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SOLVABILITY OF GROUPS OF ODD ORDER

WALTER FEIT AND JOHN G. THOMPSON

CHAPTER I

1. Introduction

The purpose of this paper is to prove the following result:

THEOREM. All finite groups of odd order are solvable.

Some consequences of this theorem and a discussion of the proof
may be found in [11].

The paper contains six chapters, the first three being of a general
nature. The first section in each of Chapters IV and V summarizes
the results proved in that chapter. These results provide the starting
point of the succeeding chapter. Other than this, there is no cross
reference between Chapters IV, V and VI. The methods used in Chapter
IV are purely group theoretical. The work in Chapter V relies heavily
on the theory of group characters. Chapter VI consists primarily of
a study of generators and relations of a special sort.

2. Notation and Definitions

Most of the following lengthy notation is familiar. Some comes
from a less familiar set of notes of P. Hall [20], while some has arisen
from the present paper. In general, groups and subsets of groups are
denoted by German capitals, while group elements are denoted by
ordinary capitals. Other sets of various kinds are denoted by English
script capitals. All groups considered in this paper are finite, except
when explicitly stated otherwise.

Ordinary lower case letters denote numbers or sometimes elements
of sets other than subsets of the group under consideration. Greek
letters usually denote complex valued functions on groups. However,
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776 SOLVABILITY OF GROUPS OF ODD ORDER

a and r are reserved for field automorphisms, permutations or other
mappings, and e is used with or without subscripts to denote a root of
unity. Bold faced letters are used to denote operators on subsets of
groups.

The rational numbers are denoted by &, while <ff* denotes the
field of nth roots of unity over &.

Set theoretic union is denoted by U. If 21 and S3 are sets, 21 — 93
denotes the elements of 21 which are not in S3. 21 c S3 means that 21
is a proper subset of S3.

<(• • • | • • •> the group generated by • • • such that
<1> will be identified with 1.

{•••!•••} the set of • • • such that
the group defined by the generators • • • with
the relations
the number of elements in the set X.
the set of non identity elements in the set X.
a set of primes. If n = {p}, we customarily
identify n with p.
the complementary set of primes.
a non zero integer all of whose prime factors
are in nm

the largest 7r-number dividing the non zero
integer n.
a group X with | X | = | X I*.
a group element X such that <X> is a 7r-group.
a subgroup @ of X with | @ | = | X |̂ .
a S^-subgroup of X for suitable TU.
a S-subgroup of X.
S is a normal subgroup of X.
$ is a characteristic subgroup of X.
the inverse image in X of /(X/5JZ). Here
31 < X, and / is a function from groups to
subgroups.
the maximal normal 7r-subgroup of X.
O,n(XmodO,1,....,n_1(X)).
we say that X is 7r-closed if and only if X has
a normal S^-subgroup.
the Fitting subgroup of X, the maximal normal
nilpotent subgroup of X.
the Frattini subgroup of X, the intersection
of all maximal subgroups of X.
the nth term in the ascending central series
of X, defined inductively by: Z0(X) = 1, ZX(H) =

1 3 E I
V
TZ

n'
7r-number

rc-group
7r-element
S^-subgroup of X
S-subgroup of X
Hall subgroup of X
5 ? < X
S? char X
/(X mod 31)

7r-closed group

W)
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Z(X) = center of X, ZW+1(X) = Z(X mod Zn(X)).
O*(X) the smallest normal subgroup ?) of X such

that X/$ is a 7r-group.
[X, F] X^Y^XY = X~lXT.
[Xu • • •, Xn] [[Xu . • •, Xn^l Xn], n^S.
[21, SB] <[A, JB] | A e 2i, B e S3>, 21 and 35 being subsets

of a group.

>. If I S ? ) , 3 £ S is called
the normal closure of X in 2).

I ' [3E, X], the commutator subgroup of X.
Cn(X) the nth term of the descending central series

of X, defined inductively by: Cx(X) = X,
CW+1(X) = [Cn(X), I ] .

£n(X) the subgroup of the p-group 3£ generated by
the elements of order at most p n .

ffn(3E) the subgroup of the p-group X generated by
the pnth powers of elements of X.

m(X) the minimal number of generators of X.
mp(X) mity), ?$ being a Sp-subgroup of X.
cl (X) the class of nilpotency of the nilpotent group

X, that is, the smallest integer n such that
X = Zn(X).

