
Pacific Journal of
Mathematics

ON DENSITIES OF SETS OF LATTICE POINTS

BETTY KVARDA

Vol. 13, No. 2 April 1963



ON DENSITIES OF SETS OF LATTICE POINTS

BETTY KVARDA

l Introduction* Let A be a set of positive integers, and for
any positive integer x denote by A(x) the number of integers of A
which are not greater than x. Then the Schnirelmann density of A
is defined [4] to be the quantity

For any k sets Al9 , Ak of positive integers, k ^ 2, let the sum
set Ax + + Ak be the set of all nonzero sums aγ + + ak for
which each aif i = 1, , fc, is either contained in A{ or is 0. Let kA
be the set A + + A with k summands.

Schnirelmann [4] and Landau [2] have shown that if A and B are
two sets of positive integers with C — A + B, and if α, β, Ί are the
Schnirelmann densities of A, B, C, respectively, then 7 ^ a + β — aβ,
and if a + β ^ 1 then Y = 1. They have also shown that if A is a
set of positive integers whose Schnirelmann density is positive then
A is a basic sequence for the set of positive integers, or, in other
words, there exists a positive integer k such that every positive integer
can be written as the sum of at most k elements of A.

We will show that by using extensions of the methods employed
by Schnirelmann and Landau the above results can be generalized to
certain sets of vectors in a discrete lattice (for definition and discussion
see [3, pp. 28-31] or [5, pp. 141-145]). Without loss of generality it
may be assumed that the components of the vectors in such a lattice
are rational integers. The usual identification of algebraic integers
with lattice points then gives an immediate extension of these results
to algebraic integers.

2 Notation and definitions* Let Qn be the set of all ^-dimensional
lattice points (xl9 , xn), n ^ 1, for which each xit i — 1, , n, is a
nonnegative integer and at least one x{ is positive. Define the sum
of subsets of Qn in the same manner as was done for sets of positive
integers, and for any subsets A and B of Qn let A — B denote the set
of all elements of A which are not in B. If A and S are subsets of
Qn and S is finite let A(S) be the number of elements in A Π S.

DEFINITION 1. A finite nonempty subset R of Qn will be called a
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612 BETTY KVARDA

fundamental subset of Qn or, briefly, a fundamental set, if whenever
an element (rl9 , rn) is in R then all elements (xlf , xn) of Qn such
that Xit^ri9i = l, " ,n, are also in R.

DEFINITION 2. Let A be any subset of Qn. The density of A is
defined to be the quantity

Qn(R)

taken over all fundamental sets R.

3«. Extension of the Landau-Schnirelmann results* Throughout
this section we let A and B be subsets of Qn with C — A + B, and
let a, β, 7 be the densities of A, B, C, respectively.

THEOREM 1. // a + β ^ 1 then 7 = 1.

Proof. Assume 7 < 1. Then there exists a fundamental set R
for which C(R) < Qn(R), which in turn implies that there exists an
element (x°l9 •••,«£) in Qn — C. Let iϋ0 be the set of all elements
(xlf , xn) in QTO for which αs^ccS, i = l, , ti. Then for any (a?x, •••,»»)
in iί0 either (^, , xn) is in A, or (xl9 , α?Λ) = (a??, , x°n) - (bu •••,&»)
for some (6^ , &n) in JB Π i20, or neither, but not both. In particular,
(a??, , x°n) is neither. Hence,

B(R0) ^ Qn(R0) ~

and

which is a contradiction. Therefore 7 = 1.

THEOREM 2. y ^ a + β — aβ.

Proof. Let ωifl ^i ^n, be that vector in Qn for which the ΐth
component is 1 and the other components, if any, are 0. If any one
of the vectors colf , ωn is missing from A then a = 0 and the theorem
is trivial. Hence we assume all the vectors ωu , ωn are in A. We
must show

for all fundamental sets R. If C(R) = Qn{R) then (1) holds, since
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(1 — a) (1 — β) ^ 0 implies 1 ^ a + β — aβ. Therefore we assume
C(R) < Qn(R) and, consequently, A(R) < Qn(R).

