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1. Introduction. (%2, ., P)is a probability space i.e. 2 is an ab-
stract set of points w, . 7 is a g-field of subsets of 2 and P is a nonnega-
tive countably additive set function defined on .~ such that P(Q)=1.
G is a locally compact Hausdorff abelian metric topological group:
The group operation in G, as well as in the several other groups to
be dealt with, will be denoted by +. Let e denote the identity element
of G. By the Borel sets of G we mean the sets belonging to the o-
ring generated by the class & of compact subsets of G. Let <7 be
the class of subsets of G whose intersection with every compact set
is a Borel set. Notice that <r is a o-field containing the open subsets
of G. The character group of G will be denoted by G. A single
valued mapping f of 2 into G will be called a generalised random
variable (g.r.v.) if f%(A)e_~ whenever Ac <. An immediate
consequence of this definition is that if f is a g.r.v. then 7(f) is an
ordinary (complex valued) random variable for every 776@. A finite
or a countably infinite collection of g.r.v.’s is said to be independent
if and only if for every finite subset {X,,©1=1,2, ---,n} of distinct
members of the collection and for every choice of sets A,e &, j =
1,2, ..+, n it is true that P{w: X;(w)e A;,7=1,2, ---,n} = [I? P{w:
Xi(w) e A;}.

If G is the real line, G is the real line too. For te€G and =G,
t(x) = exp (itx). Given the random variable X and any real number
¢ > 0 we define a new random variable Y =t where {, = ¢/r and
« is the principal amplitude of exp(inX/c). The two sets
{w: —¢ < X(w) = ¢} and {w: X(w) #+ Y(w)} are then seen to be equal.
Denoting by N the interval (—c¢, ¢], the classical three series theorem
[2] may be stated thus: If {X,,n=1,2, ---} is a sequence of inde-
pendent real valued random variables then 37 X, exists with prob-
ability 1 (a.e.) if and only if, for some ¢ > 0, the following three
series converge.

(1) > P{w: X,(w)¢ N}

(ii) S FEY, and

(iii) > var Y,.

E and var denote respectively the mathematical expectation and
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variance. «, is the principal amplitude of exp (ixX,/c) and Y, = t,.
The convergence of the above three series is easily seen to be equivalent
to the convergence of

(i) 27 P{w: X,(w)e¢ N}

(ii) 7 Elogt(X,) and

(iii) >\ var log t(X,) for every teG, log t¢(X,) being defined to
be equal to 0, where 0, is the principal amplitude of exp (¢¢X,). It is
in this form the classical three series theorem lends itself for extension
to the case of generalised random variables. In §2 three lemmas are
proved leading to the generalisation. In §3 we give a neccessary
and sufficient condition for the convergence almost everywhere of 3\ X,
in terms only of characters and not using characterstic functions.

The following two known results are quoted for the sake of
completeness and ready reference.

THEOREM A. (Cor. (2.1) [4]).

If {h,,n=1,2,.--} is a sequence of continuous homomorphisms
on a topological group G, to a toplogical group G, which converge
pointwise to 2 throughout some Baire set of the second category then
h is continuous.

THEOREM B. (§2.21 [3]).

Let G be a locally compact abelian group. Let N be a compact
symmetric neighbourhood of e. Let G’ be the subgroup of G gene-
rated by N. Then G’ contains a discrete subgroup D with a finite
number of generators such that the quotient group G’/D is compact
and DN(N+ N+ N) = {e}.

2. For a sequence of real or complex numbers g,,n=1,2, ---
we say that [[7 g, exists if 117 g, is nonzero for sufficiently large =.

LEMMA 1. For 776@, a mnecessary and sufficient condition that
1= (X,) exists a.e. is that [ E(X,) exists.

Proof. If 117 n»(X,) exists a.e. then, by the bounded convergence
theorem, JI7 En(X,) exists.

Conversely let JI7 En(X,) exist. Hence [I7 | En(X,)| exists. Let
N X, (w)) = exp (¢0,(w)) where 0,(w) is the principal value of the
amplitude. Hence 6, 6,, --- is a bounded, independent sequence of
real valued random variables. Let &, be the symmetrised version of
6, and let 6, (1) be 0, truncated at 1. One has (p. 196, [2]) var 6,
(1) £8{1 — | Em(X,)[}. Hence > var 0, (1) < . By the classical
three series theorem it follows that >.7 4, converges a.e. Consequently
(p. 250, [2]) there exist constants «, such that 37 (0, — «@,) exists
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a.e. or equivalently [I; exp(—ta,)En(X,) exists. This implies the
convergence of > «, since [I7 En(X,) is assumed to converge. We
now conclude >, 0, exists a.e. or, what is same, [[7 7(X,) exists a.e.