C$Q(2I) the largest subset of S3 commuting element-
wise with 21, 21 and S3 being subsets of a
group X. In case there is no danger of
confusion, we set C(2I) = CS(2I).
the largest subset of S3 which normalizes 21,21
and S3 being subsets of a group X. In case
there is no danger of confusion, we set iV(2I) =

ker (X —• 59) the kernel of the homomorphism a of the
group X into the group 2). a will often be
suppressed.

ccl a («) {2F | Xe X}, 21 being a subset of X.
F(ccls(2I);33) <2lx | X e X, 21* s S3>, the weak closure of

cclx(2I) in S3 with respect to the group X.
Here 21 and 33 are subgroups of X. If 21 =
F(ccl3E(2l); S3), we say that 21 is weakly closed
in S3 with respect to X.

TT(X) t h e s e t of p r i m e s w h i c h d iv ide | X | .
Jn the n by n matrix with 1 in positions (i, i)

and ( i , j + 1), 1 ^ i ^ n, 1 ^ j ^ n — 1, zero
elsewhere.
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SL(2, p)

special p-group

extra special p-group

self centralizing sub-
group of X
self normalizing sub-
group of X

(X)

section

factor

chief factor

the group of 2 by 2 matrices of determinant
one with coefficients in GF(p), the field of
p elements.
an elementary abelian p-group, or a non
abelian p-group whose center, commutator
subgroup and Frattini subgroup coincide and
are elementary.
a non abelian special p-group whose center
is of order p.
a subgroup 21 of X such that SI = C(2I). Notice
that self centralizing subgroups are abelian.
a subgroup 21 of I such that 21 = JV(2i).

the set of self centralizing normal subgroups
of X.
{21121 e £«t?^r (X), m(«) ^ m}.
the set of subgroups of X which 21 normalizes
and which intersect 21 in the identity only.
In case there is no danger of confusion, we
set 1̂ (21) = M(2t). If M(H) contains only the
identity subgroup, we say that M(2I) is trivial,
the 7r-subgroups in H(2I).
if £> and 5? are subgroups of the group X,
and § < 58, then S/£> is called a section,
if £> and $ are normal subgroups of X and
§ S « , then ffl/£ is called a factor of X.
if $ /§ is a factor of X and a minimal normal
subgroup of X/£>, it is called a chief factor
of X.

If £>/5? and 8/3K are sections of X, and if each coset of 5Hn £> has
a non empty intersection with precisely one coset of 3Ji in 2 and each
coset of 3Ji in 8 has a non empty intersection with precisely one coset
of 5? in £>, then £>/5? and 8/9K are incident sections.

If &/5J is a section of X and 8 is a subgroup of X which contains
at least one element from each coset of 5? in £>, we say that 8 covers
&/S?. We say that 8 dominates the subgroup 58 provided 8 covers the
section ^(fflj/C^A). The idea to consider such objects stems from [17].

If g = §/st is a factor of X, we let C^g) denote the kernel of
the homomorphism of X into Aut g induced by conjugation. Similarly,
we say that X in X centralizes % (or acts trivially on %) provided

We say that X has a Sylow series if X possesses a unique SPl,...,Pl-
subgroup for each i = 1, • • •, n, where n{Ti) = {plt • • -, pn}. The ordered
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n-tuple (pl9 • • - ,#„) is called the complexion of the series [18].
A set of pairwise permutable Sylow subgroups of X, one for each

prime dividing |X| , is called a Sylow system for X. This definition
differs only superficially from t h a t given in [16].

P . Hall [18] introduced and studied the following propositions:

EK 3£ contains a t least one Sx-subgroup.
CK X satisfies En, and any two S^-subgroups of X are conjugate

in X.
Dx X satisfies CX9 and any 7r-subgroup of X is contained in a

S^-subgroup of X.
E* X contains a nilpotent S^-subgroup.

In [19], P. Hall studied the stability group 21 of the chain ^ : X =
l o i ^ i • • • 2 Xn = 1, that is, the group of all automorphisms a of
X such that (X^X)" = X<X for all X in X^ and each i = 1, • • •, n. If
33 and X are subgroups of a larger group, and if S3 normalizes X, we
say that 33 stabilizes & provided 33/ CQ(X) is a subgroup of the stability
group of ^ .

