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1. In this note we consider from a measure-theoretic point of
view the Helson-Lowdenslager generalization to compact abelian groups
of the F. and M. Riesz theorem on analytic measures [3]. Our con-
tribution to this matter is the proof of Theorem 1. From Theorem
1 the Helson-Lowdenslager generalization readily follows. That which
is new here is the proof of Theorem 1. For the most part, the state-
ment of Theorem 1 can be obtained from the generalization in [3] of
the F. and M. Riesz theorem.

We have a second theorem (Theorem 2) which is about analytic
measures (Theorem 1 is not) and which adds to the information about
analytic measures given in [3]. Although Theorem 2 does not appear
in [3] it can be obtained from the generalization in [3] of the F. and
M. Riesz theorem, and we will indicate how this may be done at the
end of the proof of Theorem 2. In recent work (completed before
our work was undertaken) de Leeuw and Glicksberg have found a
generalization of the F. and M. Riesz theorem which includes Theorem
2 and much more. Nevertheless, it is hoped that the proof of Theorem
2 given here will be of interest.

Although the proof of Theorem 1 is given in the language of
harmonic analysis, we wish to point out that the argument is valid
in the more general context of Dirichlet algebras. This however is
not true of Theorem 2.

2 Throughout G will denote a compact abelian group with Haar
measure σ and with dual group Γ. Following [3], a subset S of Γ
is said to be a half-space if S is closed under multiplication and if
for each χ in Γ one and only one of the following occurs:

v c C

We will assume that Γ contains half-spaces and in all that follows S
will denote a fixed half-space in Γ.

M(G) is the space of all regular Borel measures on G. v in M(G)
is said to be analytic (more accurately analytic with respect to S) if
the Fourier transform v vanishes on S:

iv = 0
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for χ in S.
A is the algebra of continuous analytic functions on G: f belongs-

to A if and only if / belongs to C(6) and

f(X) - \ϊfdσ = 0

for χ in S. A nonnegative measure μ in M{G) with total mass one;
and such that

\fgdμ =

for all / and g in A is called a representing measure for A. Among
the representing measures is the measure σ.

It is important that the linear space of analytic measures is an
A-module: if v is analytic and / i s in A, then fv is also analytic.

The classical example of this abstract situation is the case in which
G is the circle group, Γ the integer group, and S the positive integers.
A is then the algebra of continuous functions on the circle whose
Fourier coefficients vanish for negative indices, and the representing
measures (other than normalized Lebesgue measure and the unit point
masses) are the Poisson kernels μr (0 < r < 1) and their translates:

μr - Prσ

Pr(x)

The celebrated theorem of P. and M. Riesz [4] states: An analytic-
measure on the circle is absolutely continuous with respect to Lebesgue
measure.

As usual, | | / | U is the supremum norm of / for / in C{G), \v\ is

t h e total variation of v and \\v\\ the total variation norm of v for v•

in M(G), and * is convolution.

3* THEOREM 1. Let μ be a representing measure for A and let
v be any measure in M(G). Then there is a sequence fn in A such,
that

(1) IIΛIU^i
(2) / . — I a.e. μ

(3) \\f,v-v.\\-*0

where

v = va + vs

is the Lebesgue decomposition of v with respect to μ:

va < μ , v.±μ.
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Both the statement and proof of Theorem 1 should be compared
with earlier work done by Helson in [2] for the circle group.

Because vs is a regular measure singular with respect to μ, we
may choose a sequence En of compact sets such that

•(4) \

(5)

Now choose a second sequence Fn of compact sets such that En and
Fn are disjoint and

( 6 ) μ(G ~ Fn) S 1/n4 .

Let vn be a real continuous function on G such that

(7) -2n ^vn^0 on G

( 8) vn = 0 on Fn

( 9 ) vw = -2w on En

and let ί/% be a real trigonometric polynomial such that

(10) -2n ^ gn ^ 0 on G

(̂ rw may be obtained by convolution of vn with an approximate identity
consisting of trigonometric polynomials).

Denote by gn the trigonometric polynomial conjugate to gn. Here
we mean conjugacy relative to the half-space S: conjugate to the
trigonometric polynomial

Σa(X)X

is the trigonometric polynomial

Σ-ie(χ)a(χ)χ

where

1 if X e S

e(χ) = 0 if χ = 1_

- 1 if χ e S.

Now let

Then kn belongs to A, the real part of kn is gn, and
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(12)

Finally let

fn = ̂ n .

Then fn also belongs to A and, because of (10), satisfies (1).
(9) and (11) give

l/ l ^ β - on

and thus

From (1) and (4)

and combining this estimate with the previous estimate leads to

(13) ll/Λll-0.

From (8) and (11)

t \9n\2dμ^l/n\

and from (6) and (10)

JG-Fn

Combining these two estimates gives

(14)

Now, since

2gn = K + kn ,

we have

(15) 4J| gn \
2dμ = 2^\kn \>dμ + ψndμ + ψndμ .

Moreover, since μ is a representing measure for A and because of (12),

(16) ψndμ = {^gndμj ^ 0 .

(15) and (16) combine to give
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and this inequality together with (14) shows that the sequence kn

converges to zero in the norm of L\μ). Therefore, passing to a sub-
sequence if necessary, we may assume the sequence kn converges to
zero almost everywhere with respect to μ, and now the sequence fn

satisfies (2).
The conditions (1) and (2) and the dominated convergence theorem

imply

(17) II/A-HJI-O.