LEMMA 2. For a given 7€ @, the following two sets of conditions
are equivalent.

2.1) 1 En(X,) ewists; S var (X,) < o
(2.2) f:, K6, converges; i‘, var 0, < o«
where N(X,) = exp (¢4,), 0, being the principal amplitude.

Proof. Suppose (2.2) holds. Therefore by the three series theorem
on the line, 37 0, exists a.e. This implies that [ 7(X,) exists a.e.
Hence []; En(X,) exists by the bounded convergence.

Let now «, = E¢,; 8, = vard, and 0, = a, + 9,. As in the last
lemma, En(X,) = (1 + d,8./2) exp (ia,) where |d,| < 1.

En(X,) — En(X,) " = E|exp (wy,) — (1 + d.5,/2) [*
=< ¢B, where c is an absolute constant
=cvard, .

Hence > var n(X,) < o.
Conversely, suppose (2.1) holds.
var 7(X,) = E|exp (vy,) — (1 + 4,8./2) |’
=1+ |1+ d,B,/2|"— 2 real part of ET + d,B./2) exp (iy.)
=1—[1+d,B./2".

Hence >7{1 — |1+ d,58./2]"t < . Now, |1+ d,8./2] is the absolute
value of the expectation F exp (ty,) and hence is less than or equal
to 1. It follows therefore that > {1 — |1+ d,8,/2]} < > As1l-—
|1+ d,8./2| = B./2, this implies that

i3n< o i.e. ivar0n< o .
1 1

From the convergence of [[7 En(X,) and >,°8, and the relation
EnX,) =@1+d,B./2) exp (ta,), we see that >\ K0, = >\ a, converges.
Thus (2.1) implies (2.2).

LEMMA 8. A necessary and suffictent condiéion that > X, ewist
a.e. 1s that [ n(X,) exists a.e. for every NeG, and for somz com-
pact neighbourhood N of e
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(2.3) i P(w: X, (w)e N) < oo .

Proof. Suppose >, X, exists a.e. Consequently, for every compact
neighbourhood N of ¢, P(w: X, (w)¢ N i.0.") =0 or, equivalently,
o Plw: X, (w)¢ N} < o by the Borel-Cantelli lemma. That JI7 7(X,)
exists a.e. for each 7 ¢ G follows from the continuity of the characters 7.

Conversely, let N be any compact neighbourhood of e for which
(2.8) is satisfied. Since N— N 2 N, we have P{w: X, (w)¢ N— N} =
P{w: X,(w)¢ N}. Hence the symmetric neighbourhood N — N of e
also satisfies (2.83). Without loss of generality we may therefore assume
that N in (2.3) is symmetric.

Denote by G* the closed subgroup generated by N. Necessarily
G* is o-compact. Further, by Theorem B, G* contains a discrete
subgroup D with a finite number of generators such that G, = G*/D
is compact and DN (N + N — N) = {¢}. Hence by the Borel-Cantelli
lemma, (2.3) implies that P{w: X, (w)¢ N i.0.} = 0; that is, if A, =
{w: X,(w)e N for all n = n(w)} then P(A)) = 1. Let ¢ be the natural
mapping of G* onto G, and write Y, (w) = 0 X (w).

As @G, is a compact, metric group, G, (and consequently Gl) satisfies
the second axiom of countablity. Also G, is discrete, since G, is com-
pact. Further @ consists precisely of those elements of G which are
identically one on D (cf: Theorem 34 [5]). In view of (2.3), we have
TI7 &(Y,) exists a.e. for each ¢ eG As G is countable we conclude
that, with probability 1, [ &(Y,) exists for all & eG . Observe that
G, being a compact metric space, is a Baire set of the second category.
It is now immediate from Theorem A that 37 Y, exists a.e.

Let A, be a set of probability 1 on which Y Y, exists. If A =
A, N A, then P(A) =1. Let we A and n = n{w). Henece

(2.4) X.(w) + Xo(w)e N+ N .