By a character of X we always mean a complex character of X
unless this is precluded by the context. A linear character is a
character of degree one. An integral linear combination of characters
is a linear combination of characters whose coefficients are rational
integers. Such an integral linear combination is called a generalized
character. If S^ is a collection of generalized characters of a group,
let ^(S/*) ( ^ ( ^ ) ) be respectively the set of all integral (complex)
linear combinations of elements in *$". Let ^ ( ^ ) , ^(.5^) be the
subsets of ^P(£S), <&(Sf) respectively consisting of all elements a with
a(l) = 0.

If a and /3 are complex valued class functions on X, then the
inner product and weight are denoted by

II« Hi = <«,«)«-
The subscript X is dropped in cases where it is clear from the context
which group is involved.

The principal character of X is denoted by l s ; the character of
the regular representation of X is denoted by p^. If a: is a complex
valued class function of a subgroup © of X, then a* denotes the class
function of X induced by a.

The kernel of a character is the kernel of the representation with
the given character.

A generalized character is n-rational if the field of its values is
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linearly disjoint from &n.
A subset 21 of the group X is said to be a trivial intersection set

in X, or a T.I. set in X if and only if for every X in X, either

or

If £> is a normal subgroup of the group X and 0 is a character
of £>, S(#) denotes the inertial group of 0, that is

3(0) = {Xl X e X, 0(X-*HX) = 6(H) for all i?e

Clearly, § C 3(0) for all characters 0 of £>.
A group X is a Frobenius group with Frobenius kernel £> if and

only if 6 is a proper normal subgroup of X which contains the centralizer
of every element in §*. It is well known (see 3.16) that the Frobe-
nius kernel § of X is also characterized by the conditions

2. $(0) = £> for every non principal irreducible character 0 of £>.
We say that X is of Frobenius type if and only if the following

conditions are satisfied:
( i ) If § is the maximal normal nilpotent S-subgroup of X, then

(ii) If @ is a complement for £> in X, then @ contains a normal
abelian subgroup 21 such that $(0) fl @ C 21 for every non principal
irreducible character 0 of §.

(iii) G? contains a subgroup @0 of the same exponent as @ such
that (£<,£> is a Frobenius group with Frobenius kernel £>.

In case X is of Frobenius type, the maximal normal nilpotent
S-subgroup of X will be called the Frobenius kernel of X.

A group @ is a three step group if and only if
( i ) @ = @'Q*f where Q* is a cyclic S-subgroup of @, £>* ^ 1,

and & n Q* = 1.
(ii) © contains a non cyclic normal S-subgroup § such that

@" E £>C(£) S @'f $C($) is nilpotent and & is the maximal normal
nilpotent S-subgroup of @.

(iii) § contains a cyclic subgroup &* =£ 1 such that for Q in

3. Quoted Results

For convenience we single out various published results which are
of use.
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3.1. ([19] Lemma 1, Three subgroups lemma). If £>, 5?, 8 are
subgroups of the group X and

[§, ®, 8] = [$, «, £] = 1, then [8, $f ft] = 1 .

3.2. [20] F(X) = n CS(S)), the intersection being taken over all
chief factors S> o/ the group X.

3.3. [20] / / X ts soZmftZe, tfen C(F(X)) = Z(F(X)).

3.4. Lei p be an odd prime and X a p-group. If every normal
abelian subgroup of X is cyclic, then X is cyclic. If every normal
abelian subgroup of X is generated by two elements, then X is isomorphic
to one of the following groups:

( i ) a central product of a cyclic group and the non abelian group
of order p* and exponent p.

(ii) a metacyclic group.
(iii) gp <A, B | [B, A] = C, [C, A] = B»-1, C = [B, C] = A- = B>* =

1, n > 1, (r, p) = 1>.
(iv) a 3-group.

A proof of this result, together with a complete determination of the
relevant 3-groups, can be found in the interesting papers [1] and [2].

3.5. [20] If X is a non abelian p-group, p is odd, and if every
characteristic abelian subgroup of X is cyclic, then X is a central
product of a cyclic group and an extra special group of exponent p.

3.6. ([22] Hilfssatz 1.5). If a is a p'-automorphism of the p-group
£, p is odd, and a acts trivially on £?i(X), then a — 1.