Let H—R — A. We will show that there exist vectors α(1), , α ( s )

in A and sets Llf "*,LS with the following properties.
( i ) Li £ if and Li is not empty, ΐ = 1, , s.
(ii) The sets L\ = {# — α ^ l ^ e L J are fundamental sets.
(iii) Li Π Ly = Φ for i ^ j .
(iv) i ί = Lx U U Ls.
Let the elements of R be ordered so that (xlf , xn) > {x[, , x'n)

if xλ > x[ or if cCi = α?ί, ,xp = x'p, xp+1 > x'P+1. For every h = (Λj, , hn)
in H, let AΛ be the set of all (a19 , an) in A such that each ê  ^ hi.
The sets AΛ are not empty since ω{e A for i = 1, , t^. The AA are
finite sets, hence they contain (in our ordering) a largest vector. Let
α(1), , α ( s ) be all the distinct vectors that are largest vectors in any
Ah. Let Li be the set of all vectors x in H such that a{ί) is the
largest vector in Ax.

That (i), (iii), and (iv) are satisfied follows immediately from this
definition of the L{. To prove (ii) consider a vector y — (yu * ,2/%)
such that

(2) xj ^ Vj ^ af ,

where α? = (xl9 •••,»») is in L { and ]/ ^ α ( ί ). Suppose yeLk, k Φ ί.
Then

(3) x3 ^ ^ ^ αjfc)

and α(&) έ a{i). But (2) and (3) and xeL{ imply α(&) ^ a{i\ hence α(fc) =
α ( ί ). Similarly, ye A implies y — a{i). This proves (ii).

If b e B Π L[ then a{i) + b is in C Π L ,̂ hence in C - A. Therefore,

+ B(L[) + .

+ /StQ^Lί) + + QΛ(LI)]

- A(R) + /SIQ^LO + + Q.(LS)]

- A(R) + β[Qn(H)]

- (1 - β)A(R)

^ (1 - β)a[Qn(R)] + β[Qn(R)] ,

and

C(R)

Qn(R)

which completes the proof.

^ a + β - aβ ,
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COROLLARY 1. Let Alf , Ak be any k subsets of Qn, k ^ 2, let
a{ be the density of At for i — 1, , k, and let d{Aλ + + Ak) be
the density of Ax + + Ak. Then

1 - d(Ax + . . . + Ak) ^ (1 - ax) . . (1 - ak) .

Proof. If fc = 2 then Theorem 2 implies that 1 — d(Ai + A2) g
1 — α^—α2+α1α:2 = ( l — α j (1—a2). Hence assume 1 — d(Aλ + + Ak^ g
(1 - O (1 - α,_0. Then

1 - d(A1 + + A ^ + Afc) ^ [1 - d(Λ + + Ak^)](l - ak)

COROLLARY 2. // A is αϋί/ subset of Qn with density a > 0
exists an integer k > 0 swcfc ί/̂ αί fcA = Qn.

Proof. There exists an integer m > 0 such that (1 — a)m ^ 1/2.
Let d(mA) be the density of mA. Then Corollary 1 implies that 1 —
d(mA) ^ (1 - a)m S 1/2, or d(mi) ^ 1/2. From Theorem 1, d{mA) +
(ί(mi) ^ 1 implies d(2mA) = 1, or 2m^4 = Qn.

4Φ Remark. We may identify Q2 with the set of nonzero Gaussian
integers x + yi for which x and y are both nonnegative rational integers.
Luther Cheo [1] defined density for subsets of this Q2 as follows,
using our notation.

DEFINITION 3. Let x0 + yoi be any element of Q2 and S the set
of all x + yi in Q2 such that x ^ x0 and y tί y0. Then for any subset
A of Q2 the density of A is the quantity

Cheo proved Theorem 1 for his density and also a theorem which
implies that if ji is in A for all j = 1, 2, , and if α0, /3C, 7C are the
Cheo densities of A, B, C = A + B, respectively, then

We cannot remove the requirement that all ji be in A by means of
an argument like that used to establish Theorem 2 since it would be
necessary to partition H in such a way that the sets L) are of the
type S used in defining the Cheo density, and this is not always possible.
Consider, for example, the set R — {x + yi: x + yi is in Q2, x ^ 4, y gΞ 3},
and let A Π i? = {1, i, 3 + 3ΐ}. Then H= R— A cannot be so partitioned,
as the reader can easily verify.
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