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l Finite type. In this paper we consider only rings with mini-
mum condition on left and on right ideals. Also, we only consider
finitely generated modules over these rings (such modules always
possess a composition series of submodules).

There have been several papers [3, 4, 5, 10, 11, 12] on the problem
of constructing indecomposable modules over such rings. Most of
these papers are devoted to showing that certain rings have an in-
finite number of non-isomorphic modules of a given composition length
for each of an infinite number of composition lengths. In this paper
we shall consider a finiteness condition, not on the class of all finitely
generated modules but on certain subclassses of that class.

DEFINITION. If C is a class of modules over the ring R we shall
say that C is of finite type if for each integer n there are only a
finite number of non-isomorphic modules in C of composition length
less than n.

We shall study conditions under which the following classes of
modules are of finite type:

1. LT the class of left modules which are submodules of pro-
jectives. From the results of [1], it is clear that these are the
torsionless modules.

2. LW the class of left T7-modules, these modules A for which
ExtUA, R) = 0

3. LN the non-torsionless left modules
4. LQ the torsionless left modules which are not duals of right

modules.
5. LD the class of duals of right modules.
6. LR the class of reflexive left modules [1].
7. LTW the class of torsionless flP-modules.
In the above definitions the dual of a module A is HomΛ (A, R)

denoted by A*. Also, A is reflexive if the natural homomorphism
A—>A** is an isomorphism. See [7].

The corresponding classes of right modules (RTy RW, etc.) are
defined analogously. All the theorems we prove go through with
left and right interchanged.

A useful tool in our study is the following theorem proved by
Morita and Tachikawa in [9] and also mentioned by Brauer in [2].

Received January 9, 1962. Work supported, in part, by NSF contract No. G11098.

603



604 J. P. JANS

THEOREM A. If P is protective and if the diagram

(1) \e

rows αwcί ΐ/ θ is an isomorphism, then the diagram can-
he embedded in the commutative diagram

0 — X — P->A->0

(Γ) 4 4 [θ

where p and μ are also isomorphisms.

It should be noted that the proof of Theorem A requires our
standing hypothesis that every module under consideration has a
composition series.

Before we deduce some corollaries from Theorem A, we need
some additional information. Let I be the left composition length of
the ring R and let r be the right composition length. Note that I
and r need not be equal. Let C(A) be the composition length of the
module A.

LEMMA 1.1. If the left module A has C(A) — n then there
exists a free module Fn, the direct sum of n copies of R considered
as a left module, of composition length In such that Fn —> A —• 0 is-
exact.

The proof, an in induction on n, is essentially the same as
the proof of Lemma 2.6 of [6]. By dualizing the above sequence we
obtain

LEMMA 1.2. // the left module A has C(A) = n then A* has
composition length ^ nr.

Proof. The sequence of Lemma 1.1 induces 0—>A*—>F% exact.
The module F* is a direct sum of copies of R considered as a right-
module [7] and hence C{Ft) — nr. Since A* is a submodule of
F*, C(A) ^ nr.

LEMMA 1.3. If the left module A is torsionless with C(A) = nyι

then A can be embedded in a free module F such that C(F) ^ nrl.
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Proof. By Lemma 1.2 C(A*) ^ nr and by Lemma 1.1 there exists
.a free right module Fo (the direct sum of nr copies of R) of com-
position length nr2 such that Fo —> A* —> 0 is exact. This dualizes to

0 —> A** —• î 0* exact ,

whereby the proof of Lemma 1.2 C(F$) = nrl. But since A—>A**
is a monomorphism, this can be used to embed A in F£. The idea
of the above proof is due to Bass [1], although, being in a more
.general situation he was not concerned there with composition length.

It should be noted that the inequalities of Lemma 1.2 and 1.3
are, for most rings, quite crude. Using the above lemmas, and
Theorem A have the following results.

THEOREM 1.4. / / LN is of finite type then so is LQ.

Proof. Suppose that for some n there were an infinite number
of non-isomorphic modules {TΛ} in LQ all of composition length n.
Then by Lemma 1.3 we can embed them all as submodules of a free
module F of composition length nlr. Consider the infinite collection
of factors {FjTa}. By [1, 7] these are modules in LN all having
composition length n(lr — 1).

But the hypotheses of the theorem require that there are only a
finite number of non-isomorphic modules in LN of each composition
length. Thus for some a Φ β F\TΛ^ F\Tβ and by Theorem A we
have Ta = Tβ. This contradicts the assumption that the collection
{Tω} consists of non-isomorphic modules.

The following theorem is modeled on the duality Theorem 1.1 of

[7]

THEOREM 1.5. LT is of finite type if and only if RT is of
finite type.

Proof. By right-left symmetry it is sufficient to prove the
statement in one direction only.