3.7. [20] If SI and 95 are subgroups of a larger group, then
[21, 93] < <2I, 93>.

3.8. If the Sp-subgroup %$ of the group X is metacyclic, and if
p is odd, then s# D OP(X) is abelian.

This result is a consequence of ([23] Satz 1.5) and the well known
fact that subgroups of metacyclic groups are metacyclic.

3.9. [28] If 21 is a normal abelian subgroup of the nilpotent
yroup X and 21 is not a proper subgroup of any normal abelian subgroup
)f X, then 21 is self centralizing.

3.10. If <$ is a Sp-subgroup of the group X, and
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then C(2t) = 21 x 3) where ® is a p'-group. The proof of Lemma 5.7
in [27] is valid for all finite groups, and yields the preceding statement.

3.11. Let 21 and 33 be subgroups of a group X, where 21 is a
p-group and S3 is a pf-group normalized by 21. Suppose 2IX is a subgroup
of 2t which does not centralize S3. / / 33! is a subgroup of S3 of least
order subject to being normalized by 21 and not centralized by 2Ilf then
S3! is a special q-group for some prime q, 2^ acts trivially on D^)
and 2t acts irreducibly on S31/Z7(S31). This statement is a paraphrase
of Theorem C of Hall and Higman [21].

3.12. ([3] Lemma 1). Let A be a nonsingular matrix and let a
be a permutation of the elements of A. Suppose that o(A) can be
derived from A by permuting the columns of A and a(A) can also be
derived from A by permuting the rows of A. Then the number of
rows left fixed by a is equal to the number of columns left fixed by a.

The next two results follow from applying 3.12 to the character
table of a group X.

3.13 (Burnside). A group of odd order has no non principal real
valued irreducible characters.

3.14. If a is an automorphism of the group X then the number
of irreducible characters fixed by a is equal to the number of conjugate
classes fixed by a.

3.15. ([8] Lemma 2.1). Let ^ be a p-group for some prime p
and let 0 be an irreducible character of ty with 0(1) > 1. Then
2di(l)2 = 0 (mod 0(1)2), where the summation ranges over all irreducible
characters 0{ of ty with 0,(1) < 0(1).

Let 8 be a Frobenius group with Frobenius kernel §. Then

3.16. (i). ([7], [26]). § is a nilpotent S-subgroup of 8 and 8
§@ for some subgroup @ of 8 with $ n B = 1.

3.16. (ii). ([4] p. 334). / / p, q are primes then every subgroup
of © of order pq is cyclic. If p =£ 2 then a Sp-subgroup of Gf is cyclic.

3.16. (iii). ([7] Lemma 2.1 or [10] Lemma 2.1). A non principal
irreducible character of § induces an irreducible character of 8.
Furthermore every irreducible character of 8 which does not have
§' in its kernel is induced by a character of £>. Thus in particular
any complex representation of 8, which does not have £> in its kernel,
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contains the regular representation of @ as a constituent when
restricted to @.

We will often use the fact that the last sentence of 3.16 (iii) is
valid if "complex representation of 8" is replaced by "representation
of S over a field of characteristic prime to |8|".

4. Elementary Results

LEMMA 4.1. Let X be a group with center 3 <MKJ let X be an
irreducible character of X. Then X{lf ^ | X : 3 |.

Proof. For ZeS9\ MZ) | = Ml). Therefore

LEMMA 4.2. Let a be a generalized character of the group X.
Suppose that R, X are commuting elements of X and the order of R
is a power of a prime r. Let J^~ be an algebraic number field which
contains the | X |th roots of unity and let x be a prime ideal in the
ring of integers of J^~ which divides r. Then

a(RX) = a(X) (mod x) .

Proof. It is clearly sufficient to prove the result for a generalized
character, and thus for every irreducible character, of the abelian
group <J?, Xy. If a is an irreducible character of <2J, X> then a(RX) =
a(R)a(X) and a(R) = 1 (mod x). This implies the required congruence.

LEMMA 4.3. Let $ be a normal subgroup of the group X and let
X be an irreducible character of X which does not contain !Q in its
kernel. If X e X and C(X) n £ = <1>, then X(X) = 0.

