof.
a=>b: Let Pn%x —> y then

P**x, Pn^x) = lim ( P 7 ^ - ^ , x)

because xeK.
Hence 11 x - P»<-»*-iα? 11 -* 0.
6 => c: obvious.
c=>α: Let l im |(P w ^, x)\ — \\x\\* and weak limP n ίx = y. Then

KlΛ ^)l — \\x\\2 while | |y | | ̂  | | Ώ | | hence y ^ ax where \a\ = 1.
From [7] page 79 P f̂l? converges strongly to ax. Finall if Ze Ho then:
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(Z, x) = lim cr\Z9 Pn*x) = lim a^(P^Zf x) = 0 .

It is clear that if xeHc then condition (a) is satisfied hence the*
other conditions. In particular Hc J_ Ho.

THEOREM 2.3. If xeHe and y = lim^*, Pnίx then there exists α~
subsequence k; so that

x = lim Pkiy .

Proof Let k{ be chosen so that

x = limPni*kix

Then

l i m p - Pkίy\\ = lim||P"*α? - y\\ = 0 .

4* Finitely many limits. Let $ be such that the sequence (Pnx, x}
has finitely many limits. Let these be cl9 c2, , cr where \Ci\ ̂  | c < + 1 | .

DEFINITION C. L = {z \ Pnz = z for some w}. If z e L then az e L.
lί zeL and yeL then:

Pw« = ^ , Pmy = y=> Pnm(z + y) =, z + y .

Thus L is a linear manifold, also LczHc.
If zeH let {z}° be the set consisting of z alone and {̂ }Λ be the-

set of all weak limits of Pmy where y e {z}n~ι.
Let x = a?0 + a?! where #0 € iϊ 0 ̂  J_ Ho. Then

(P α, α?) = ( P X α?0) + ( P X , ̂ ) , lim ( P % , α?0)^ 0 .

Thus we will assume that x J_ Ho.

LEMMA 1.4. For some k {x}k n L Φ 0.

Proof. Let 0 ^ | / e {sc}1 then for every w (̂ /, Puα?) is equal to onê
of the values c{ and:

a. For every n ^ 0 (Pwi/, ?/) can assume only the values c %

l ^ i ^ r .
Let (2/, y) = |Ci| If for some k \{Pky, y)\ = (y, y) then Pky = λy

with | λ | = 1. Thus λ must be a root of one for {Pnky, y) — Xn(y, y}
assumes finitely many values. Therefore in this case yeL.

If I (Pny, y) I < (y, y) for every n then

lim sup I (Pny, y) \ < (y, y) .
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Also lim sup (Pny, y,) Φ 0 for y _L Ho. Thus we may choose a
subsequence n{ so that P%iy will converge weakly to z Φ 0. Now 2
satisfies a and | |s | | < ||l/|| by Lemma 2.1.

This procedure cannot be continued more than r times thus at
some stage we must get an element of L.

LEMMA 2.4. If u is the projection of x on L then ueL.

Proof. Let 0 Φ y e {x}k Π L. Then y e {u}k + {x - u}\ Now yeL

and x — u _|_ L. Also L is invariant under P and P* hence {a? — u}k 1_ L
and #e{^}*. By Theorem 2.3 uelP^} which is a finite set in L.

THEOREM 3.4. // the sequence (Pnx, x) has finitely many limits
then x = x0 + x1 where x0 e Ho and x1 e L.

Proof. Let x1 = u + v where ueL (by Lemma 2.4.) and v J_ L.
Now (Pnv, v) = (Pn%l9 #i) — (Pnu, u) has finitely many limits and by
Lemma 1.4 cannot be orthogonal to L unless it is zero.

If limit (Pnx, x) exists then Px1 = xλ.
If L is one dimensional (for instance ergodic transformations) then

the conditions of Theorem 3.4 imply that Pxx = xτ.

THEOREM 4.4. Let A = {x the sequence (Pnx, x) has finitely many
limits). If linear combinations of elements of A are dense in H, then
the eigenvalues of P on the circumference of the unit circle, are roots
o / l .

Proof. Let Px = Xx where |λ| = 1. Let ^ e i and y = Σa^i
where \\x - y\\< l/2||a?||.
Since x ± Ho we may assume that for some integers k{ P

kixi = xiΛ

Hence for k = kxk2 kn we have Pky = y. Thus

Xkmx = Pkmx = y + Pfew(a; - ?/) .

Therefore

This equation cannot be satisfied for all values of m unless Xk is a
root of 1.