Suppose that RT is of finite type and {ΓJ is an infinite collection
•of non-isomorphic torsionless left modules all of composition length
n. By Lemma 1.1 there is a free module F of composition length
In and an infinite collection of short exact sequences

Now form the dual exact sequences.

0 > Tt ^L F* > F * / Γ * > 0 .
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The right modules F/TS are torsionless right modules [1; state-
ments 4.2 and 4.4] and each of these modules has composition length
less than m. Since RT is of finite type there exist two indices a
and β such that F*jTϊ θ > F*/T$ is an isomorphism. Using Theorem
A we construct the exact commuting diagram

0 v T* * . 771* . Έp*IΓF* v A

4 I" I
>lβ > t > £ l l β >i)

with vertical isomorphisms. This gives the commutative diagram

**

[p* [μ*

In this situation /m/iβ** coincides with the natural image of Tβ in.
Γ^* and the similar situation holds for the subscript a. Then com-
mutativity then implies that Ta is isomorphic with Tβ via the iso-
morphism μ*. This contradicts the assumption that the collection
{Ta} consisted of non-isomorphic modules.

2* A dual to Theorem A A dual to Theorem A would state
that if two submodules of a free module F were isomorphic, then
the isomorphism can be extended to an automorphism of F. This is
not, in general, true as we shall show by an example. However, by
assuming enough extra conditions we can obtain the desired con-
clusion. Recall that X is a W-module if Exti(-3Γ, R) — 0; see [8].

THEOREM 2.1. // in the diagram

θ is an isomorphism, F is a free module and F/A and F/B are W
modules, then the diagram can be embedded in a commutative diagram»

0



MODULE CLASSES OF FINITE TYPE 607

with all the vertical maps isomorphisms.

Proof. Consider the dual sequences

0 — (F/A)* — F* — A* — 0

0 — (F/B)* -> F* — £ * — 0

The exactness at A* and B* comes from the fact that F/A and
FjB are W-modules. Also θ* is an isomorphism because θ is one.
By Theorem A there exists an automorphism p of F* SO that the
diagram

is commutative.
Now dualize again to obtain the commutative diagram

0-+A** — F**

Since both A, B are torsionless and F is reflexive [1, 7] we can
identify A and J5 with their images in A** and 2?**. Also the
mappings with two stars on them, when restricted to these images,
coincide with the original maps. Thus, identifying F with F**, we
have the commutative diagram

0 —> A _» F -

l I"* I"
0 — B —* F—> FjB —> 0

where /o* induces μ on F/A to F/5. All the vertical maps are
isomorphisms.

COROLLARY 2.2. If LT is of finite type then so is LW.

Proof. Suppose {Wa} is an infinite collection of nonisomorphic
Tf-modules such that C(Wa) = n. By Lemma 1.1 they are all epimorphic
images of a free module F, F^> W0—*O and C(F) = In. The sub-
modules Ker πΛ of F all satisfy C(ker 7rα) = (I — X)n and by the
assumption that LT is of finite type there exist two indices a Ψ β
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such that Ker πΛ = Ker πβ. Now Theorem 2.1 implies that Wa = Wβ

contradicting the assumption that the elements in the collection {WΛ}
were non-isomorphic.

COROLLARY 2.3. LTW is of finite type if and only if LR is
of finite type.

Proof. For the "if" part of the proof we proceed exactly as in
the proof of Corollary 2.2. We use this fact, proved in [3], that if
W is a torsionless VF-module and

0—Kerτr — F-> W-* 0

is exact with F free then Ker π is reflexive. Then the proof of 2.2
with the class LR replacing LT works here.

Conversely, if LTW is of finite type and if {Qa} is an infinite
collection of reflexives with C{Qa) — n, then by Lemma 1.3 they can
all be embedded in a free module F with C(F) ^ Inr,

But by [8] this embedding of the reflexive Qa results in FIQω being
a torsionless PF-module. Hence by assumption there exists a Φ β such
that FIQΛ = F/Qβ. Then Theorem A implies QΛ = Qβ contradicting
the assumption that the collection {Qa} consists of non-isomorphic
modules.

We conclude with an example which shows that Theorem 2.1. does
not hold without the hypothesis that F/A and F/B are ΉF-modules.
Let R be the ring of matrices

with x, y, z in a field K having more than 2 elements. R is com-
mutative and is an indecomposable free module over itself. The
radical N of R is the direct sum of two simple modules, N — Sx © S2.
If a, β are two distinct nonzero elements of K there is an auto-
morphism θ of N which is "multiplication by a on St and multiplica-
tion by β on S2". Any extension of θ to a if-linear transformation
on R will have two distinct eigenvalues. However, since R is in-
decomposable every module endomorphism (or automorphism) has only
one eigenvalue, therefor θ cannot be extended to R.
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