Proof. Let f*u f*2, • • • be all the irreducible characters of X/£> = X.
Let Xu X2, • • • be all the remaining irreducible characters of X. If
C(X) n & = <1>, then C(X) is mapped isomorphically into C(X) where
X is the image of X in X. Consequently

|2 = | C(X) I ̂  I C(X) I =

This yields the required result.

Lemma 4.3 is of fundamental importance in this paper.

LEMMA 4.4. Let febe a normal subgroup of the group X. Assume
that if 0 is any nonprindpal irreducible character of § then d* is
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a sum of irreducible characters of X, all of which have the same
degree and occur with the same multiplicity in 0*. For any integer
d let £d be the sum of all the irreducible characters of X of degree d
which do not have £> in their kernel. Then fd = ay*, where a is a
rational number and y is a generalized character of §.

Proof. Let Of, 0*, ••• be all the distinct characters of X which
are induced by non principal irreducible characters of £> and which are
sums of irreducible characters of X of degree d. Suppose that Of =
ailjXij, where Xo- is an irreducible character of X for all values of j .
It is easily seen that Of, Of, ••• form a set of pairwise orthogonal
characters. Hence £d = S^l/a^O*. This proves the lemma.

If § is a normal subgroup of the group X, X e X, and <p is a character
of £>, then q>x is defined by <p*(H) = <p(X~lHX),

LEMMA 4.5. Let !Q be a normal subgroup of the group X and let
0 be an irreducible character of £>. Suppose X contains a normal
subgroup Xo such that 3(0) ^ Xo and such that Xo/£> is abelian. Then
0* is a sum of irreducible characters of X which have the same degree
and occur with the same multiplicity in 0*. This common degree
is a multiple of | X : ft(0) |. / / furthermore £> is a S-subgroup of Xo,
then 0* is a sum of | ft(0): £> | distinct irreducible characters of degree
|X:ft(0) |0(l) .

Proof. Let 0X be the character of 3(0) = ft induced by 0. Let
X be an irreducible Constituent of 0x and let filf fa, ••-,{*„ be all the
irreducible characters of ft/£>. Choose the notation so that Xfc = X
if and only if 1 ^ i g n. Since 0M§ = \ ft : § |0, we get that X^ = aO
for some integer a. Thus,

(4.1) S Xfa = a0x .
i

Hence, every irreducible constituent of aOx is of the form Xptj9 so all
irreducible constituents of 0X have the same degree. The characters
f*i, fa, " - form a group 2Ji which permutes the irreducible constituents
of a0x transitively by multiplication. Hence for every value of j there
are exactly n values of i such that Xfrfti = Xfij. If now \ l f X2, • • •, are
the distinct irreducible characters which are constituents of aOu then
(4.1) implies that aOY = nlx{.

Suppose 21 is a complement to § in $, § being a S-subgroup of $ .
We must show that 0Y is a sum of 1211 distinct irreducible characters
of ft. For any subgroups 5 ,̂ ^ of ft with § £ ^ s S, and any character
<P of $r, let qP denote .the character of ® induced by q>.
a- Suppose $ hds the property that 0 s is a sum of | f i : $ | distinct
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irreducible characters of 5J, where £> Si St £ 3 . Let 5D?a be the multi-
plicative group of linear characters of $ which have £> in their kernel,
and let X$ be an irreducible constituent of 0*. Then \ f t(l) = 0(1) is
prime to | 2 I n S | , and it follows from Lemma 4.2 that \ f t does not
vanish on any element of 21 n ® of prime power order. This in turn
implies that

If $ = $, we are done. Otherwise, let 8 contain 5? as a subgroup
of prime index. It suffices to show that \ § is reducible, or equivalently,
that X| = XA for every L in S. This is immediate, since (0®)L = 0®,
so that \ | = XRfi for some /* in 2Jls. Since 2t is abelian, it follows
that ft = 1, as required.

To complete the proof of the lemma (now that the necessary
properties of $ have been established), it suffices to show that if

0x = bliXi ,

where the Xt are distinct irreducible characters of $, then each A,?0 is
irreducible, and xf° ̂  xf° for X{ =£ Xjm For if this is proved, the normality
of So in X implies the lemma. The definition of $ implies that Xf^ is
a sum of |3Eo: Qf| distinct irreducible characters of $ . Furthermore, Xt

is the only irreducible constituent of xf.% whose restriction to § is not
orthogonal to 6. Thus, if Xf° — Xj°, then X̂  = Xjm Since Xf0 vanishes
outside 3f, a simple computation yields that ||\?°||a = l. Therefore
\?° is irreducible. The proof is complete.