Finally, (13) and (17) give (3).

Because the space of analytic measures is an A-module, statement
(3) of Theorem 1 gives the Helson-Lowdenslager theorem on analytic
measures [3, Theorem 7]:

COROLLARY 1. If v is analytic, then so are va and vs.

Helson and Lowdenslager found more than just the statement of
the corollary. They showed [3, Lemma 3]: If v is an analytic measure
singular with respect to Haar measure, then v has mean value zero.
This too follows from Theorem 1, but more is true.

THEOREM 2. Let v be an analytic measure which is singular
with respect to Haar measure. Then v*μ is singular with respect
to Haar measure for every representing measure μ.

Since v is singular with respect to σ, Theorem 1 (with σ in place
of μ) provides a sequence fn belonging to A such that

(18) I I Λ I U ^ i
(19) Λ - l a.e. σ

(20) I I Λ H I - o .

Now because v is analytic and μ is a representing measure for A,

(21) surely holds if v is replaced by a member of A. But since v is
analytic, v is in the weak-star closure of Aσ, and since convolution
is continuous in the weak-star topology for M(G), (21) continues to
hold for v.

This inequality and its proof are of course not new.
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(20) implies

and so because of (21)

\\(fn*μ)(v*μ)\\-*0

and this implies, passing to a subsequence if necessary,

(22) /.*/*-> 0 a.e. v*μ .

On the other hand, (18) and (19) imply, using dominated convergence,

(23) | | Λ - 1 | |

and therefore

(24) \\(f.*μ) - ill = II(Λ - i ) * j « | | - o .

Because of (24) we may assume, again passing to a subsequence if
necessary,

(25) fn*μ->ι a.e. a .

(22) and (25) show that v*μ and a are carried on disjoint sets,
and so they are mutually singular.

We mentioned in the introduction that Theorem 2 can be obtained
from the generalization in [3] of the F. and M. Riesz theorem. Indeed,
all that is required in our proof of Theorem 2 is a sequence belonging
to A and satisfying (20) and (23), and the existence of such a sequence
is implied (by using a standard argument) by Lemma 3 and Theorem
7 of [3].

4. Corollary 1 and Theorem 2 applied to the circle group give
the F. and M. Riesz theorem. For if v is an analytic measure on the
circle, the singular part with respect to Lebesgue measure, vs, is also
analytic. But vs*μr is absolutely continuous with respect to Lebesgue
measure. Therefore v8*μr is the zero measure, and this implies, as
fir does not vanish at any point of the integer group, that vs is the
zero measure.

There is also an F. and M. Riesz theorem for finite Borel measures
v on the real line R, which is sometimes proved by mapping a half-
plane conformally on the unit disk and using the F. and M. Riesz
theorem for the circle. We wish to show that Theorem 1 applied to
the Bohr compactification B of the line leads to an easy and, we believe,
natural proof of the Riesz theorem for the line.

v in M(R) is said to be analytic if
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3(ί) = (" e~utdv(s) = 0
J-oo

for ί < 0. B is the compact abelian group dual to R when R is given
the discrete topology. The mapping π of R into B defined by

(πs, ί) = eist

is a continuous isomorphism of R into #, and the image Bo of /ϊ is
a dense subgroup of B. Using the transformation on measures which
carries v in M(R) into v π~γ in M(B) we may identify M(R) with
those measures in iH(β) which are carried on Bo. Moreover the Fourier
transform of v in M(R) is the same whether we consider v as an
element of M(R) or as an element of M(B). For 0 < r < 1, the Cauchy
measure μr is the measure carried on Bo defined by

βr(t) = r"« .

Each Cauchy measure is a representing measure for the algebra A of
continuous analytic functions on B (here S is the set of positive real
numbers), and the Cauchy measures and Lebesgue measure are mutually
absolutely continuous.

With this brief description of B it is now easy to show: An
analytic measure on the line is absolutely continuous with respect to
Lebesgue measure.

Assume v is an analytic measure carried on Bo, and denote by σQ

Lebesgue measure (transferred to Z?o). Since the Cauehy msasures
and Lebesgue measure are mutually absolutely continuous, Theorem 1
provides a sequence fn belonging to A such that

(26) I I Λ I U ^ i
(27) fn -> 1 a.e. σ0

(28) l l / > - v α | | - > 0

where va is the absolutely continuous component of v with respect to

Consider a Cauchy measure μr. Because of (28)

(29) W(fn

Also, since v is analytic,

(30) (/̂

Now fn*μr converges pointwise to 1 on BQ, and this is important.
This is because of (26) and (27) and because a null set of μr remains
a null set when translated by an element of Bo.

Since v is carried on Bo, v*μr is also carried on BQ (and indeed
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σ0) and therefore, because / n *μ r converges boundedly to 1 on BQτ

(31)

From (29), (30), and (31) we obtain

v*μr = va*μr

which implies

^ = K

since μr does not vanish at any point of R.

5 Corollary 1 and Theorem 2 when applied to the Bohr group
give: If v is an analytic measure on B and v*μr is absolutely con-
tinuous with respect to Haar measure (for some 0 < r < 1), then v
is absolutely continuous. This is due to Bochner [1].
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