As o(N) is a neighbourhood of the identity in G, and since
> Y, (w) exists, it is clear that Y,(w) + Y,.(w) e o(N), if n is larger
than a certain n,(w). That is

(2.5) X, (w)+ X, (w)yeN+ D if n=mn((w).

From (2.4) and (2.5) and the property DN (N + N — N) = {e}, we
conclude that X, (w) + X, . (w)e N if n = max (n,, n,). Repeating the
argument a finite number of times it is seen that all finite tails of
the series > X, (w) lie in N. By exactly similar reasoning, all finite
tails lie in any preassigned neighbourhood M of ¢ with M & N. As
N is compact, we can show (by arguments similar to the ones

! infinitely often
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on p. 198 [1]) that >\ X,.(w) exists. Thus on A, whichis a set of
probability 1, > X, exists. Combining these results, we have

THEOREM 1. If {X,,n=1,2, :--} is an independent sequence of
generalised random variables then >\ X, exists a.e. if and only if
the series

(i) X7 P{w: X.(w) ¢ N}, N being any preassigned compact neigh-
bourhood of e,

(ii) > Elog 7(X,) and

(iii) >\ varlog 7(X,) converge for all 776@. Here log (X,) is
taken to be 10, where 0, is the principal amplitude of YX,).

3. DgFINITION. The measure ¢ induced in &7 by a generalised
random variable f will be called the distribution function of f. The
distribution /¢ will be said to be symmetric if f¢(A4) = 1(—A) for every
Aew., It will be called regular if for every Ae <, A =
sup{¢(C): C S A, Ce &}.

THEOREM 2. If {X,,n =12, .-} is an independent sequence of
generalised random variables with regular distributions, then >.7 X,
exists a.e. if and only if TI7 W(X,) exists a.e. for every neG.

Proof. If > X, exists a.e. then JI77(X,) exists a.e. for every
7]6@ by the continuity property of 7.

Conversely, let JI7 7(X,) exist a.e. for each 77@@. The assertion
is established through the following steps.

(i) Let G be compact. That the assertion is true in this case
is seen by the same reasoning as for G, in Lemma 3.

(ii) Let G be discrete. The compact subsets of G are therefore
only those subsets with a finite number of elements. As the distri-
bution of each X, is regular we can find a countable subgroup G,
such that P{w: X,(w)eG,n=1,2, ---} =1. Observe that @1 is the
same as G restricted to G,. Now let the X,’s have symmetric distri-
butions. Hence, if ¢,(n) = En(X,) then the ¢,’s are real and @,(—7%) =
@,(7). Now by Lemma 1, [[7 7(X,) exists a.e. for each 776@, implies
that I ®.(7) exists. Therefore g(7) = >\ {1 — ®.(9)} exists for every
e G. 1If 9. = S {1 — 9,()} then the g,’s are continuous and g,(7)
converges monotonically up to g(n) as n — « for each 7. Hence
:9(m) < a} = N {M: 9.(9) =< a} is a closed set. G is a compact metric
space and so is complete. Hence it is a set of the second category.
Further, G = Ui (7: 9() = n} iee. G is the union of a countable
number of closed sets. Therefore by the Baire category theorem, one
of these closed sets in the union, say the set A = {%:9(») = k}, has
a nonnull interior V. Trivially ¢g is bounded on V. By the positive
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definiteness and symmetry of ¢,,

1 — ¢i) — (M) + 20O (MPE + 7)) — i +7) = 0.

Let a; =1—¢,8), bi=1—¢,(n) and ¢ =1—¢,(6 + 7). Then the
above inequality implies that

¢ = af + bk — aidi + b/ (2 — ai)(2 — bi) = (@ + by)” .

Consequently,

3.1 9¢ + 1) = {lg@O1" + oM"Y .

For any & € G consider the open set £ — V. From (3.1) it is immediate
that g is bounded on & — V. The family & — V, Ee@ is an open
covering for the compact G. Therefore there exists a finite subcover
from this. As ¢ is bounded on each member of this subcover it fol-
lows that g is bounded on G.

Let m be the Haar measure of G with m(@)—l As Plw: X, (w)+e}=

|, — 2.dm(D), we obtain S P(w: X,(0) ¢} = | gdm(z) < co.

Smce G is discrete this means that for the compact neighbourhood

= {e} of e, >.7° P{w: X, (w) ¢ N} < . That 37 X, exists a.e. follows
from Lemma 3.

(ili) Let G be discrete but the distributions of the X,’s need not
be symmetrie.