LEMMA 4.6. Let p be an odd prime and let ^ be a normal Sp-
subgroup of the group *#&(£. Assume that Jp@ is a Frobenius group with
Frobenius kernel £>, £>@ is a p'-group and § n 6 = 1.

( i ) If Cy(®) = l, then ©SCIpP).
(ii) / / Cy(E) is cyclic for all elements Ee®*, then \ ® | is a prime

or § S C(^).
(iii) If 1^ C%(§) £ C«p(@), ^en either ty is cyclic or Ĉ (@) is not

cyclic.

Proof. £@ is represented on ?P/D(SP). Suppose that §
By 3.16 (iii) @ has a fixed point on ?}//)($), and thus on ?p. This
proves (i). If | B | is not a prime, let l c S f l c B . Then 3.16 (iii) implies
that @0 has a non-cyclic fixed point set on sp//)(̂ P), and thus on ty.
This proves (ii).

As for (iii), let k be the largest integer such that § has a non
trivial fixed point on Zifc(̂ P)/ZA;_1(̂ P). It follows that £> has a non trivial
fixed point on Zk(^)ID(Zk(^)).^ If Zk(%>) is not cyclic then since §@-is
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completely reducible on Zk(¥>)ID(Zk($)) (i) implies (iii) by 3.16 (iii).
Suppose that Zk(ty) is cyclic. If k ^ 2, then by [10] Lemma 1.4, 5̂ is
cyclic. Since Z2($P) is of class 1 or 2, £?i(Z2($P)) is of exponent p. As
Za(̂ P) is not cyclic neither is Qx(ZJt$))m Thus it may be assumed that
$P = QX(ZJ$)) is non cyclic of exponent p and class at most 2. If ty
is abelian then (iii) follows from (i). If 5̂ is of class 2 then by (i) @
has a fixed point on SP/̂ P' and on 5̂'. As ty has exponent p this implies
that C«p(@) is not cyclic as required.

5. Numerical Results

In this section we state some elementary number theoretical results
and some inequalities. The inequalities can all be proved by the methods
of elementary calculus and their proof is left to the reader.

LEMMA 5.1. If p, q are primes and

p = 1 (mod q) , q* = 1 (mod p)

then p = 1 + q + q2.

Proof. Let p = 1 + nq. Since p > q,q ^ l(mod p). Hence

1 + q + q2 = mp .

Reading (mod q) yields m = 1 + rq. Therefore

l + q + q2 = l + (r + n)q + rnq2 .

If r =£ 0 then the right hand side of the previous equation is strictly
larger than the left hand side. Thus r = 0 as required.

The first statement of the following lemma is proved in [5]. The
second can be proved in a similar manner.

LEMMA 5.2. Let p, q be odd primes and let n ^ 1.
(i) If qm divides (pn - 1) (p*-1 - 1) • • • (p - 1) then qm < pn.

(ii) / / qm divides (p2n — 1) (p^(""1} — 1) • • • (p2 — 1) then qn <

If x ^ 5, then

(5.1) 3*-2 > x2,

(5.2) 5*"1 > 80a ,

(5.3) 3*a > 20(2a2 + 1) .

If x ^ 7, then

(5.4) 3*"a > 2a2,
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(5.5) 3* - 3 > 28a;2,

(5.6) T > 4a;2-3" + 1 .

(5.7) 5" > 4*23X + 1 for x ^ 13 .

(5.8) (** - 1) - (x - 1)2/ - (a? ~ 1)3 > 0 for x, y ^ 3 .

4

(5.9) xv - 1 > Ay2 for * ^ 3, y ^ 5, or x ^ 5, y ^ 3 .

(5.10) a;""2 > y2 for x ^ 3, 1/ ^ 5 or x ^ 10, y ^ 3 .
(5.11) V - \ > xv -1 f o r ^ > ^ 3

2/ — 1 a; — 1

(5.12) y2 (yX"1 ~ 1 ) > a;'(a?""1 ~ X) for x > y ^ 3 .
2/ — 1 a; — 1
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