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SIMPLE PATHS ON POLYHEDRA

J. W. MOON and L. MOSER

In Euclidean cZ-space (d ^ 3) consider a convex polytope whose
n(n ^ d + 1) vertices do not lie in a (d — l)-space. By the "path
length" of such a polytope is meant the maximum number of its
vertices which can be included in any single simple path, i.e., a path
along its edges which does not pass through any given vertex more
than once. Let p(n, d) denote the minimum path length of all such
poly topes of n vertices in d-space. Brown [1] has shown that
p(n, 3) ^ (2n + 13)/3 and Grϋnbaum and Motzkin [3] have shown that
p(n, d) < 2(d — 2)n" for some a < 1, e.g., a = 1 — 2~19 and they have
indicated how this last value may be improved to a = 1 — 2~16. The
main object of this note is to derive the following result which, for
sufficiently large values of n, represents an improvement upon the
previously published bounds.

THEOREM.

p(n, d) < (2d + 3)((1 - 2/(d + l))n - (d - 2)) l o g 2 / l o g d - 1 < 3d nlos2llos*.

When d = 3 the example we construct to imply our bound is
built upon a tetrahedron which we denote by GQ. Its 4 vertices,
which will be called the Oth stage vertices, can all be included in a
single simple path. Upon each of the 4 triangular faces of Go erect
a pyramid in such a way that the resulting solid, Glf is a convex
polyhedron with 12 triangular faces. This introduces 4 more vertices,
the 1st stage vertices, which can be included in a single simple path
involving all 8 vertices of Gx. We may observe that it is impossible
for a path to go from a 1st stage vertex to another 1st stage vertex
without first passing through a Oth stage vertex.

The convex polyhedron G2 is formed by erecting pyramids upon
all the faces of G2. Of the 12 2nd stage vertices thus introduced at
most 9 can be included in any single simple path since, as before, no
path can join two 2nd stage vertices without passing through an
intermediate vertex of a lower stage and there are only 8 such vertices
available.

The procedure continues as follows: the convex polyhedron Gk,
k Ξ> 2, is formed by erecting pyramids upon the 4.3fc~1 triangular faces
of Gk-X. Making repeated use of the fact that the method of con-
struction makes it impossible for a path to join two vertices of the
jth stage, j ^ 2, without first passing through at least one vertex of
a lower stage we find that at most 9.2j~2 of the 4.3i~1 vertices of the

Received July 20, 1962.

629



630 J. W. MOON AND L. MOSER

jth stage, j = 2, 3, , fc, can be included in a single simple path
along the edges of Gk. This and the earlier remarks imply that
GkJ k ^ 1, has 2 3ft + 2 vertices and at most 9 2 f c l — 1 of these can
be included in a single simple path.

For any integer n > 4 let k be the unique integer such that

(1) 2-3* + 2<n^ 2 3fc+1 + 2.

Next consider the convex polyhedron with n vertices which can be
obtained by erecting pyramids upon n — (2 3fc + 2) faces of Gk. Then,
from considerations similar to those given before, it follows, using
(1), that

(2) p(n, 3) ^ 9-2* - 1 < 9((n - 2)/2)log2/log3 - 1 .

This suffices to complete the proof of the theorem when d = 3 since
the result is trivially true when n = 4.

In the general case the construction starts with a cί-dimensional
simplex. Upon each of its (d — l)-dimensional faces is formed another
d-dimensional simplex by the introduction of a new vertex on the
side of the face opposite to the rest of the original simplex in such
a way that the resulting poly tope is convex. This process is repeated
and the rest of the argument is completely analogous to that given
for the case d — 3. It should be pointed out that the result of
Griinbaum and Motzkin holds even for graphs all of whose vertices,
but for a bounded number are incident with 3 edges, while in the
polytopes described above the distribution of valences is quite different.

In closing we remark that the path length of any 3-dimensional
convex polyhedron with n vertices is certainly greater than

(log2 n/\og2 log2 n) — 1 .

Suppose that there exists a vertex, q say, upon which at least
log2 nβog2 log2 n edges are incident. Let the vertices at the other ends
of these edges be p19 p2J , pt, arranged in counterclockwise order.
Each pair, (pίf pi+1)9 i = 1, , t — 1, of successive vertices in this
sequence determines a unique polygonal face containing the edges
pi+1q and qp{. Traversing this face in a counterclockwise sense gives
a path from p{ to pi+1 involving at least one edge. Since these faces
all lie in different planes it is not difficult to see that these paths
may be combined to give a simple path from q to px to pt whose
length is at least t ^ log2 n/\og2 log2 n. If there is no vertex upon
which this many edges are incident then the required result follows
from the type of argument used by Dirac [2; Theorem 5] in showing
that the path length is at least of the magnitude of logn if only a
bounded number of edges are incident upon any vertex.
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