5 Semi groups of contractions. Let P(t) be a strongly continuous
semi group of contractions 0 ̂  t. For every <5 > 0 P(δ) defines the
subspace K(δ) as in Theorem 1.1.

LEMMA 1.5. x e K(δ) if and only if
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?|| = | | a ? | | 0 ^ t

Proof. Trivially the condition is sufficient. If x e K(δ) and t ^
nδ then

| | 0 | | = \\P(nd)x\\ = \\P(nδ - t)P(t)x\\ ^ \\P(t)x\\ £ \\x\\ .

Thus \\P(t)x\\ = ||a?|| and similarly | |P(ί)*»ll = ll»l|.

Thus all the spaces K(δ) are the same and will be denoted by K.

THEOREM 2.5. The space K is invariant under P(t) and P{t)*
for all t. On K P(t) is unitary. If x _1_ K then

weak lim P(t)x = 0

ί-»oo

and by symmetry

weak lim P(t)*x = 0 .
t-*oo

Proof It was shown that K = K(t) hence by Theorem 1.1 K is
invariant under P(t) and P(£)* and P(t) is unitary on K.

Let a? J_ ίΓ and let y e H and ε > 0 be given. Choose η so that

\\P(s)x - x\\ < ε. if s ^ η .

Choose w0 so that

I (P(^)a?, ») | < ε if n ^ w0 .

This is possible by Theorem 1.1. If

then

I(P(t)x, y)\^\{P{nη)x, y)\ + \(P(t)x - P(nη)x9 y)\ .

The first term is less than ε because n > n0. The second term
is bounded by

\\y\\ \\P(t)x - P{nη)x\\ = \\y\\ \\P(nη){P(t - nη)x - x ) | |

for 0 ^ t - nrj ^ η.
This is proved also in [9] Theorem 4.
Let us assume in this section:

(*) For some t0 > 0 the operator P(t0) P(ί0)* is the sum of a compact
operator and an operator of norm less then one.
This is equivalent to:



POWERS OF A CONTRACTION IN HILBERT SPACE 561

(**) For some 0 < tQ the point 1 is isolated in the spactrum of
P(t0) P(£o)* and the space of eigenvectors -corresponding to it is finite.

It is clear that (**) implies (*). Now if 1 is not an isolated point
of the spectrum, with finite eigenvectors space, there is a sequence
of orthonormal vectors xn such that

\\P(to)P(to)*xn-xn\\-+O.

(We use here the fact that P(t0) P(t0)* is self adjoint). Let

P(ί0) P(ί0)* = A + B

where B is compact and ||A|| < 1. Then

\\Axn + Bxn-xn\\-+b .

But B is compact hence Bxn —• 0 hence

and 1 is the spectrum of A contrary to assumption.
It is easily seen that P(t) P(t)* satisfy, also, the condition if t > tQ:

P(t) P(tr = P(t - to)P(to)P(to)*P(t - to)*. Let

K(t) = {x\\\P(t)*x\\ = ||a?||} - {x\P(t)P(t)*x = x} .

Then Kfa) c K(t2) if ίx > t2 and K{t) is finite dimensional when
t^t0.

For some s > 0 dim i£(s) is minimal hence K(s) = iί(s + fc) for all
A ^ 0. Let us denote K(s) by if.

LEMMA 3.5. The space K is invariant under P(h)* and P(h) for
all h>0.

Proof. If xeK then xe K(s + h) hence

hence

or P{hYx G K.

Now on the finite dimensional space K, the operator P(h)* is norm

preserving and therefore onto.

If x e K then for some yeK P{h)*y = x and ||α?|| = \\y\\. Thus

P(h)x = yeK.
We may assume that s ^ £0.
The subspace if1 is also invariant under P(t) and P(ί)*. Now
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P(s) P*(s) is quasi compact on K and

(P(s)P*(s)x9x)<l %eKL .

Hence on K1 | |P(β)|| = c < 1:
The operator P(s) is quasi compact on H (in the sense of (*).

Let A be the infinitesimal generator of P(t) then:
1. On K the operator (XIi)A is self adjoint.
2. On K1-

σ(A) c {λ I Re λ ^ α>0}

where

ω0 = l imr 1 log | |P(ί) | | .

See [6] corollary to Theorem 11.5.1
Now

ω0 - lim(ns)-1 log 11 P(ns) \ | ^ lim(^s)-1 log 11 P(s) \ \n ^ s"1 log c < 0 .
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