Let Y,, n=1,2, --- be another independent sequence of g.r.v.’s
and independent of the X,’s; let Y, have the same distribution as
X,n=12,--

Write Z, = X, — Y,. The Z,’s therefore have symmetric distri-
butions. Also the hypothesis yields that [[;° 7(Z,) exists a.e. for every
ﬁeé. Hence by (ii) above

(3.2) i Plw: Z(w) +# €} < o .

The distribution of each X, is assumed to be regular. Hence there
exists a countable set A such that P{w: Z,(w)e A for all n} = 1. Now,
if p.(a) = P{w: X,(w) = a}, we have

P{w: Z,(w) = ¢} = 5, P{lw: X, (w) = a}P{w: Y, (w) = a} .
=a§; p(a) = sup D.(a)

Since there can only be a finite number of ‘values’ of X, for which
the associated probability is larger than any preassigned number, the
supremum is attained. Let a, be any one of the values taken by X,
with probability equal to this supremum. Therefore P{w: X,(w) #a,} =
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P{w: Z,(w) # e}. Consequently, using (3.2), we obtain
(8.3) i Plw: X,(w) # a,} < oo
(3.4) or f; P{w: X,(w) — a, ¢ N} < o .

Where N is the compact neighbourhood of ¢ consisting only of itself.
From (3.3) we conclude that, with probability 1, X, = a, except for
a finite number of n’s. This fact tggether with the hypothesis implies
that 17 7(a,) exists for every 7eG. That [P (X, — a,) exists a.e
for every ne G is then immediate. Now using (3.4) we see by lemma
3 that > (X, — a,) exists a.e. By Theorem A or by applying Lemma
3 to the random variables a, we see however that >7 a, exists since
TI7 %a,) exists, for every 7e G. Hence > X, exists a.e., as was to
be proved.

(iv) Let G be any metric abelian locally compact group. Let N
be a compact symmetric neighbourhood of ¢ and G* the closed sub-
group generated by N. Necessarily G* is o-compact and open. Let
o, be the natural mapping of G onto G, = G/G*. As G* is open, G,
is discrete. Further él consists precisely of those elements of G which
are identically one on G*. Hence []7 7(X,) exists a.e. for each 7)6@
implies that T &(Y,) exists a.e. for each ge G, where Y, =0X,.
By part (iii) above, P{w: Y, (w) + ¢, i.0.} = 0 where e, is the identity
of G,. That is

(3.5) P{w: X,(w)eG*} =0.

In other words, there is probability 1 that all except a finite number
of the X,’s lie in G*.

As G* is generated by a compact symmetric neighbourhood of ¢
there exists, by Theorem B, a discrete group D with a finite number
exists, by Theorem B, a discrete group D with a finite number of
generators such that G, = G*/D is compact and DN (N — N) = {e}.
Let ¢, be the identity element of G, and o, the natural mapping of
G* onto G,. Write Z, = 0,X, if X,eG* and =e, if X, ¢G*. Hence
Z, n=1,2, .. is an independent sequence of g.r.v.’s in G,. Recall
that G* consists of all the elements of G restricted to G* and that
G, consists precisely of those elements of G* which are identically 1
on D. Using the hypothesis and the equation (3.5) we get [I7&(Z,)
exists a.e. for every £€G,. Therefore we have

P{w: Z,(w) ¢ 04(N) i.0.} =0 ie. P{w: X, (wy¢ N+ D i.o.}=0.

Define s, =X, if X,e N+ D and s,=c¢ if X,¢ N+ D. Then
for each s, we have the unique decomposition s, = u, *+ v, where
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#,€ Nand v,e€ D. The u,’s form an independent sequence of g.r.v.’s
and so do the v,’s. It is immediate from the hypothesis that TIT 7(s.)
exists a.e. for each 776@. Also, since [I; &(Z,) exists a.e. for each
te@, 117 7(u,) exists a.e. for each e G. Hence T[7 &(v,) exists a.e.
for each &¢ D. As D is discrete we have, by part (iii), P{w: X, (w) #
¢ 1.0.} = 0. This is equivalent to saying P{w: s, (w) # u,(w) i.0.} = 0.
Or P{w: X, (w)¢ Nio.} =0i.e. X7 Plw: X (w)¢ N} < . That 3 X,
exists a.e. follows now by Lemma 3.

I thank the referee for his suggestions leading to a shorter proof
of Lemma 1.
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